中考第一次数学模拟考试试题及答案201301

合集下载

2013年历年初三数学中考第一次模拟试卷及答案

2013年历年初三数学中考第一次模拟试卷及答案

2013年第一次中考模拟试卷初三数学(问卷)(考试时间100分钟 满分120分)一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。

注意可以用多种不同的方法来选取正确答案 1、下列运算正确的是( ▲ )A .b a b a --=--2)(2B .b a b a +-=--2)(2C .b a b a 22)(2--=--D .b a b a 22)(2+-=--2、太阳内部高温核聚变反应释放的辐射能功率为33.8102⨯千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为( ▲ )千瓦.(用科学计数法表示,保留2个有效数字)A .141.910⨯B .142.010⨯C .157.610⨯D .151.910⨯3、一个用于防震的L 形包装塑料泡沫如图所示,则该物体的俯视图是( ▲ )4、在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是( ▲ ) A . B . C . D .15、人民币1993年版的一角硬币正面图案中有一个正九边形, 如果设这个正九边形的半径为R , 那么它的周长是( ▲ )(A )9Rsin 20° (B )9Rsin 40° (C )18Rsin 20° (D )18Rsin 40° 6、希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是( ▲ )A .被调查的学生有200人B .被调查的学生中喜欢教师职业的有40人C .被调查的学生中喜欢其他职业的占40%D .扇形图中,公务员部分所对应的圆心角为72° 7、已知m ,n 为实数,则解可以为 –3 < x <3的不等式组是 ( ▲ )⎩⎨⎧<<11.nx mx A ⎩⎨⎧><11m .nx x B ⎩⎨⎧<>11.nx mx C ⎩⎨⎧>>11.nx mx D 8、如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数y =(x >0)和y =(x >0)的图象于点P 和Q ,连接OP 和OQ .则下列结论正确的是( ▲ )A .∠POQ 不可能等于90°B .=C .这两个函数的图象一定关于x 轴对称;D .△POQ 的面积是(|k 1|+|k 2|)9、如图,菱形ABCD 和菱形ECGF 的边长分别为3和4,∠A =120°,则图中阴影部分的面积( ▲ ) A .3 B .349C .32D .32 10、如图,已知点A (12,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD =AD =8时,这两个二次函数的最大值之和等于( ▲ )A .5B . 27C .8D .6第8题图 第10题图第9题图二、认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11.数据a ,4,2,5,3的平均数为b ,且a 和b 是方程2430x x -+=的两个根,则b = . 12.某工厂2010年、2011年、2012年的产值连续三年呈直线上升,具体数据如下表:则2011年的产值为 ▲ .13.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角 三角板的 斜边AB 上,BC 与DE 交于点M .如果∠ADF =100°,那么∠BMD 为 ▲ 度. 14.已知关于x 的方程522=-+x mx 的解是正数,则m 的取值范围为 ▲ . 15、如图,已知点A (1,0)、B (7,0),⊙A 、⊙B 的半径分别为1和2,当⊙A 与⊙B 相切时,应将⊙A 沿x 轴向右平移 ▲ 个单位.16、如图,将正△ABC 分割成m 个边长为1的小正三角形和一个黑色菱形,这个黑色菱形可分割成n 个 边长为1的小三角形,若941=n m ,则△ABC 的周长是 ▲ .三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以。

2013年中考数学模拟卷(一)(有答案)

2013年中考数学模拟卷(一)(有答案)

2013年中考数学模拟卷(一)(时间:120分 满分:120分)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列实际问题中的数据是近似数的有【 】①我国人口总数为:122389万人,②.某本书共有304页,③.九年级某班学生共有53人,④.圆周率 3.14π≈ ⑤.若干千克苹果平均分给若干个人,每人大约得3.33千克 A .①④⑤ B.②⑤ C.③④ D.① ② 2.下列各式运算正确的是【 】A. 235a a a +=B. 235a a a = C.235()a a = D .1025a a a ÷= 3. 把点1(23)P -,向右平移3个单位长度再向下平移2个单位长度到达点2P 处,则2P 的坐标是 【 】A.(51)-, B.(15)--, C.(55)-, D.(11)--, 4. 已知线段a 、b 、c 并有a>b>c,则组成三角形满足的条件是 【 】A .a+b>c B.a+c>b C.a-b<c D .b-c<a5.如图,为测楼房BC 的高,在距离楼房30米的A 处,测得楼顶的仰角为α,则楼高BC 的高为 【 】 A.30tan α米; B.30tan α米; C.30sin α米; D.30sin α米.6.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是 【 】 A .13 B .12 C .34 D .237.形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是【 】8. 如图,一张矩形纸片,沿折痕CE 分别作两次不同情况的折叠,①顶点B 落在AD 边上(如图1);②顶点B 落在矩形ABCD 的内部(如图2).那么∠1+∠2与∠3+∠4的大小 关系是【 】A .∠1+∠2=∠3+∠4 B.∠1+∠2<∠3+∠4 C .∠1+∠2>∠3+∠4 D.不能确定二、填空题 (本大题共8小题,每小题3分,共24分)9. ( 在下面(Ⅰ)、(Ⅱ)两题中任选一题,若两题都做按第(Ⅰ)题计分)(Ⅰ).2sin60°·tan30°=(Ⅱ).利用计算器计算:2sin42°≈ (保留4个有效数字) 10.不等式x -3<0的最大整数解是11.如图,在△ABC 中,E 、F 分别是AB 、AC 上点,当∠1+∠2+∠B+∠C=300°时,∠A= 度.12.如图.AB 是⊙O 的切线,∠B=30°,则 OA ︰OB= 13. 写一个不等式(组),使它的整数解有且仅有:-1、-2,则这个不等式(组)可以是__________________.14. 观察下列各直角坐标系中的正方形ABCD ,点P(x,y)是四条边上的点,且x ,y 都是整数,由图中所包含的规律,可得第n 个图中满足条件的点P 个数是_____________(用含n 的代数式表示).15.如图:已知直线AB ∥y 轴,且直线AB 分别与函数2y x = (x>0)、ky x= (x>0)的图象交于A 、B 两点,并知△AOB 的面积2.5,则k=16.如图中,∠ABC=60,∠B DE=∠C=45,DF=1, AB=1+3,DE ⊥AB,分别交AB 于F,BC 于E,则下列结论: ①AF =EF ;②△ADF ≌△EBF ;③21=AE BD ; ④△DBE ∽△CEA 中,正确结论的序号.......是 (多填或错填得0分,少填酌情给分) . 三、(本大题共3小题,第17题6分,第18、19均为7分,共20分).17. 求代数式的值:)2422(4222+---÷--x x x x x x ,其中22+=x18.如图,在△ABC 中,AB=5,AD=4,BD=DC=3,且DE AB 于E ,DF ⊥AC 于F.(1)请你写出图中与A 点有关的三个不同类型的正确结论; (2)DE 与DF 在数量上有何关系?并证明之.19.某班同学上学期全部参加了捐款献爱心活动,个人捐款额见 如下统计图,资助对象金额分配情况见如下统计表(1)补填统计表中的空白;(2)求该班学生个人捐款额的中位数和众数;(3)求捐款额多于15元的学生数占全班人数的百分数; (4)根据统计表中的数据画出扇形统计图.四、(本大题共2小题,每小题8分,共16分)20. 在平行四边形ABCD 中,对角线AC ,BD 交于O 点(BD>AC ),E 、F 是BD 上的两点. (1) 当点E 、F 满足条件: 时,四边形AECF 是平行四边形(不必证明); (2)当点E 、F 满足条件: 时,四边形AECF 是矩形,并加以证明.资助对象灾区 民众 重病 学生 孤老 病者 捐助金额 (元)13518921.现有三个数:1、3、5,要添加一数,使得它们的平均数增大,平均数增大多少,只能通过如图所示的自由转盘来决定,你认为添加一个什么数可能性较大?五、(本大题共2小题,第22题8分,第23题9分,共17分)22.在⊙O中,AB是非直径弦,弦CD⊥AB,(1)当CD经过圆心时(如图1)∠AOC+∠DOB= 度;(2)当CD不经过圆心时(如图2), ∠AOC+∠DOB的度数与(1)的情况相同吗?试说明你的理由.23. 在购买课桌椅时,设购买套数为x(套),总费用为y(元).现有两种购买方案:方案一:若学校赞助出售单位10000元,则该校所购课桌椅的价格为每套40元;(总费用=赞助费+课桌椅费)方案二:购买课桌椅方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤200时,y与x的函数关系式为;当x>200时,y与x的函数关系式为;(2)如果购买课桌椅超过200套,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两校分别采用方案一、方案二购买课桌椅共500套,花去总费用计40000元,求甲、乙两校各购买课桌椅多少套.六、(本大题共2小题,第24题9分,第25题10分,共19分)24.有一张梯形纸片ABCD,DC∥AB,∠DAB=90°,将△ADC沿AC折叠,点D恰好落在BC的中点E上(如图1)(1)求证:∠DAC=∠EAB;(2)当上底DC=10cm时,求梯形两腰AD、BC的长;(3)若过E作EF⊥AB于F,现将这张梯形纸片沿AE、EF剪成三块,然后按如图2所示拼成四边形HDAE(对应部分有相同的编号),那么四边形HDAE是什么特殊四边形(不证明)?并请你在图3中画出两条分割线(虚线),同样将梯形纸分成三块,然后拼成一个正六边形,要求仿图2方法画出拼图.25.在直角坐标系中,△ABC 的顶点坐标为A (4,6),B (2,3),C (5,3).将△ABC 绕点C 顺时针旋转180°后得到△11CB A .(1)求A 1,B 1的坐标;(2)已知坐标系中有抛物线y=ax 2-10ax+24a (a ≠0) ①求该抛物线与x 轴的交点坐标,并说明这两交点分别与A 点有何位置关系(从对称角度来说明)?②当抛物线经过点B 时,能否确定一定经过点B 1,说说你的理由;③若点P 是该抛物线的顶点,是否存在一个实数a,使△BPB 1与△BAC 相似,若存在,求出P 点坐标,若不存在,说明其理由.2013年中考数学模拟卷(一)参考答案一、选择题(本大题共8小题,每小题3分,共24分)1. A,2. B,3. C4. C,5. A ,6. C7. D ,8. A 二、填空题 (本大题共8小题,每小题3分,共24分)9. (Ⅰ). 1,(Ⅱ) 1.338 10. 2 11. 30 12. 1︰2 13.如:10250x x +≤⎧⎨+>⎩14. 4n , 15. -3 16.①②④三、(本大题共3小题,第17题6分,第18、19均为7分,共20分).17. 解: 原式=2242222+-÷--x xx x x x =错误!不能通过编辑域代码创建对象。

