2019届高考数学一轮复习 第二篇 函数、导数及其应用 第2节 函数的单调性与最值训练 理 新人教版

合集下载

高三一轮复习:函数的单调性

高三一轮复习:函数的单调性

高三一轮复习:函数的单调性第一篇:高三一轮复习:函数的单调性高三一轮复习:函数的单调性教学设计一、【教学目标】【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.二、【教学重点】函数单调性的概念、判断、证明及应用.函数的单调性是函数的最重要的性质之一,它在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际应用,三、【教学难点】归纳抽象函数单调性的定义以及根据定义或导数证明函数的单调性.由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下(1)函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数、三角函数及其他函数单调性的理论基础。

(2)函数的单调性是培养学生数学能力的良好题材,同时还要综合利用前面的知识解决函数单调性的一些问题,有利于学生数学能力的提高。

(3)函数的单调性有着广泛的实际应用。

在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个数学教学。

因此“函数的单调性”在中学数学内容里占有十分重要的地位。

它体现了函数的变化趋势和变化特点,在利用函数观点解决问题中起着十分重要的作用,为培养创新意识和实践能力提供了重要方式和途径。

高考数学复习、高中数学 导数与函数的单调性附答案解析

高考数学复习、高中数学  导数与函数的单调性附答案解析

第2节 导数与函数的单调性课标要求 1.结合实例,借助几何直观了解函数的单调性与导数的关系,能利用导数研究函数的单调性;2.对于多项式函数,能求不超过三次的多项式函数的单调区间。