2013中考数学一模试卷苏教版

2013中考数学一模试卷苏教版

2012–2013学年第一次模拟考试试卷九年级数学(满分:150分 ;考试时间:120分钟)说明:1.答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上。

2.选择题每小题选出答案后,请用2B 铅笔在答题卡指定区域填涂,如需改动,用橡皮擦干净后,再填涂其它答案。

非选择题请用0.5毫米的黑色签字笔在答题卡指定区域作答,在试卷或草稿纸上作答一律无效.考试结束后,请将答题卡交回. 3.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚。

一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相应位置.......上) 1.的相反数是( ▲ ). A .B .C .5 D .2.在△ABC 中,∠C=90°,AC=8,BC=6,则B 的值是(▲) A .B .C .D .3.下列计算正确的是( ▲ ) A .B . C .D .4.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是( ▲ )A .内切B .相交C .外切D .外离 5。

下列说法不正确...的是( ▲) A .某种彩票中奖的概率是,买1000张该种彩票一定会中奖 B .了解一批电视机的使用寿命适合用抽样调查C .若甲组数据方差0.39,乙组数据方差0.27,则乙组数据比甲组数据稳定D .在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 6.下列命题中,真命题是( ▲ ) A .矩形的对角线相互垂直B .顺次连结四边形各边中点所得到的四边形是矩形C .等边三角形既是轴对称图形又是中心对称图形D .对角线互相垂直平分的四边形是菱形7.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是( ▲ )A .①②B .②③C 。

②④D 。

③④8.某村计划新修水渠3600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成任务,若设原计划每天修水渠米,则下面所列方程正确的是(▲ ) A . B .①正方体②圆柱③圆锥④球C .D .二、填空题(本大题共有10小题,每小3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.函数中自变量的取值范围是▲.10.月球距离地球表面约为384000000米,将这个距离用科学记数法(保留两个有效数字)表示为▲米.11.一个材质均匀的正方体的六个面上分别标有字母A 、B 、C ,其展开图如图所示,随机抛掷此正方体,A 面朝上的概率是▲。