【知识衍化体验】知识梳理1.函数的导数与单调性的关系函数y =f (x )在某个区间内可导:(1)若f ′(x )>0,则f (x )在这个区间内 ; (2)若f ′(x )<0,则f (x )在这个区间内 ; (3)若f ′(x )=0,则f (x )在这个区间内是 . 【微点提醒】1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.基础自测 1.函数f(x)=ln x -x 的单调递增区间是( )A .(-∞,1)B .(0,1)C .(1,+∞)D .(0,+∞)2.函数f (x )=x 3-ax 为R 上增函数的一个充分不必要条件是( ) A .a ≤0 B .a <0 C .a ≥0 D .a >03.函数y =f(x)的导函数f′(x)的图象如下图,则函数y =f(x)的图象可能是( )4.若函数f(x)=ln x +ax 2-2在区间⎝ ⎛⎭⎪⎫12,2内单调递增,则实数a 的取值范围是( )A .(-∞,-2]B .(-2,+∞)C.⎝ ⎛⎭⎪⎫-2,-18 D.⎣⎢⎡⎭⎪⎫-18,+∞ 【考点聚焦突破】考点1利用导数求函数的单调区间【例1】已知函数f(x)=4e x (x +1)-x 2-4x ,讨论f (x )的单调性.规律方法当方程f′(x)=0可解时,确定函数的定义域,解方程f′(x)=0,求出实数根,把函数f(x)的间断点即f(x)的无定义点的横坐标和实根按从小到大的顺序排列起来,把定义域分成若干个小区间,确定f′(x)在各个区间内的符号,从而确定单调区间.【训练1】函数f(x)=axx2+1(a>0)的单调递增区间是( )A.(-∞,-1) B.(-1,1)C.(1,+∞)D.(-∞,-1)∪(1,+∞)2.函数f(x)=x+2cos x(x∈(0,π))的单调递减区间为________.考点2利用导数讨论函数的单调区间【例2】 (2015江苏节选)已知函数f(x)=x3+ax2+b(a,b∈R).试讨论f(x)的单调性.规律方法1.研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.遇二次三项式因式常考虑二次项系数、对应方程的判别式以及根的大小关系,以此来确定分界点,分情况讨论.2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.3.个别导数为0的点不影响所在区间的单调性,如f x=x3,f′x=3x2≥0f′x=0在x=0时取到,f x在R上是增函数.【训练2】已知函数f(x)=e x(ax2-2x+2)(a>0),试讨论f(x)的单调性.考点3函数单调性的简单应用角度1比较大小或解不等式【例3-1】(1)已知函数f (x )=-xex +ln 2,则( )A .f ⎝ ⎛⎭⎪⎫1e =f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫1e <f ⎝ ⎛⎭⎪⎫12C .f ⎝ ⎛⎭⎪⎫1e >f ⎝ ⎛⎭⎪⎫12D .大小关系无法确定 (2)已知定义域为R 的函数f (x )满足f (4)=-3,且对任意的x ∈R 总有f ′(x )<3,则不等式f (x )<3x -15的解集为________.角度2 根据函数的单调性求参数【例3-2】已知函数f (x )=x 3-ax -1.(Ⅰ)若f (x )在(-1,1)上为减函数,则实数a 的取值范围为 ; (Ⅱ)若f (x )的单调递减区间为(-1,1),则实数a 的值为 ; (Ⅲ)若f (x )在(-1,1)上不单调,则实数a 的取值范围为 .【训练3】(1)若函数f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎫12,+∞上是增函数,则a 的取值范围是________.(2)若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.(3)定义在R 上的奇函数f (x ),其导函数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),则满足13(2x -1)f (2x -1)<f (3)的实数x 的取值范围是________.规律方法1.利用导数比较大小或解不等式的常用技巧,利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.2. f(x)在区间D上单调递增(减),只要f′(x)≥0(≤0)在D上恒成立即可,如果能够分离参数,则尽可能分离参数后转化为参数值与函数最值之间的关系.反思与感悟【思维升华】1.函数的导数与函数的单调性在一个区间上,f′(x)≥0(个别点取等号)⇔f(x)在此区间上为增函数.在一个区间上,f′(x)≤0(个别点取等号)⇔f(x)在此区间上为减函数.2.根据函数单调性求参数的一般思路:(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f′(x)≥0;若函数单调递减,则f′(x)≤0”来求解.【易错防范】1.解题时要注意区分求单调性和已知单调性的问题,处理好f′(x)=0时的情况;区分极值点和导数为0的点.2.研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.第2节 导数与函数的单调性【知识衍化体验】 知识梳理1.(1)单调递增;(2)单调递减;(3)常数函数.基础自测 1.B 2.B 3.D 4.D【考点聚焦突破】【例1】解:f ′(x )=4e x (x +2)-2(x +2)=2(x +2)(2e x-1).令f ′(x )=0,得x 1=-2,x 2=ln 12.当x 变化时, f (x ), f ′(x )的变化情况如下表:x (-∞,-2)-2 ⎝ ⎛⎭⎪⎫-2,ln 12 ln 12 ⎝ ⎛⎭⎪⎫ln 12,+∞ f ′(x ) +-+f (x )极大值极小值∴y =f (x )的单调递增区间为(-∞,-2),(ln 12,+∞),单调递减区间为⎝⎛⎭⎪⎫-2,ln 12.【训练1】B函数f (x )的定义域为R ,f ′(x )=a 1-x 2x 2+12=a 1-x 1+xx 2+12.由于a >0,要使f ′(x )>0,只需(1-x )·(1+x )>0,解得x ∈(-1,1).故选B.2.⎝ ⎛⎭⎪⎫π6,5π6解析 f ′(x )=1-2sin x ,令f ′(x )<0得sin x >12,故π6<x <5π6.【例2】解:由题意, f (x )的定义域为R , f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a 3当a =0时,有f ′(x )=3x 2≥0,所以函数f (x )在(-∞,+∞)上单调递增.当a >0时,令f ′(x )>0,得x ∈⎝ ⎛⎭⎪⎫-∞,- 2a 3∪(0,+∞);令f ′(x )<0,得x ∈⎝ ⎛⎭⎪⎫-2a 3,0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减.当a <0时,令f ′(x )>0,得x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞;令f ′(x )<0,得x ∈⎝ ⎛⎭⎪⎫0,-2a 3,所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,-2a 3上单调递减.综上,当a=0时,f (x )在(-∞,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减;当a <0时, f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝⎛⎭⎪⎫0,-2a 3上单调递减 【训练2】解 由题意得f ′(x )=e x[ax 2+(2a -2)x ](a >0),令f ′(x )=0,解得x 1=0,x 2=2-2a a.(1)当0<a <1时,f (x )的单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫2-2a a ,+∞,单调递减区间为⎝⎛⎭⎪⎫0,2-2a a ;(2)当a =1时,f (x )在(-∞,+∞)内单调递增;(3)当a >1时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,2-2a a 和(0,+∞),单调递减区间为⎝ ⎛⎭⎪⎫2-2a a ,0. 【例3-1】C 解析 f ′(x )=-e x--x exe x ·e x=x -1ex,当x <1时,f ′(x )<0,函数f (x )单调递减.∵1e <12<1,∴f ⎝ ⎛⎭⎪⎫1e >f ⎝ ⎛⎭⎪⎫12.故选C. (2) (4,+∞)令g (x )=f (x )-3x +15,则g ′(x )=f ′(x )-3<0,所以g (x )在R 上是减函数.又g (4)=f (4)-3×4+15=0,所以f (x )<3x -15的解集为(4,+∞).【例3-2】 解(Ⅰ)(法一)由题意,f ′(x )=3x 2-a ,由f (x )在(-1,1)上为减函数,得f ′(x )≤0在(-1,1)上恒成立,即a ≥3x 2恒成立.又因为当x ∈(-1,1)时,函数y =3x 2的值域是[0,3),所以实数a 的取值范围是[3,+∞).(法二)当a ≤0时, f ′(x )=3x 2-a ≥0,显然没有单调递减区间,不符合题意.当a >0时,令f ′(x )=3x 2-a =0,得x =±3a 3,易知当x ∈⎝ ⎛⎭⎪⎫-3a 3,3a 3时, f (x )单调递减.若f (x )在(-1,1)上为减函数,则(-1,1)应为⎝ ⎛⎭⎪⎫-3a 3,3a 3的子区间,即3a 3≥1,解得a ≥3,所以实数a 的取值范围是[3,+∞).(Ⅱ)由(Ⅰ)知f (x )的单调递减区间为( -3a 3, 3a 3),所以3a 3=1,解得a =3. (Ⅲ)由(Ⅰ)知,当a ≤0时,f (x )在R 上单调递增,不符合题意.当a >0时,由f ′(x )=0,得x =±3a 3,因为f (x )在(-1,1)上不单调,所以0<3a3<1,解得0<a <3,所以a 的取值范围是(0,3).【训练3】(1) [3,+∞)由条件知f ′(x )=2x +a -1x 2≥0在⎝ ⎛⎭⎪⎫12,+∞上恒成立,即a ≥1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上恒成立.∵函数y =1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上为减函数,∴y max <1⎝ ⎛⎭⎪⎫122-2×12=3,∴a ≥3.(2)⎝ ⎛⎭⎪⎫-19,+∞ 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.(3)(-1,2)∵函数f (x )是定义在R 上的奇函数,∴f (-x )=-f (x ),∴由xf ′(x )<f (-x )可得xf ′(x )+f (x )<0,即[xf (x )]′<0,∵当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),∴当x ∈(-∞,0]时,恒有[xf (x )]′<0,设F (x )=xf (x ),则函数F (x )=xf (x )在(-∞,0]上为减函数,∵F (-x )=(-x )f (-x )=(-x )(-f (x ))=xf (x )=F (x ),∴函数F (x )为R 上的偶函数,∴函数F (x )=xf (x )为[0,+∞)上的增函数,∵13(2x -1)f (2x -1)<f (3),∴(2x -1)f (2x -1)<3f (3),∴F (2x -1)<F (3),∴|2x -1|<3,解得-1<x <2.。