2013年中考数学模拟试卷(一、二)(A3版)-----

2013年中考数学模拟试卷(一、二)(A3版)-----

2013年中考数学模拟试卷(一)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1.9的平方根是【】A.3 B.-3 C.±3 D.62.某种微粒子,测得它的质量为0.000 067 46克,这个质量用科学记数法表示(保留三个有效数字)应为【】A.6.75×10-5克B.6.74×10-5克C.6.74×10-6克D.6.75×10-6克3.下列图形中,既是轴对称图形又是中心对称图形的共有【】A.1个B.2个C.3个D.4个4.某市5月上旬前五天的最高气温如下(单位:°C):28,29,31,29,33,对这组数据,下列说法错误的是【】A.平均数是30 B.众数是29 C.中位数是31 D.极差是55.如图,二次函数2y ax bx c=++的图象经过(-1,1),(2,-1)两点,下列关于这个二次函数的叙述正确的是【】A.当x=0时,y的值大于1 B.当x=3时,y的值小于0C.当x=1时,y的值大于1 D.y的最大值小于水平面主视方向第5题图第6题图第7题图6.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是【】A.两个外离的圆B.两个相交的圆C.两个外切的圆D.两个内切的圆A.30°B.45°C.60°D.90°FEDA第8题图第10题图第13题图二、填空题(每小题3分,共21分)∠AEC=_________.11.圆锥的底面圆直径和母线长均为80cm,则它的侧面展开图的圆心角是_________.12.某市初中毕业男生体育测试项目有四项,其中“立定跳远”、“1 000米跑”、“掷实心球”为必测项目,另一项从“篮球运动”或“一分钟跳绳”中选一项测试.小亮、小明和大刚从“篮球运动”或“一分钟跳绳”中选择同一个测试项目的概率是__________.16.(8分)先化简2111122xx x x⎛⎫-÷⎪-+-⎝⎭,然后从-2≤x≤2的范围内选择一个合适的整数作为x的值代入求值.17.(9分)为了更好地宣传吸烟的危害,某中学九年级一班数学兴趣小组设计了如下调查问卷,调查了部分吸烟人群,并将调查结果绘制成统计图.42%调查结果的扇形统计图调查结果的条形统计图ACBDE根据以上信息,解答下列问题:(1)本次接受调查的总人数是_________人,并把条形统计图补充完整.(2)在扇形统计图中,C选项的人数百分比是________,E选项所在扇形的圆心角的度数是________.(3)若某地区约有烟民14万人,试估计对吸烟有害持“无所谓”态度的约有多少人?M A E F D B C 18.(9分)已知:如图,四边形ABCD 是正方形,BD 是对角线,BE 平分∠DBC 交DC 于E 点,交DF 于M 点,F 是BC 延长线上一点,且CE =CF . (1)求证:BM ⊥DF ;(2)若正方形ABCD 的边长为2,求ME ·MB 的值.19.(9分)甲、乙两地相距300km ,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y (km )与时间x (h )之间的函数关系,折线BC -CD -DE 表示轿车离甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象,解答下列问题:(1)线段CD 表示轿车在途中停留了________h ;(2)求线段DE 对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.20.(9分)如图所示,当小华站立在镜子EF 前的A 处时,他看自己的脚在镜中的像的俯角为45°;如果小华向后退0.5米到B 处,这时他看自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据1.73)21.(10分)某商店为了抓住文化艺术节的商机,决定购进A ,B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进 A 种纪念品5件,B 种纪念品6件,需要800元. (1)求购进A ,B 两种纪念品每件各需多少元.(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这 100件纪念品的资金不少于7 500元,但不超过7 650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?22.(10分)在正方形ABCD 中,对角线AC ,BD 交于点O ,点P 在线段BC 上(不与点B 重合),∠BPE =12∠ACB ,PE 交BO 于点E ,过点B 作BF ⊥PE ,垂足为F ,交AC 于点G . (1)当点P 与点C 重合时(如图1),求证:△BOG ≌△POE ; (2)通过观察、测量,猜想:BF PE=________,并结合图2证明你的猜想;(3)把正方形ABCD 改为菱形,其他条件不变(如图3),若∠ACB =α,求BF PE的值.(用含α的式子表示)(1)求过点A ,O ,B 的抛物线解析式.(2)在(1)中抛物线的对称轴上是否存在点M ,使△AOM 的周长最小?若存在,求出点M 的坐标;若不存在,请说明 理由.(3)在x 轴下方的抛物线上是否存在一点P ,过点P 作x 轴 的垂线,交直线AB 于点E ,线段OE 把△AOB 分成两个三角 形,使其中一个三角形的面积与四边形BPOE 的面积之比为 2:3?若存在,求出点P 的坐标;若不存在,请说明理由.y11ACD E FG OAD E F G OOGF ED BCA2013年中考数学模拟试卷(二)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1. 某市1月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是【 】A .-2℃B .8℃C .-8℃D .2℃2. 下列四个图形中,既是轴对称图形又是中心对称图形的有【 】A .4个B .3个C .2个D .1个3. 某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵, 则根据题意列出方程正确的是【 】 A .5(211)6(1)x x +-=- B .5(21)6(1)x x +=- C .5(211)6x x +-=D .5(21)6x x +=4. 一次函数|1|y mx m =+-的图象过点(0,2),且y 随x 的增大而增大,则m =【 】A .-1B .3C .1D .-1或35. 如图所示,把一张矩形纸片对折,折痕为AB ,再把以AB 的中点O 为顶点的平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是【 】BOA BAAA .正三角形B .正方形C .正五边形D .正六边形6. 在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f (x ,y ) = (y ,x ),如f (2,3) = (3,2);②g (x ,y ) = (-x ,-y ),如g (2,3) =(-2,-3).按照以上变换有f (g (2,3)) =f (-2,-3) =(-3,-2),那么 g (f (-6,7)) =【 】A .(7,6)B .(7,-6)C .(-7,6)D .(-7,-6)7. 如图,等边△ABC 的周长为6π,半径为1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了【 】 A .2周 B .3周 C .4周 D .5周第7题图 第8题图8. 如图,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,点D 的坐标为(5,4),AD =2.若动点E ,F 同时从点O 出发,点E 沿折线OA -AD -DC 运动,到达C 点时停止;点F 沿OC 运动,到达C 点时停止,它们运动的速度都是每秒1个单位长度.设点E 运动x 秒时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为【 】二、填空题(每小题3分,共21分)9. x 的取值范围是_________.10. 如图,E ,F 分别是正方形ABCD 的边BC ,CD 上的点,BE =CF ,连接AE ,BF .将△ABE 绕正方形的对角线交点O按顺时针方向旋转到△BCF ,则旋转角的度数为_________.F BN CO 第10题图 第12题图11. 一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程20x px q ++=有实数根的概率是_________.12. 如图,矩形OABC 内接于扇形MON ,当CN =CO 时,∠NMB 的度数是 .13. 如图1,用8个同样大小的小立方体粘成一个大立方体,得到的几何体的三视图如图2所示,若小明从这8个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是_____个.14. 如图,□ABCD 的顶点A ,C 在双曲线11y x =-上,B ,D 在双曲线22y x=上,122k k =(k 1>0),AB ∥y 轴,S □ABCD =24,则k 1=_________.15. 已知:在△ABC 中,AC =a ,AB 与BC 所在直线成45°角,AC 与BC cosC=),则A C 边上的中线长是____________.三、解答题(本大题共8小题,满分75分)16. (8分)已知x 是一元二次方程x 2-2x +1=0的根,求代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值.17.(9分)九(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理:请解答以下问题:(1)把上面频数分布直方图补充完整,并计算:a=_______,b=________;(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1 000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?18.(9分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与B C相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.A B MODC19.(9分)如图,四边形ABCD是正方形,其中A(1,1),B(3,1),D(1,3).反比例函数myx=(x>0)的图象经过对角线BD的中点M,与BC,CD的边分别交于点P,Q.(1)直接写出点M,C的坐标;(2)求直线BD的解析式;(3)线段PQ与BD是否平行?并说明理由.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.22.(10分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm.现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行,为什么?(2)连接DP,当t为何值时,四边形EQDP能成为平行四边形?(3)当t为何值时,△EDQ为直角三角形?23.(11分)已知抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为直线x=2.(1)求该抛物线的解析式.(2)点D在线段AB上,且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C出发沿线段CB匀速运动,是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时两点的运动时间t(秒)和点Q的运动速度;若不存在,请说明理由.(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在,请说明理由.。