2019届高考数学一轮复习第二章基本初等函数、导数的应用第11讲导数与函数的单调性课件文

2019届高考数学一轮复习第二章基本初等函数、导数的应用第11讲导数与函数的单调性课件文

求函数 f(x)=ln x-12x2+x-12的单调区间.
解:因为 f(x)=ln x-12x2+x-12,
且定义域为(0,+∞),
所以 f′(x)=1x-x+1=-(x-1-2
5)(x-1+2 x
5) .
令 f′(x)=0,所以 x1=1+2 5,x2=1-2 5(舍去). 当 x∈(0,1+2 5)时,f′(x)>0; 当 x∈(1+2 5,+∞)时,f′(x)<0, 所以函数 f(x)的单调递增区间为(0,1+2 5), 单调递减区间为(1+2 5,+∞).
-2<a2<-1,
-4<a<-2,
由 Δ >0,
a2-8>0, 得
g′(-2)>0, 6+2a>0,
g′(-1)>0, 3+a>0,
-4<a<-2, 即a>2 2或a<-2 2,解之得-3<a<-2 2,
a>-3,
即实数 a 的取值范围为(-3,-2 2).
则其在区间(-π,π)上的解集为-π,-π2和0,π2, 即 f(x)的单调递增区间为-π,-π2和0,π2.
求可导函数单调区间的一般步骤和方法 (1)确定函数 f(x)的定义域; (2)求 f′(x),令 f′(x)=0,求出它在定义域内的一切实数根; (3)把函数 f(x)的间断点(即 f(x)的无定义点)的横坐标和上面 的各实数根按由小到大的顺序排列起来,然后用这些点把函 数 f(x)的定义区间分成若干个小开区间; (4)确定 f′(x)在各个开区间内的符号,根据 f′(x)的符号判定函 数 f(x)在每个相应小开区间内的增减性.
1.函数 f(x)=ex-x 的单调递增区间是__(0_,__+__∞__)___. [解析] 因为 f(x)=ex-x,所以 f′(x)=ex-1, 由 f′(x)>0,得 ex-1>0,即 x>0.