2013年河南省郑州市中考数学一模试卷

2013年河南省郑州市中考数学一模试卷

2013年河南省郑州市中考第一次质量预测数学试卷一、选择题(每小题3分,共24分)1.(3分)下面的数中,与﹣3的和为0的是()A.3B.﹣3C.D.2.(3分)如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A.B.C.D.3.(3分)下列图形中既是轴对称又是中心对称图形的是()A.三角形B.平行四边形C.圆D.正五边形4.(3分)下面的计算正确的是()A.6a﹣5a=1B.﹣(a﹣b)=﹣a+bC.a+2a2=3a3D.2(a+b)=2a+b5.(3分)已知:如图,CF平分∠DCE,点C在BD上,CE∥AB.若∠ECF=55°,则∠ABD的度数为()A.55°B.100°C.110°D.125°6.(3分)某校九年级参加了“维护小区周边环境”、“维护繁华街道卫生”、“义务指路”等志愿者活动,如图是根据该校九年级六个班的同学某天“义务指路”总人次所绘制的折线统计图,则关于这六个数据中,下列说法正确的是()A.极差是40B.众数是58C.中位数是51.5D.平均数是607.(3分)如图,△ABC内接于⊙O,连接OA,OB,∠OBA=40°,则∠C的度数是()A.60°B.50°C.45°D.40°8.(3分)如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC 上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)二、填空题(每小题3分,共21分)9.(3分)计算=.10.(3分)2012年11月,国务院批复《中原经济区规划》,建设中原经济区上升为国家战略.经济区范围包括河南全部及周边四省(部分)共30个地市,总面积28.9万平方公里,总人口1.7亿人,均居全国第一位.1.7亿人用科学记数法可表示为人.11.(3分)已知关于x的一元二次方程ax2+x﹣b=0的一根为﹣1,则a﹣b的值是.12.(3分)现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,则第二次抽取的数字大于第一次抽取的数字的概率是.13.(3分)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB 的长度为mm.14.(3分)在Rt△ABC中,∠C=30°,DE垂直平分斜边BC,交AC于点D,E点是垂足,连接BD,若BC=8,则AD的长是.15.(3分)如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为(0,2),B点在x轴上,对角线AC,BD交于点M,OM=,则点C的坐标为.三、解答题(本大题共8个小题,共75分)16.(8分)阅读某同学解分式方程的具体过程,回答后面问题.解方程.解:原方程可化为:检验:当x=﹣6时,各分母均不为0,∴x=﹣6是原方程的解.…⑤请回答:(1)第①步变形的依据是;(2)从第步开始出现了错误,这一步错误的原因是;(3)原方程的解为.17.(9分)某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?(3)频数分布直方图补充完整.18.(9分)如图,函数y=kx与y=的图象在第一象限内交于点A.在求点A坐标时,小明由于看错了k,解得A(1,3);小华由于看错了m,解得A(1,).(1)求这两个函数的关系式及点A的坐标;(2)根据(1)的结果及函数图象,若kx﹣>0,请直接写出x的取值范围.19.(9分)如图,在菱形ABCD中,∠BAD=60°,把菱形ABCD绕点A按逆时针方向旋转α°,得到菱形AB′C′D′.(1)当α的度数为时,射线AB′经过点C(此时射线AD也经过点C′);(2)在(1)的条件下,求证:四边形B′CC′D是等腰梯形.20.(9分)钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为12海里(即MC=12海里).在A点测得岛屿的西端点M在点A的东北方向;航行4海里后到达B 点,测得岛屿的东端点N在点B的北偏东60°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离.21.(10分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式;(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?22.(10分)(1)问题背景如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E.请探究线段BD与CE的数量关系.(事实上,我们可以延长CE与直线BA相交,通过三角形的全等等知识解决问题.)结论:线段BD与CE的数量关系是(请直接写出结论);(2)类比探索在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;(3)拓展延伸在(2)中,如果AB≠AC,且AB=nAC(0<n<1),其他条件均不变(如图3),请你直接写出BD与CE的数量关系.结论:BD=CE(用含n的代数式表示).23.(11分)如图,抛物线与直线AB交于点A(﹣1,0),B(4,).点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的解析式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标;(3)当点D为抛物线的顶点时,若点P是抛物线上的动点,点Q是直线AB上的动点,判断有几个位置能使以点P,Q,C,D为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.2013年河南省郑州市中考第一次质量预测数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下面的数中,与﹣3的和为0的是()A.3B.﹣3C.D.【分析】设这个数为x,根据题意可得方程x+(﹣3)=0,再解方程即可.【解答】解:设这个数为x,由题意得:x+(﹣3)=0,x﹣3=0,x=3,故选:A.2.(3分)如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从上面看易得左边第一列有2个正方形,中间第二列最有2个正方形,最右边一列有1个正方形在右上角处.故选:C.3.(3分)下列图形中既是轴对称又是中心对称图形的是()A.三角形B.平行四边形C.圆D.正五边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形.故错误;C、是轴对称图形,又是中心对称图形.故正确;D、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误.故选:C.4.(3分)下面的计算正确的是()A.6a﹣5a=1B.﹣(a﹣b)=﹣a+bC.a+2a2=3a3D.2(a+b)=2a+b【分析】A、合并同类项得到结果,即可作出判断;B、利用去括号法则去括号得到结果,即可作出判断;C、原式为最简的,不能合并;D、利用去括号法则去括号后得到结果,即可作出判断.【解答】解:A、6a﹣5a=a,本选项错误;B、﹣(a﹣b)=﹣a+b,本选项正确;C、a+2a2不是同类项,不能合并,本选项错误;D、2(a+b)=2a+2b,本选项错误.故选:B.5.(3分)已知:如图,CF平分∠DCE,点C在BD上,CE∥AB.若∠ECF=55°,则∠ABD的度数为()A.55°B.100°C.110°D.125°【分析】由CF为角平分线,利用角平分线的定义得到一对角相等,进而求出∠ECD的度数,再由两直线同位角相等得到∠ABD与∠ECD相等,即可求出∠ABD的度数.【解答】解:∵CF平分∠DCE,∠ECF=55°,∴∠ECD=2∠ECF=110°,∵CE∥AB,∴∠ABD=∠ECD=110°.故选:C.6.(3分)某校九年级参加了“维护小区周边环境”、“维护繁华街道卫生”、“义务指路”等志愿者活动,如图是根据该校九年级六个班的同学某天“义务指路”总人次所绘制的折线统计图,则关于这六个数据中,下列说法正确的是()A.极差是40B.众数是58C.中位数是51.5D.平均数是60【分析】根据极差的定义、众数、中位数、算术平均数的定义,对每一项分别进行解答,再做出判断,即可得出答案.【解答】解:A、根据极差的定义可得:极差是80﹣45=35,故本选项错误;B、因为58出现了2次,次数最多,所以众数是58,故本选项正确;C、按照从小到大的顺序排列如下:45、50、58、58、62、80,第3、4两个数都是58,则中位数是58,故本选项错误;D、根据平均数的定义可得:平均数=(50+80+58+45+58+62)=×353=58,故本选项错误;故选:B.7.(3分)如图,△ABC内接于⊙O,连接OA,OB,∠OBA=40°,则∠C的度数是()A.60°B.50°C.45°D.40°【分析】由OA=OB,∠OBA=40°,根据等边对等角的性质,可求得∠OAB的度数,继而求得∠AOB的度数,又由圆周角定理,可求得∠C的度数.【解答】解:∵OA=OB,∠OBA=40°,∴∠OAB=∠OBA=40°,∴∠AOB=180°﹣∠OAB﹣∠OBA=100°,∴∠C=∠AOB=50°.故选:B.8.(3分)如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC 上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)【分析】先根据图形确定出对称中心,然后根据中点公式列式计算即可得解.【解答】解:由图可知,△ABC与△A′B′C′关于点(﹣1,0)成中心对称,设点P′的坐标为(x,y),所以,=﹣1,=0,解得x=﹣a﹣2,y=﹣b,所以,P′(﹣a﹣2,﹣b).故选:C.二、填空题(每小题3分,共21分)9.(3分)计算=4.【分析】本题涉及零指数幂、绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+1=4,故答案为4.10.(3分)2012年11月,国务院批复《中原经济区规划》,建设中原经济区上升为国家战略.经济区范围包括河南全部及周边四省(部分)共30个地市,总面积28.9万平方公里,总人口1.7亿人,均居全国第一位.1.7亿人用科学记数法可表示为 1.7×108人.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1.7亿有9位,所以可以确定n=9﹣1=8.【解答】解:1.7亿=170 000 000=1.7×108.故答案为:1.7×108.11.(3分)已知关于x的一元二次方程ax2+x﹣b=0的一根为﹣1,则a﹣b的值是1.【分析】将x=﹣1代入已知一元二次方程,通过移项即可求得(a﹣b)的值.【解答】解:∵关于x的一元二次方程ax2+x﹣b=0的一根为﹣1,∴x=﹣1满足该方程,∴a﹣1﹣b=0,解得,1.故答案是:1.12.(3分)现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,则第二次抽取的数字大于第一次抽取的数字的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次抽取的数字大于第一次抽取的数字的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,第二次抽取的数字大于第一次抽取的数字的有3种情况,∴第二次抽取的数字大于第一次抽取的数字的概率是:=.故答案为:.13.(3分)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB 的长度为8mm.【分析】先求出钢珠的半径及OD的长,连接OA,过点O作OD⊥AB于点D,则AB=2AD,在Rt△AOD中利用勾股定理即可求出AD的长,进而得出AB的长.【解答】解:连接OA,过点O作OD⊥AB于点D,则AB=2AD,∵钢珠的直径是10mm,∴钢珠的半径是5mm,∵钢珠顶端离零件表面的距离为8mm,∴OD=3mm,在Rt△AOD中,∵AD===4mm,∴AB=2AD=2×4=8mm.故答案为:8.14.(3分)在Rt△ABC中,∠C=30°,DE垂直平分斜边BC,交AC于点D,E点是垂足,连接BD,若BC=8,则AD的长是.【分析】由在Rt△ABC中,∠C=30°,BC=8,可求得AB的长,又由勾股定理,求得AC的长,然后设AD=x,由线段垂直平分线的性质,可得BD=CD=AC﹣AD,然后由勾股定理得到方程:16+x2=(4﹣x)2,解此方程即可求得答案.【解答】解:∵在Rt△ABC中,∠C=30°,BC=8,∴AB=BC=4,∴AC==4,∵DE垂直平分斜边BC,∴BD=CD,设AD=x,则CD=BD=AC﹣AD=4﹣x,在Rt△ABD中,AB2+AD2=BD2,即16+x2=(4﹣x)2,解得:x=,∴AD=.故答案为:.15.(3分)如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为(0,2),B点在x轴上,对角线AC,BD交于点M,OM=,则点C的坐标为(6,4).【分析】过点C作CE⊥x轴于点E,过点M作MF⊥x轴于点F,连结EM,根据正方形的性质可以得出F是OE的中点,就可以得出MF是梯形AOEC的中位线,证明△AOB≌△BEC就可以得出OB=CE,AO=BE,就可以求得△OME是等腰直角三角形,由勾股定理就可以求出OE的值,从而得出C点的纵坐标.【解答】解:过点C作CE⊥x轴于点E,过点M作MF⊥x轴于点F,连结EM,∴∠MFO=∠CEO=∠AOB=90°,AO∥MF∥CE,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,AM=CM,∴∠OAB=∠EBC,OF=EF,∴MF是梯形AOEC的中位线,∴MF=(AO+EC),∵MF⊥OE,∴MO=ME.∵在△AOB和△BEC中,,∴△AOB≌△BEC(AAS),∴OB=CE,AO=BE.∴MF=(BE+OB),又∵OF=FE,∴△MOE是直角三角形,∵MO=ME,∴△MOE是等腰直角三角形,∴OE==6,∴A(0,2),∴OA=2,∴BE=2,∴OB=CE=4.∴C(6,4).故答案为:(6,4).三、解答题(本大题共8个小题,共75分)16.(8分)阅读某同学解分式方程的具体过程,回答后面问题.解方程.解:原方程可化为:检验:当x=﹣6时,各分母均不为0,∴x=﹣6是原方程的解.…⑤请回答:(1)第①步变形的依据是等式的性质;(2)从第③步开始出现了错误,这一步错误的原因是移项不变号;(3)原方程的解为x=.【分析】(1)去分母的依据为等式的性质;(2)从第三边开始出现错误,错误的原因是移项不变号;(3)去括号后,移项合并,将x系数化为1,求出x的值,代入检验即可得到原分式方程的解.【解答】解:(1)第①步变形的依据是等式的性质;(2)从第③步开始出现了错误,这一步错误的原因是移项不变号;(3)移项得:2x+3x+x2﹣x2=6,即5x=6,解得:x=,经检验是原分式方程的解.故答案为:(1)等式的性质;(2)③,移项不变号;(3)x=17.(9分)某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?(3)频数分布直方图补充完整.【分析】(1)由两个统计图可以看出:该校学生报名总人数有160÷40%=400人;(2)羽毛球的学生有400×25%=100人;因为选排球的人数是100人,即可求得占报名总人数的百分比;(3)因为选篮球的人数是40人,除以总人数即可求解.【解答】解:(1)由两个统计图可知该校报名总人数是(人);(2)选羽毛球的人数是400×25%=100(人),因为选排球的人数是100人,所以,因为选篮球的人数是40人,所以,即选排球、篮球的人数占报名的总人数分别是25%和10%.(3)如图:18.(9分)如图,函数y=kx与y=的图象在第一象限内交于点A.在求点A坐标时,小明由于看错了k,解得A(1,3);小华由于看错了m,解得A(1,).(1)求这两个函数的关系式及点A的坐标;(2)根据(1)的结果及函数图象,若kx﹣>0,请直接写出x的取值范围.【分析】(1)将A(1,3)代入反比例解析式中求出m的值,确定出反比例解析式;将A(1,)代入正比例函数解析式中求出k的值,确定出正比例解析式;(2)联立两函数解析式求出A与B的坐标,利用图象得出不等式的解集,即为x的范围.【解答】解:(1)将A(1,3)代入反比例解析式中,得:3=,即m=3,则反比例解析式为y=;将A(1,)代入正比例解析式得:=k,则正比例解析式为y=x;(2)联立两函数解析式得:,解得:或,则A(3,1),B(﹣3,﹣1),根据函数图象得:x>3或﹣3<x<0.19.(9分)如图,在菱形ABCD中,∠BAD=60°,把菱形ABCD绕点A按逆时针方向旋转α°,得到菱形AB′C′D′.(1)当α的度数为30°时,射线AB′经过点C(此时射线AD也经过点C′);(2)在(1)的条件下,求证:四边形B′CC′D是等腰梯形.【分析】(1)根据菱形的对角线平分一组对角可得∠BAC=∠BAD,然后根据旋转角等于对应边AB、AB′的夹角解答;(2)根据菱形的四条边都相等可得AB=AD,再根据旋转只改变图形的位置不改变图形的形状与大小可得AB=AB′、AC′=AC,然后求出DB′∥CC′,B′C=DC′,再根据等腰梯形的定义证明即可.【解答】(1)解:在菱形ABCD中,∵∠BAD=60°,∴∠BAC=∠BAD=×60°=30°,∵菱形ABCD旋转后射线AB′经过点C,∴旋转角α=∠BAC=30°;(2)证明:在菱形ABCD中,AB=AD,∵菱形ABCD绕点A按逆时针方向旋转得到菱形AB′C′D′,∴AB=AB′、AC′=AC,∴AD=AB′,AC﹣AB′=AC′﹣AD,即B′C=DC′,=,∴DB′∥CC′,∴四边形B′CC′D是等腰梯形.20.(9分)钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为12海里(即MC=12海里).在A点测得岛屿的西端点M在点A的东北方向;航行4海里后到达B 点,测得岛屿的东端点N在点B的北偏东60°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离.【分析】在直角△ACM,∠CAM=45°,则△ACM是等腰直角三角形,即可求得AC的长,则BC可以求得,然后在直角△BCN中,利用三角函数求得AN,根据MN=CN﹣CM即可求解.【解答】解:在直角△ACM,∠CAM=45度,则△ACM是等腰直角三角形,则AC=CM=12(海里),∴BC=AC﹣AB=12﹣4=8(海里),直角△BCN中,CN=BC•tan∠CBN=BC=8(海里),∴MN=CN﹣CM=8﹣12(海里).答:钓鱼岛东西两端点MN之间的距离是(8﹣12)海里.21.(10分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式;(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?【分析】(1)销售量y件为200件加增加的件数(80﹣x)×20;(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【解答】解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+3000x﹣108000;(3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.22.(10分)(1)问题背景如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E.请探究线段BD与CE的数量关系.(事实上,我们可以延长CE与直线BA相交,通过三角形的全等等知识解决问题.)结论:线段BD与CE的数量关系是BD=2CE(请直接写出结论);(2)类比探索在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;(3)拓展延伸在(2)中,如果AB≠AC,且AB=nAC(0<n<1),其他条件均不变(如图3),请你直接写出BD与CE的数量关系.结论:BD=2n CE(用含n的代数式表示).【分析】(1)延长CE、BA交于F点,先证明△BFC是等腰三角形,再根据等腰三角形的性质可得CF=2CE,然后证明△ADB≌△AFC可得BD=FC,进而证出BD=2CE;(2)延长CE、AB交于点G,先利用ASA证明△GBE≌△CBE,得出GE=CE,则CG=2CE,再证明△DAB∽△GAC,根据相似三角形对应边的比相等及AB=AC即可得出BD=CG=2CE;(3)同(2),延长CE、AB交于点G,先利用ASA证明△GBE≌△CBE,得出GE=CE,则CG=2CE,再证明△DAB∽△GAC,根据相似三角形对应边的比相等及AB=nAC 即可得出BD=CG=2nCE.【解答】解:(1)BD=2CE.理由如下:如图1,延长CE、BA交于F点.∵CE⊥BD,交直线BD于E,∴∠FEB=∠CEB=90°.∵BD平分∠ABC,∴∠1=∠2,∴∠F=∠BCF,∴BF=BC,∵BE⊥CF,∴CF=2CE.∵△ABC中,AC=AB,∠A=90°,∴∠CBA=45°,∴∠F=(180﹣45)°÷2=67.5°,∠FBE=22.5°,∴∠ADB=67.5°,∵在△ADB和△AFC中,,∴△ADB≌△AFC(AAS),∴BD=CF,∴BD=2CE;(2)结论BD=2CE仍然成立.理由如下:如图2,延长CE、AB交于点G.∵∠1=∠2,∠1=∠3,∠2=∠4,∴∠3=∠4,又∵BE=BE,∠GEB=∠CEB=90°,∴△GBE≌△CBE(ASA),∴GE=CE,∴CG=2CE.∵∠D+∠DCG=∠G+∠DCG=90°,∴∠D=∠G,又∵∠DAB=∠GAC=90°,∴△DAB∽△GAC,∴=,∵AB=AC,∴BD=CG=2CE;(3)BD=2nCE.理由如下:如图3,延长CE、AB交于点G.∵∠1=∠2,∠1=∠3,∠2=∠4,∴∠3=∠4,又∵BE=BE,∠GEB=∠CEB=90°,∴△GBE≌△CBE(ASA),∴GE=CE,∴CG=2CE.∵∠D+∠DCG=∠G+∠DCG=90°,∴∠D=∠G,又∵∠DAB=∠GAC=90°,∴△DAB∽△GAC,∴=,∵AB=nAC,∴BD=nCG=2nCE.故答案为BD=2CE;2n.23.(11分)如图,抛物线与直线AB交于点A(﹣1,0),B(4,).点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的解析式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标;(3)当点D为抛物线的顶点时,若点P是抛物线上的动点,点Q是直线AB上的动点,判断有几个位置能使以点P,Q,C,D为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.【分析】(1)把点A、B的坐标分别代入函数解析式列出关于a、b的方程组,通过解方程组即可求得系数a、b的值;(2)如图1,过点B作BF⊥DE于点F.则S=CD•(AE+BF)=﹣(m﹣)2+,所以当m=时,S取最大值;(3)需要分类讨论:①如图2,当PQ∥DC,PQ=DC时.②如图3,当CD∥PQ,且CD=PQ时.③如图4,当PC∥DQ,且PC=DQ时.分别求得这三种情况下的点Q的坐标.【解答】解:(1)∵抛物线与直线AB交于点A(﹣1,0),B(4,).∴,解得,,∴抛物线的解析式是y=﹣x2+2x+(2)如图1,过点B作BF⊥DE于点F.∵点A(﹣1,0),B(4,),∴易求直线AB的解析式为:y=x+.又∵点D的横坐标为m,∴点C的坐标是(m,m+),点D的纵坐标是(﹣m2+2m+)∴AE=m+1,BF=4﹣m,CD=﹣m2+m+2,∴S=CD•(AE+BF)=×(﹣m2+m+2)×(m+1+4﹣m)=﹣(m﹣)2+(﹣1<m<4).∴当m=时,S取最大值,此时C(,);(3)假设存在这样的点P、Q使以点P,Q,C,D为顶点的四边形为平行四边形.∵点D是抛物线的顶点,∴D(2,),C(2,).①如图2,当PQ∥DC,PQ=DC时.设P(x,﹣x2+2x+),则Q(x,x+),∴﹣x2+2x+﹣x﹣=3,解得,x=1或x=2(舍去),∴Q(1,1);②如图3,当CD∥PQ,且CD=PQ时.设P(x,﹣x2+2x+),则Q(x,x+),∴x++x2﹣2x﹣=3,解得,x=5或x=﹣2,∴Q(5,3)、Q′(﹣2,﹣);③如图4,当PC∥DQ,且PC=DQ时.过点P作PE⊥CD于点E,过点Q作QF⊥CD于点F.则PE=QF,DE=FC.设P(x,﹣x2+2x+),则E(2,﹣x2+2x+),∴Q(4﹣x,﹣x),F(2,﹣x),∴由DE=CF得,﹣(﹣x2+2x+)=﹣x﹣,解得,x=1或x=2(舍去),∴Q(3,2)综上所述,符合条件的点Q的坐标有:(1,1)、(5,3)、(﹣2,﹣)、(3,2).。