2019版高考数学第3章导数及其应用2第2讲导数与函数的单调性教案理

2019版高考数学第3章导数及其应用2第2讲导数与函数的单调性教案理

第2讲 导数与函数的单调性1.函数的单调性与导数的关系(1)函数f (x )在(a ,b )内可导,且f ′(x )在(a ,b )任意子区间内都不恒等于0,当x ∈(a ,b )时.f ′(x )≥0⇔函数f (x )在(a ,b )上单调递增; f ′(x )≤0⇔函数f (x )在(a ,b )上单调递减.(2)f ′(x )>0(<0)在(a ,b )上成立是f (x )在(a ,b)上单调递增(减)的充分条件. [提醒] 利用导数研究函数的单调性,要在定义域内讨论导数的符号.判断正误(正确的打“√”,错误的打“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( ) 答案:(1)× (2)√函数f (x )=cos x -x 在(0,π)上的单调性是( ) A .先增后减 B .先减后增 C .增函数D .减函数解析:选D.因为f ′(x )=-sin x -1<0. 所以f (x )在(0,π)上是减函数,故选D.(教材习题改编)函数f (x )的导函数f ′(x )有下列信息: ①f ′(x )>0时,-1<x <2; ②f ′(x )<0时,x <-1或x >2; ③f ′(x )=0时,x =-1或x =2. 则函数f (x )的大致图象是( )解析:选C.根据信息知,函数f (x )在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C.(教材习题改编)函数f (x )=e x-x 的单调递增区间是________.解析:因为f (x )=e x -x ,所以f ′(x )=e x-1, 由f ′(x )>0,得e x-1>0,即x >0. 答案:(0,+∞)已知f (x )=x 3-ax 在[1,+∞)上是增函数,则实数a 的最大值是________.解析:f ′(x )=3x 2-a ≥0,即a ≤3x 2,又因为x ∈[1,+∞),所以a ≤3,即a 的最大值是3. 答案:3利用导数判断(证明)函数的单调性[典例引领](2017·高考全国卷Ⅰ节选)已知函数f (x )=e x (e x -a )-a 2x .讨论f (x )的单调性. 【解】 (分类讨论思想)函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x-a e x -a 2=(2e x+a )(e x-a ).①若a =0,则f (x )=e 2x,在(-∞,+∞)单调递增. ②若a >0,则由f ′(x )=0得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )单调递减,在(ln a ,+∞)单调递增. ③若a <0,则由f ′(x )=0得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2单调递减, 在⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞单调递增.导数法证明函数f (x )在(a ,b )内的单调性的步骤(1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.[通关练习]1.函数f (x )=e 2x+2cos x -4的定义域是[0,2π],则f (x )( ) A .在[0,π]上是减函数,在[π,2π]上是增函数 B .在[0,π]上是增函数,在[π,2π]上是减函数 C .在[0,2π]上是增函数 D .在[0,2π]上是减函数解析:选C.由题意可得f ′(x )=2e 2x-2sin x =2(e 2x-sin x ). 因为x ∈[0,2π],所以f ′(x )≥2(1-sin x )≥0, 所以函数f (x )在[0,2π]上是增函数,故选C. 2.已知函数f (x )=m ln(x +1),g (x )=xx +1(x >-1).讨论函数F (x )=f (x )-g (x )在(-1,+∞)上的单调性. 解:F ′(x )=f ′(x )-g ′(x )=mx +1-1(x +1)2=m (x +1)-1(x +1)2(x >-1). 当m ≤0时,F ′(x )<0,函数F (x )在(-1,+∞)上单调递减;当m >0时,令F ′(x )<0,得x <-1+1m ,函数F (x )在(-1,-1+1m)上单调递减;令F ′(x )>0,得x >-1+1m ,函数F (x )在(-1+1m,+∞)上单调递增.综上所述,当m ≤0时,F (x )在(-1,+∞)上单调递减;当m >0时,F (x )在(-1,-1+1m )上单调递减,在(-1+1m,+∞)上单调递增.求函数的单调区间[典例引领](2016·高考北京卷)设函数f (x )=x e a -x+bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4. (1)求a ,b 的值;(2)求f (x )的单调区间. 【解】 (1)因为f (x )=x e a -x+bx ,所以f ′(x )=(1-x )ea -x+b .依题设,⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1, 解得a =2,b =e. (2)由(1)知f (x )=x e 2-x+e x .由f ′(x )=e 2-x(1-x +e x -1)及e2-x>0知,f ′(x )与1-x +ex -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+ex -1.所以当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞). 综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).利用导数求函数的单调区间的三种方法(1)当不等式f ′(x )>0或f ′(x )<0可解时,确定函数的定义域,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,确定函数的定义域,解方程f ′(x )=0,求出实数根,把函数f (x )的间断点(即f (x )的无定义点)的横坐标和实根按从小到大的顺序排列起来,把定义域分成若干个小区间,确定f ′(x )在各个区间内的符号,从而确定单调区间.(3)不等式f ′(x )>0或f ′(x )<0及方程f ′(x )=0均不可解时求导数并化简,根据f ′(x )的结构特征,选择相应的基本初等函数,利用其图象与性质确定f ′(x )的符号,得单调区间.函数f (x )=3+x ln x 的单调递减区间是( )A.⎝ ⎛⎭⎪⎫1e ,e B.⎝ ⎛⎭⎪⎫0,1eC.⎝⎛⎭⎪⎫-∞,1e D.⎝ ⎛⎭⎪⎫1e ,+∞ 解析:选B.因为函数的定义域为(0,+∞)且f ′(x )=ln x +x ·1x=ln x +1,令f ′(x )<0,解得:0<x <1e.故f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,1e .函数单调性的应用(高频考点)利用导数根据函数的单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考向,常以解答题的形式出现.高考对函数单调性的考查主要有以下两个命题角度: (1)比较大小或解不等式;(2)已知函数单调性求参数的取值范围.[典例引领]角度一 比较大小或解不等式(构造函数法)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)【解析】 由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B. 【答案】 B角度二 已知函数单调性求参数的取值范围已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x-ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x-ax -2<0有解.即a >1x 2-2x有解,设G (x )=1x 2-2x,所以只要a >G (x )min 即可.而G (x )=(1x-1)2-1,所以G (x )min =-1. 所以a >-1.(2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立.