中考第一次模拟考试数学卷含答案

中考第一次模拟考试数学卷含答案

适用精选文件资料分享2013 年中考第一次模拟考试数学卷( 含答案 )宜兴外国语学校2012~2013 学年度第二学期初三数学第一次模拟考试一试卷( 2013.05. )出卷:蒋冲审稿:初三数学备课组说明:本试卷满分 130 分,考试时间 120 分钟,请将本卷所有答案写在答卷上。

一、精心选一选(本大题共10 小题,每题3 分,共30 分。

每题的四个选项中,只有一个吻合题意。

)1 、以下各数中,比-2 小的是(▲) A、 B 、0 C、 D、 2 、若点 P(,-3)在第四象限,则的取值范围是(▲) A 、-3<<0 B、0<<3 C、>3 D、<0 3 、2013年元宵节正当周末。

据统计,当日有 520000 旅客在夫子庙观灯闹元宵,520000用科学记数法可表示为(▲)A 、0.52×105B、5.2 ×104C、5.2 ×105D、5.2 ×106 4 、已知两圆外切,它们的半径分别为 3 和 6,这两圆的圆心距 d 的取值满足(▲) A 、 B 、C、D、5 、以下图形中为中心对称图形的是(▲) A 、等腰梯形 B 、菱形C、正五边形 D、等边三角形 6 、当时,函数 y=- 3x 的图象在(▲) A 、第一象限 B 、第二象限 C、第三象限 D、第四象限 7 、如图,AB是⊙O的直径,DC切⊙O于 C。

若∠ A=25°,则∠D等于(▲)A、40°B、50°C、60°D、70° 8、△ABC中, A(- 1,2),B (- 3,1), C(0,- 1)。

若将△ ABC绕点C顺时针旋转后获得△ A′B′C′,则 A 点的对应点 A′的坐标是(▲ )A、(2,-3)B、(1,-3)C、(2,-4)D、(1,-4)第 7 题图第 9 题图 9 、如图,边长 12 的正方形 ABCD中,有一个小正方形 EFGH,此中 E、F、G分别在 AB、BC、FD上。

2013年第一次模拟考试九年级数学试卷

2013年第一次模拟考试九年级数学试卷

2013年第一次模拟考试九年级数学试卷一、选择题(本大题共8个小题,每小题3分,共24分)每小题只有一个正确选项. 1.化简:4=( )A .2B .-2C .4D .-4 2. 如图,一个碗摆放在桌面上,则它的俯视图是( )3. 在 3.14,,0.101001中,无理数的个数是( )A .2B .3C .4D .54.关于x 的一元二次方程2(2)10x m x m +-++=有两个相等的实数根,则m 的值是( ) A .0B .8C.4±D .0或85. 把不等式组110x x +⎧⎨-⎩≤>0,的解集表示在数轴上,正确的为图中的( )A .B .C .D . 6. 张亮同学把自己一周的支出情况,用如图所示的统计图来表示.则从图中可以看出( )A .一周支出的总金额B .一周各项支出的金额C .一周内各项支出金额占总支出的百分比D .各项支出金额在一周中的变化情况 7. 如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为( )A .①③B . ①④C .②③D .②④8.高速公路的隧道和桥梁最多.图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( ) A .5 B .7 C .375 D .377二、填空题(本大题共8小题,每小题3分,共24分)9. 若向南走2m 记作2m -,则向北走3m 记作 m . 10.点P (-2,3)关于x 轴的对称点的坐标是________.11. 已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为 .12. 抛物线 y=x 2+2x-3的顶点坐标为 . 13. 如图,将左边的矩形绕点B 旋转一定角度后,位置如右边的矩形,则∠ABC=___ ___ .14.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是 15. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 . 16.长为1,宽为a 的矩形纸片(121<<a ),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为正方形,则操作终止.当n =3时,a 的值为_____________.三、(本大题共3小题,每小题6分,共18分) 17. 化简:18.解不等式组:{215,3 5.x x ->-+<-19. 如图是某种蜡烛在燃烧过程中高度与时间之间关系的图像,由图像解答下列问题: (1)此蜡烛燃烧1小时后,高度为 cm ;经过 小时燃烧完毕; (2)求这个蜡烛在燃烧过程中高度与时间之间关系的解析式.四、(本大题共2小题,每小题8分,共16分)20. 为了了解某校九年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图。

2013年中考数学模拟试卷及答案

2013年中考数学模拟试卷及答案

2013年第一次升学模拟考试数学试卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平。

答题时,请注意以下几点:1.全卷共4页,有三大题,24小题。

全卷满分150分。

考试时间120分钟。

2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效。

3.参考公式:抛物线y=ax²+bx+c(c≠0)的顶点坐标是(24,24b ac ba a--)祝你成功!一、选择题(共10小题,每小题4分,满分40分)1.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N2.某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分別为:12,13,13,14,12,13,15,13,则他们年龄的众数为()A.12 B.13 C.14 D.153.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A. B. C.D.4.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6) B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6) D.(2,3),(﹣4,6)5. a4b﹣6a3b+9a2b分解因式得正确结果为()A.a2b(a2﹣6a+9) B.a2b(a﹣3)(a+3)C.b(a2﹣3)2 D.a2b(a﹣3)26.下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中符合用抽样调查的是()A.①②B.①③C.②④D.②③7. 2012年7月27日国际奥委会的会旗将在伦敦上空升起,会旗上的图案由五个圆环组成.如图,在这个图案中反映出的两圆的位置关系有()A.内切、相交 B.外离、内切 C.外切、外离 D.外离、相交8.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y9.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为()A.B. C. D.10.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.3个 B.2个C.1个 D.0个二.填空题(共6小题,每题5分,共30分)11.已知x+y=﹣5,xy=6,则x2+y2= _________ .12.小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为_________ °.13.如图,直线y=﹣x+3与x轴、y轴分别交于A、B两点,把△AOB绕点A旋转90°后得到△AO′B′,则点B′的坐标是_________ .第12题图第13题图第16题图14.已知(a﹣)<0,若b=2﹣a,则b的取值范围是_________ .15.如果关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有_________ 个.16.如图,点M是反比例函数y=在第一象限内图象上的点,作MB⊥x轴于B.过点M的第一条直线交y轴于点A1,交反比例函数图象于点C1,且A1C1=A1M,△A1C1B的面积记为S1;过点M的第二条直线交y轴于点A2,交反比例函数图象于点C2,且A2C2=A2M,△A2C2B的面积记为S2;过点M的第三条直线交y轴于点A3,交反比例函数图象于点C3,且A3C3=A3M,△A3C3B的面积记为S3;以此类推…;则S1+S2+S3+…+S8= _________ .三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:.(2)解方程:(x﹣3)2﹣9=0.18.(8分)如图,已知线段AB,(1)线段AB为腰作一个黄金三角形(尺规作图,要求保留作图痕迹,不必写出作法);(友情提示:三角形两边之比为黄金比的等腰三角形叫做黄金三角形)(2)若AB=2,求出你所作的黄金三角形的周长.19.(8分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是________ ;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).20.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.21.(10分)已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.22.(10分)如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.23.(12分)库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A 村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为y A元,y B元.(1)请填写下表,并求出y A,y B与x之间的函数关系式;C D 总计A x吨200吨B 300吨总计240吨260吨500吨(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.24.(14分)如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2.(1)求点D的坐标,并直接写出t的取值范围.(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF 的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S 的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?浙江省温州市2013年第一次学业模拟考试数学参考答案一、选择题(共10小题,每题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10答案 A B A A D B D D B B 二.填空题(共6小题,每题5分,共30分)题号11 12 13 14 15 16答案13 144 (﹣1,﹣2)或(5,2)2﹣<b<2 6第16题:解:过点M作MD⊥y轴于点D,过点A1作A1E⊥BM于点E,过点C1作C1F⊥BM 于点F,∵点M是反比例函数y=在第一象限内图象上的点,∴OB×BM=1,∴=OB×MB=,∵A1C1=A1M,即C1为A1M中点,∴C1到BM的距离C1F为A1到BM的距离A1E的一半,∴S1===,∴=BM•A 2到BM距离=×BM×BO=,∵A2C2=A2M,∴C2到BM的距离为A2到BM的距离的,∴S2===,同理可得:S3=,S4=…∴++…++,=++…++,=,三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17. (1)解:=1﹣8+3+2 (3分)=﹣2.(5分)(2)解:移项得:(x﹣3)2=9,开平方得:x﹣3=±3,(1分)则x﹣3=3或x﹣3=﹣3,(3分)解得:x1=6,x2=0.(5分)18. 解:(1)可分为两种情况:底与腰之比均为黄金比的等腰三角形如图1,(2分)腰与底之比为黄金比为黄金比如图2,(4分)(2)∵如图1,AB=2,当底与腰之比为黄金比时:∴=,∴AD=﹣1,∴AB+AD+BD=,(6分)如图2,当腰与底之比为黄金比时,=,∴AC=+1,∴△ABC周长为.(8分)19. 解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P(所画三角形是等腰三角形)=;(2分)(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,(6分)∴所画的四边形是平行四边形的概率P==.(8分)20. 解:过点C作CE⊥AD于点E,由题意得,AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=30°,(2分)即可得AB=BC=30m,(4分)设BE=x,在Rt△BCE中,可得CE=x,又∵BC2=BE2+CE2,即900=x2+3x2,(6分)解得:x=15,即可得CE=15m.(8分)答:小丽自家门前的小河的宽度为15m.21.证明:①∵CN∥AB,∴∠DAC=∠NCA,(1分)在△AMD和△CMN中,∵,∴△AMD≌△CMN(ASA),(2分)∴AD=CN,(3分)又∵AD∥CN,∴四边形ADCN是平行四边形,(4分)∴CD=AN;(5分)②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,(6分)∴MD=MC,(7分)由①知四边形ADCN是平行四边形,∴MD=MN=MA=MC,(8分)∴AC=DN,(9分)∴四边形ADCN是矩形.(10分)22.(1)证明:过O点作OE⊥CD于点E,∵AM切⊙O于点A,∴OA⊥AD,(1分)又∵DO平分∠ADC,∴OE=OA,(2分)∵OA为⊙O的半径,∴OE是⊙O的半径,且OE⊥DC,(3分)∴CD是⊙O的切线.(4分)(2)解:过点D作DF⊥BC于点F,∵AM,BN分别切⊙O于点A,B,∴AB⊥AD,AB⊥BC,(5分)∴四边形ABFD是矩形,∴AD=BF,AB=DF,(6分)又∵AD=4,BC=9,∴FC=9﹣4=5,(7分)∵AM,BN,DC分别切⊙O于点A,B,E,∴DA=DE,CB=CE,(8分)∴DC=AD+BC=4+9=13,(9分)在Rt△DFC中,DC2=DF2+FC2,∴DF==12,∴AB=12,(10分)∴⊙O的半径R是6.23.(1)填写如下:每空1分C D 总计A (200﹣x)吨B (240﹣x)吨(60+x)吨由题意得:y A=40x+45(200﹣x)=﹣5x+9000;y B=25(240﹣x)+32(60+x)=7x+7920;(2)对于y A=﹣5x+9000(0≤x≤200),∵k=﹣5<0,∴此一次函数为减函数,则当x=200吨时,y A最小,其最小值为﹣5×200+9000=8000(元)(3分)(3)设两村的运费之和为W,则W=y A+y B=﹣5x+9000+7x+7920=2x+16920(0≤x≤200),(8分)∵k=2>0,∴此一次函数为增函数,(10分)则当x=0时,W有最小值,W最小值为16920元.(11分)此时调运方案为:从A村运往C仓库0吨,运往D仓库为200吨,B村应往C仓库运240吨,运往D仓库60吨.(12分)24.(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在Rt△PCQ中,由勾股定理得:PC===4,∴OC=OP+PC=4+4=8,(2分)又∵矩形AOCD,A(0,4),∴D(8,4).点P到达终点所需时间为=4秒,点Q到达终点所需时间为=4秒,由题意可知,t的取值范围为:0<t<4.(4分)(2)结论:△AEF的面积S不变化.∵AOCD是矩形,∴AD∥OE,∴△AQD∽△EQC,(5分)∴,即,解得CE=.由翻折变换的性质可知:DF=DQ=4﹣t,则CF=CD+DF=8﹣t.(6分)S=S梯形AOCF+S△FCE﹣S△AOE=(OA+CF)•OC+CF•CE﹣OA•OE=[4+(8﹣t)]×8+(8﹣t)•﹣×4×(8+)(8分)化简得:S=32为定值.所以△AEF的面积S不变化,S=32.(9分)(3)若四边形APQF是梯形,因为AP与CF不平行,所以只有PQ∥AF.由PQ∥AF可得:△CPQ∽△DAF,(10分)∴,即,化简得t2﹣12t+16=0,(11分)解得:t1=6+2,t2=6﹣2,(13分)由(1)可知,0<t<4,∴t1=6+2不符合题意,舍去.∴当t=(6﹣2)秒时,四边形APQF是梯形.(14分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A O y x
B O y x D O y x
C O y x 中考第一次数学模拟考试试题
考生注意:
1. 本试卷共8页,三大题,满分120分,考试时间100分钟。