所以a ≥G (x )ma x ,而G (x )=(1x-1)2-1,因为x ∈[1,4],所以1x ∈[14,1],所以G (x )ma x =-716(此时x =4),所以a ≥-716,即a 的取值范围是[-716,+∞).1.本例条件变为:若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围. 解:由h (x )在[1,4]上单调递增得,当x ∈[1,4]时,h ′(x )≥0恒成立, 所以当x ∈[1,4]时,a ≤1x 2-2x恒成立,又当x ∈[1,4]时,(1x 2-2x)min =-1(此时x =1),所以a ≤-1,即a 的取值范围是(-∞,-1].2.本例条件变为:若h (x )在[1,4]上存在单调递减区间,求a 的取值范围. 解:h (x )在[1,4]上存在单调递减区间, 则h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解,又当x ∈[1,4]时,(1x 2-2x)min =-1,所以a >-1,即a 的取值范围是(-1,+∞).(1)利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.(2)利用函数的单调性求参数的取值范围的解题思路①由函数在区间[a ,b ]上单调递增(减)可知f ′(x )≥0(f ′(x )≤0)在区间[a ,b ]上恒成立列出不等式.②利用分离参数法或函数的性质求解恒成立问题.③对等号单独检验,检验参数的取值能否使f ′(x )在整个区间恒等于0,若f ′(x )恒等于0,则参数的这个值应舍去;若只有在个别点处有f ′(x )=0,则参数可取这个值. [提醒] f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任意一个非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.[通关练习]1.已知函数f (x )=x 3-3x ,若在△ABC 中,角C 是钝角,则( ) A .f (sin A )>f (cos B ) B .f (sin A )<f (cos B ) C .f (sin A )>f (sin B )D .f (sin A )<f (sin B )解析:选A.因为f (x )=x 3-3x ,所以f ′(x )=3x 2-3=3(x +1)(x -1),故函数f (x )在区间(-1,1)上是减函数,又A 、B 都是锐角,且A +B <π2,所以0<A <π2-B <π2,所以sin A<sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,故f (sin A )>f (cos B ),故选A.2.已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)若f (x )在(2,+∞)上为单调函数,求实数a 的取值范围. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知当a ≤0时,f (x )在(0,+∞)上单调递增,符合要求;当a >0时,f (x )在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,则2≥1a ,即a ≥12.所以实数a 的取值范围是(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞.导数与函数单调性的关系(1)f ′(x )>0(或<0)是f (x )在(a ,b )内单调递增(或递减)的充分不必要条件; (2)f ′(x )≥0(或≤0)是f (x )在(a ,b )内单调递增(或递减)的必要不充分条件.利用导数研究函数的单调性的思路根据函数的导数研究函数的单调性,在函数解析式中含有参数时要进行分类讨论,这种分类讨论首先是在函数的定义域内进行,其次要根据函数的导数等于零的点在其定义域内的情况进行,如果这个点不止一个,则要根据参数在不同范围内取值时,导数等于零的根的大小关系进行分类讨论,在分类解决问题后要整合为一个一般的结论.化归转化思想的应用(1)已知函数f (x )在D 上单调递增求参数的取值范围,常转化为f ′(x )≥0在D 上恒成立,再通过构造函数转化为求最值或图象都不在x 轴下方的问题,已知函数f (x )在D 上单调递减求参数的取值范围,常转化为f ′(x )≤0在D 上恒成立,再通过构造函数转化为求最值或图象都不在x 轴上方的问题.(2)已知函数f (x )在D 上不单调,①将其转化为其导数在该区间不会恒大于零或恒小于零;②构造函数,通过构造函数,把复杂的函数转化为简单的函数.易误防范(1)求单调区间应遵循定义域优先的原则.(2)注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.(3)利用导数求函数的单调区间时,要正确求出导数等于零的点,不连续点及不可导点. (4)若f (x )在给定区间内有多个单调性相同的区间不能用“∪”连接,只能用“,”隔开或用“和”连接.1.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是( ) A .增函数 B .减函数 C .先增后减D .先减后增解析:选A .在(0,2π)上有f ′(x )=1-cos x >0恒成立,所以f (x )在(0,2π)上单调递增.2.函数f (x )=axx 2+1(a >0)的单调递增区间是( )A .(-∞,-1)B .(-1,1)C .(1,+∞)D .(-∞,-1)或(1,+∞)解析:选B.函数f (x )的定义域为R ,f ′(x )=a (1-x 2)(x 2+1)2=a (1-x )(1+x )(x 2+1)2.由于a >0,要使f ′(x )>0,只需(1-x )·(1+x )>0,解得x ∈(-1,1). 3.(2018·太原模拟)函数f (x )=exx的图象大致为( )解析:选 B.由f (x )=exx ,可得f ′(x )=x e x -e x x 2=(x -1)e xx 2,则当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,故选B.4.(2018·四川乐山一中期末)f (x )=x 2-a ln x 在(1,+∞)上单调递增,则实数a 的取值范围为( ) A .a <1 B .a ≤1 C .a <2D .a ≤2解析:选D.由f (x )=x 2-a ln x ,得f ′(x )=2x -ax, 因为f (x )在(1,+∞)上单调递增,所以2x -a x≥0在(1,+∞)上恒成立,即a ≤2x 2在(1,+∞)上恒成立, 因为x ∈(1,+∞)时,2x 2>2,所以a ≤2故选D.5.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则a ,b ,c 的大小关系为( ) A .a <b <c B .c <b <a C .c <a <bD .b <c <a解析:选C.因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝ ⎛⎭⎪⎫12=b , 又f (x )=f (2-x ), 所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C.6.函数f (x )=x 4+54x -ln x 的单调递减区间是________.解析:因为f (x )=x 4+54x-ln x ,所以函数的定义域为(0,+∞), 且f ′(x )=14-54x 2-1x =x 2-4x -54x2, 令f ′(x )<0,解得0<x <5,所以函数f (x )的单调递减区间为(0,5).答案:(0,5)7.若f (x )=x sin x +cos x ,则f (-3),f ⎝ ⎛⎭⎪⎫π2,f (2)的大小关系为________(用“<”连接).解析:函数f (x )为偶函数,因此f (-3)=f (3). 又f ′(x )=sin x +x cos x -sin x =x cos x , 当x ∈⎝⎛⎭⎪⎫π2,π时,f ′(x )<0.所以f (x )在区间⎝ ⎛⎭⎪⎫π2,π上是减函数,所以f ⎝ ⎛⎭⎪⎫π2>f (2)>f (3)=f (-3).答案:f (-3)<f (2)<f ⎝ ⎛⎭⎪⎫π28.(2018·张掖市第一次诊断考试)若函数f (x )=x 33-a2x 2+x +1在区间(12,3)上单调递减,则实数a 的取值范围是________.解析:f ′(x )=x 2-ax +1,因为函数f (x )在区间(12,3)上单调递减,所以f ′(x )≤0在区间(12,3)上恒成立,所以⎩⎪⎨⎪⎧f ′(12)≤0f ′(3)≤0,即⎩⎪⎨⎪⎧14-12a +1≤09-3a +1≤0,解得a ≥103,所以实数a 的取值范围为[103,+∞).答案:[103,+∞)9.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;(2)求函数f (x )的单调区间.解:(1)因为f (x )=a (x -5)2+6ln x , 故f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1), 由点(0,6)在切线上,可得6-16a =8a -6,解得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x=(x -2)(x -3)x.令f ′(x )=0,解得x =2或3. 当0<x <2或x >3时,f ′(x )>0; 当2<x <3时,f ′(x )<0,故f (x )的单调递增区间是(0,2),(3,+∞),单调递减区间是(2,3). 10.已知函数g (x )=13x 3-a 2x 2+2x +5.(1)若函数g (x )在(-2,-1)内为减函数,求a 的取值范围; (2)若函数g (x )在(-2,-1)内存在单调递减区间,求a 的取值范围. 解:因为g (x )=13x 3-a 2x 2+2x +5,所以g ′(x )=x 2-ax +2.(1)法一:因为g (x )在(-2,-1)内为减函数,所以g ′(x )=x 2-ax +2≤0在(-2,-1)内恒成立. 所以⎩⎪⎨⎪⎧g ′(-2)≤0,g ′(-1)≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0. 解得a ≤-3.即实数a 的取值范围为(-∞,-3].法二:由题意知x 2-ax +2≤0在(-2,-1)内恒成立, 所以a ≤x +2x在(-2,-1)内恒成立,记h (x )=x +2x,则x ∈(-2,-1)时,-3<h (x )≤-22,所以a ≤-3. (2)因为函数g (x )在(-2,-1)内存在单调递减区间, 所以g ′(x )=x 2-ax +2<0在(-2,-1)内有解,所以a <⎝⎛⎭⎪⎫x +2x ma x.又x +2x≤-2 2.当且仅当x =2x即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).1.(2018·安徽江淮十校第三次联考)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( ) A .1<a ≤2 B .a ≥4 C .a ≤2D .0<a ≤3解析:选A. 易知函数f (x )的定义域为(0,+∞),f ′(x )=x -9x ,由f ′(x )=x -9x <0,解得0<x <3.因为函数f (x )=12x 2-9ln x 在区间[a-1,a +1]上单调递减,所以⎩⎪⎨⎪⎧a -1>0,a +1≤3,解得1<a ≤2,选A.2.(2018·豫南九校联考)已知f ′(x )是定义在R 上的连续函数f (x )的导函数,满足f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( ) A .(-∞,-1) B .(-1,1) C .(-∞,0) D .(-1,+∞)解析:选A.设g (x )=f (x )e2x,则g ′(x )=f ′(x )-2f (x )e2x<0在R 上恒成立,所以g (x )在R 上递减,又因为g (-1)=0,f (x )>0⇔g (x )>0,所以x <-1.3.已知函数f (x )=-ln x +ax ,g (x )=(x +a )e x,a <0,若存在区间D ,使函数f (x )和g (x )在区间D 上的单调性相同,则a 的取值范围是________.解析:f (x )的定义域为(0,+∞),f ′(x )=-1x +a =ax -1x,由a <0可得f ′(x )<0,即f (x )在定义域(0,+∞)上单调递减,g ′(x )=e x +(x +a )e x =(x +a +1)e x ,令g ′(x )=0,解得x =-(a +1),当x ∈(-∞,-a -1)时,g ′(x )<0,当x ∈(-a -1,+∞)时,g ′(x )>0,故g (x )的单调递减区间为(-∞,-a -1),单调递增区间为(-a -1,+∞).因为存在区间D ,使f (x )和g (x )在区间D 上的单调性相同,所以-a -1>0,即a <-1,故a 的取值范围是(-∞,-1). 答案:(-∞,-1)4.定义在R 上的奇函数f (x ),当x ∈(-∞,0)时f (x )+xf ′(x )<0恒成立,若a =3f (3),b =(log πe)f (log πe),c =-2f (-2),则a ,b ,c 的大小关系为________. 解析:设g (x )=xf (x ), 则g ′(x )=f (x )+xf ′(x ),因为当x ∈(-∞,0)时,f (x )+xf ′(x )<0恒成立, 所以此时g ′(x )=f (x )+xf ′(x )<0,即此时函数g (x )=xf (x )在(-∞,0)上单调递减,因为f (x )是奇函数,所以g (x )=xf (x )是偶函数,即当x >0时,函数g (x )=xf (x )单调递增,则a =3f (3)=g (3),b =(log πe)f (log πe)=g (log πe),c =-2f (-2)=g (-2)=g (2),因为0<log πe <1<2<3,所以g (3)>g (2)>g (log πe),即a >c >b . 答案:a >c >b5.已知e 是自然对数的底数,实数a 是常数,函数f (x )=e x-ax -1的定义域为(0,+∞).(1)设a =e ,求函数f (x )的图象在点(1,f (1))处的切线方程; (2)判断函数f (x )的单调性. 解:(1)因为a =e ,所以f (x )=e x-e x -1,f ′(x )=e x-e ,f (1)=-1,f ′(1)=0. 所以当a =e 时,函数f (x )的图象在点(1,f (1))处的切线方程为y =-1. (2)因为f (x )=e x-ax -1,所以f ′(x )=e x-a . 易知f ′(x )=e x -a 在(0,+∞)上单调递增.所以当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; 当a >1时,由f ′(x )=e x-a =0,得x =ln a ,所以当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0, 所以f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.6.(2018·武汉市武昌区调研考试)已知函数f (x )=12x 2+(1-a )x -a ln x .(1)讨论f (x )的单调性;(2)设a >0,证明:当0<x <a 时,f (a +x )<f (a -x ). 解:(1)f (x )的定义域为(0,+∞).由已知,得f ′(x )=x +1-a -a x =x 2+(1-a )x -a x =(x +1)(x -a )x.若a ≤0,则f ′(x )>0,此时f (x )在(0,+∞)上单调递增.若a >0,则由f ′(x )=0,得x =a .当0<x <a 时,f ′(x )<0;当x >a 时,f ′(x )>0. 此时f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)证明:令g (x )=f (a +x )-f (a -x ),则g (x )=12(a +x )2+(1-a )(a +x )-a ln(a +x )-[12(a -x )2+(1-a )(a -x )-a ln(a -x )]=2x -a ln(a +x )+a ln(a -x ). 所以g ′(x )=2-a a +x -aa -x =-2x2a 2-x 2.当0<x <a 时,g ′(x )<0,所以g (x )在(0,a )上是减函数. 而g (0)=0,所以g (x )<g (0)=0. 故当0<x <a 时,f (a +x )<f (a -x ).。