2. 答卷前将密封线内的项目填写清楚。

一、选择题:(每小题3分,共18分)在每小题所给的四个选项中,只有一项是符合题目要求的,请把答案写在题后括号内。

1.在实数0、-3、-3
2
、2-中,最小的是( ) A .-3 B .-
3
2
C.0 D.2- 2.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数为( )
A .30°
B .25° C.20° D.15°
3.下列事件中,为必然事件的是( )
A .购买一张彩票中奖
B .打开电视,正在播放广告
C.抛掷一枚硬币,正面向上 D.一个袋中只装有5个黑球,从中摸出一个是黑球 4.甲、乙、丙、丁四位选手各10次射击成绩的平均数都是8环,众数和方差如下表,则这四人中水平发挥最稳定的是( )
选手 甲 乙 丙 丁 众数(环) 9 8 9 10 方差
0.035
0.025
0.015
0.27
A .甲
B .乙 C.丙 D.丁 5.如图是一支架(一种小零件),支架的两个台阶的高度和宽度 都是同一长度,则它的三视图时( )
6.反比例函数x
m
y =
与一次函数y=mx -m (m ≠0)在同一平面直角坐标系中的图像可能是( )
二、填空题:(共9小题,每小题3分,共27分)
7.按下面程序计算:输入x =-3,则输出的答案是。

8.我国是时间上严重缺水的国家之一,目前我国年可利用的淡水资源总量为27500亿米3,人均占有淡水资源量居全世界第110位,因此我们要节约用水,27500亿米3这个
立方 输入x 减x ÷2 答案 D
C
B
A
第2题
2
1
第5题
数用科学记数法表示为 米3 。

9.写出一个具体的y 随x 的增大而减小的一次函数解析式 。

10.将一副常规的三角板按如图方式放置,则图中∠AOB 的度数为 。

11.若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按 顺时针方向旋转90°得到OA ’。

则点A ’的坐标为 。

12.不等式组()⎪⎩⎪
⎨⎧〉+〈+28x 2
104x 2的整数解是 。

13.抛物线3x 4x 2
1y 2
+-=
的顶点坐标是 。

14.把一张矩形纸片按如图的方式折叠,使顶点B 和D 重合,折痕为EF ,若AB=3cm ,BC=5cm ,则重叠部分△DEF 的面积为 cm 2。

15.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去。

已知第一个矩形的面积为1,则第
n 个矩形的面积为 。

三、解答题(本大题共8题,共75分)解答应写出文字说明,证明过程或步骤。

16.计算与化简(12分)
①计算:()()︒+-⨯----45cos 45182
110
2012π
②先化简,再求值:
2x 1
x 21-x 12-=--,其中 17.(8分)如图,△ABC 中,AB=AC ,AD 是△ABC 外角的平分线, 已知∠BAC=∠ACD 。

(1)求证:△ABC ≌△CDA ;
(2)若∠B=60°,求证:四边形ABCD 是菱形。

第14题(B')
D
F
E
A'
B C
A
……
D
F A
18.(8分)某校兴趣小组坐游轮拍摄海河两岸美景,如图,游轮出发点A 与望海楼B 的距离为300m ,在A 处测得望海楼B 位于A 的北偏东30°方向,游轮沿正北方向行驶一段时间后到达C ,在C 处测得望海楼B 位于C 的北偏东60°方向,求此时游轮与望海楼之间的距离BC (3取1.73,结果保留整数)。

19.(10分)在“传名人名言”活动中,某班团支部对该班全体团员在一个月内所发的“名人名言”条数的情况进行了统计,并制成如下两幅不完整的统计图:
(1)求该班团员在这一个月内所发名人名言的平均条数是多少?并将该条形统计图补充完整;
(2)如果发了3条名人名言的同学中有两位男同学,发了4条名人名言的有三位女同学,现在从发了3条和4条的同学中分别选出一位参加该校团委组织的“传名人名言”活动总结会,请你用列表法或画树状图的方法求出所选的两位同学恰好是一位男同学和一位女同学的概率。

A B
C 东北
所发箴言条数条形统计图所发箴言条数扇形统计图
1322人数
条数5条
4条
1条
2条3条
25%5
4321
5条
4条3条2条01条
20.(9分)如图,一次函数2x k y 11+=与反比例函数x
k y 2
2=的图像交于点A (4,m )和B (-8,-2),与y 轴交于点C ,求:
(1)=1k ,=2k ;
(2)根据函数图像可知,当1y >2y 时,x 的取值范围是 ; (3)过点A 作x AD ⊥轴于点D ,点P 是反比例函数在第一象限图像上的一点,设直线OP 与线段AD 交于点E ,当1:3S S O D E O D A C =∆:四边形时,求点P 的坐标。

21.(8分)如图,在Rt △ABC 中,∠ABC=90°,斜边AC 的垂直平分线交BC 与点D ,交AC 与点E ,连接BE 。

(1)若BE 是△DEC 的外接圆的切线,求∠C 的大小; (2)当AB=1,AC=2时,求△DEC 的外接圆的半径。

22.(9分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,在Rt △ABC 中∠B=90°,∠A=30°,BC=6cm ;Rt △FDE 中∠D=90°,∠E=45°,DE=4cm 。

如图是刘卫同学所做的一个实验,他将Rt △FDE 的直角边DE 与Rt △ABC 的斜边AC 重合在一起,并将△FDE 沿AC 的方向移动,在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点E 重合)。

(1)在△FDE 沿AC 方向移动的过程中,刘卫同学发现: F 、C 两点间的距离逐渐 ;(填“不变”、“变大”或“变小”) (2)刘卫同学经过进一步的研究,编制了如下问题:
y x
D C B A O P O D
E B A C
问题①:当△FDE 移动到什么位置时,即AD 的长为多少时,F 、C 的连线与AB 平行? 问题②:当△FDE 移动到什么位置时,即AD 的长为多少时,以线段AD 、FC 、BC 的长度为三边长的三角形能构成直角三角形?(请完成解答过程。


23.今年我国多个省市遭受严重干旱。

受旱灾的影响,3月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:
周数 1 2 3 4 价格y (元/千克)
2
2.2
2.4
2.6
进入4月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y (元/千克)从4月第一周的 2.8元/千克下降至第二周的 2.4元/千克,且与周数的变化情况满足二次函数
c bx x 20
1y 2
++-
=。

(1)请观察题中的表格,用所学的一次函数有关知识直接写出3月份y 与x 所满足的一次函数关系式,并求出4月份y 与x 所满足的二次函数关系式; (2)若3月份此种蔬菜的进价(元/千克)与周数所满足的函数关系为 1.2x 4
1
m +=,4月份的进价m (元/千克)与周数x 所满足的函数关系式为2x 5
1
m +-
=。

试问3月份与4月份分别在哪一周销售此种蔬菜一千克的利润最大?最大利润是多少?
(3)若4月的第2周共销售100吨此种蔬菜,从4月的第3周起,由于受狂风的影响,比第2周每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,且使此种蔬菜的价格仅上涨了0.8a%,在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a 的整数值。

(参考数据:16811,416000,415219,314448,31369372
2
2
2
2
=====)
图3图2图1F D A F
A B C
D E C B E。

相关文档
最新文档