近年届高考数学一轮复习第二章函数、导数及其应用课堂达标14导数与函数的单调性文新人教版(2021年

近年届高考数学一轮复习第二章函数、导数及其应用课堂达标14导数与函数的单调性文新人教版(2021年

2019届高考数学一轮复习第二章函数、导数及其应用课堂达标14 导数与函数的单调性文新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学一轮复习第二章函数、导数及其应用课堂达标14 导数与函数的单调性文新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学一轮复习第二章函数、导数及其应用课堂达标14 导数与函数的单调性文新人教版的全部内容。

课堂达标(十四)导数与函数的单调性[A基础巩固练]1.(2018·九江模拟)函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)[解析]函数f(x)=(x-3)e x的导数为f′(x)=[(x-3)e x]′=e x +(x-3)e x=(x-2)·e x。

由函数导数与函数单调性的关系,得当f′(x)>0时,函数f(x)单调递增,此时由不等式f′(x)=(x-2)e x>0,解得x>2。

[答案]D2.(高考课标全国卷Ⅱ)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(-∞,-2]B.(-∞,-1]C.[2,+∞) D.[1,+∞)[解析]由于f′(x)=k-错误!,f(x)=kx-ln x在区间(1,+∞)单调递增⇔f′(x)=k-错误!≥0在(1,+∞)上恒成立.由于k≥错误!,而0<错误!<1,所以k≥1.即k的取值范围为[1,+∞).[答案]D3.(2017·浙江)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()[解析]原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D.[答案]D4.(2018·湖南省永州市三模)已知函数f(x)=x3+ax2+bx-1在区间[0,1]上单调递减,m=a+b,则m的取值范围是( )A。

(新课标)高考数学一轮总复习 第二章 函数、导数及其应用 2-2 函数的单调性与最值课时规范练 理(

(新课标)高考数学一轮总复习 第二章 函数、导数及其应用 2-2 函数的单调性与最值课时规范练 理(

2-2 函数的单调性与最值课时规X 练(授课提示:对应学生用书第219页)A 组 基础对点练1.下列函数中,定义域是R 且为增函数的是( B ) A .y =e -xB .y =x 3C .y =ln xD .y =|x |2.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( C ) A .y =1xB .y =e -xC .y =-x 2+1 D .y =lg|x |3.下列函数中,既是奇函数且在定义域内是增函数的为( D ) A .y =x +1 B .y =-x 3C .y =1xD .ln 2+x 2-x4.函数f (x )=ln(x 2-3x +2)的递增区间是( D ) A .(-∞,1)B .⎝ ⎛⎭⎪⎫1,32 C.⎝ ⎛⎭⎪⎫32,+∞ D .(2,+∞)解析:令t =x 2-3x +2=(x -1)(x -2)>0,求得x <1或x >2,故函数的定义域为{x |x <1或x >2},f (x )=ln t ,由复合函数的单调性知本题即求函数t 在定义域内的增区间.结合二次函数的性质可得函数t 在定义域内的增区间为(2,+∞). 5.设f (x )=x -sin x ,则f (x )( B ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数 D .是没有零点的奇函数6.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是( D )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)7.(2017·某某模拟)若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是( C ) A .f (x )=(x -1)2B .f (x )=e xC .f (x )=1xD .f (x )=ln(x +1)8.(2018·某某二模)已知实数x ,y 满足⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y,则下列关系式中恒成立的是( D )A .tan x >tan yB .ln(x 2+2)>ln(y 2+1) C.1x >1yD .x 3>y 3解析:根据题意,实数x ,y 满足⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y,则x >y ,依次分析选项:对于A ,因为y =tan x 在其定义域上不是单调函数,故tan x >tan y 不一定成立,不符合题意;对于B ,若x >y ,则x 2+2>y 2+2不一定成立,故ln(x 2+2)>ln(y 2+1)不一定成立,不符合题意;对于C ,当x >y >0时,1x <1y,不符合题意;对于D ,函数y =x 3在R 上为增函数,若x >y ,必有x 3>y 3,符合题意.9.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( A ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件10.已知函数f (x )=x 2-2ax +3在区间[1,2]上具有单调性,则实数a 的取值X 围为( D ) A .(-∞,1] B .[1,2]C .[2,+∞)D .(-∞,1]∪[2,+∞)11.(2017·某某模拟)函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x,x ≥0(a >0且a ≠1)是R 上的减函数,则a的取值X 围是( B ) A .(0,1)B .⎣⎢⎡⎭⎪⎫13,1C.⎝ ⎛⎦⎥⎤0,13 D .⎝ ⎛⎦⎥⎤0,23 解析:由题意知⎩⎪⎨⎪⎧0<a <1,3a ≥1,得13≤a <1. 12.函数f (x )=x +2x -1的最小值为 12.解析:由2x -1≥0可得x ≥12,∴函数的定义域为⎣⎢⎡⎭⎪⎫12,+∞, 又函数f (x )=x +2x -1在⎣⎢⎡⎭⎪⎫12,+∞上单调递增,∴当x =12时,函数取最小值f ⎝ ⎛⎭⎪⎫12=12.13.已知y =f (x )是定义在(-2,2)上的增函数,若f (m -1)<f (1-2m ),则m 的取值X 围是⎝ ⎛⎭⎪⎫-12,23.解析:依题意,原不等式等价于⎩⎪⎨⎪⎧-2<m -1<2-2<1-2m <2m -1<1-2m⇒⎩⎪⎨⎪⎧-1<m <3-12<m <32m <23⇒-12<m <23.14.(2018·城关区校级模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 3x +2,x ≥1,e x-1,x <1,若m >0,n >0,且m +n =f (f (ln 2)),则1m +2n的最小值为 3+2 2.解析:函数f (x )=⎩⎪⎨⎪⎧log 3x +2,x ≥1,e x-1,x <1,m +n =f [f (ln 2)]=f (e ln 2-1)=f (2-1)=log 33=1,则1m +2n=(m +n )⎝ ⎛⎭⎪⎫1m +2n =3+n m +2m n≥3+2n m ·2mn=3+22, 当且仅当n =2m 时,取得最小值3+2 2.15.(2018·某某模拟)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤2,log 2x -1,x >2,则f (f (4))= 1 ;函数f (x )的单调递减区间是 [1,2] . 解析:f (4)=log 24-1=1, ∴f (f (4))=f (1)=-12+2×1=1.x ≤2时,f (x )=-x 2+2x ,对称轴为x =1,∴f (x )在[1,2]上单调递减. ∴f (x )的单调递减区间为[1,2].B 组 能力提升练1.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f ⎝⎛⎭⎪⎫log 12a ≤2f (1),则a 的取值X 围是( C )A .[1,2]B .⎝ ⎛⎦⎥⎤0,12 C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]2.设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是( D )A.⎝ ⎛⎦⎥⎤-14,0 B .(0,+∞)C.⎣⎢⎡⎦⎥⎤-14,0 D .⎝ ⎛⎭⎪⎫-14,+∞ 解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.3.(2017·某某阶段测试)设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( B ) A .m =1,且f (x )在(0,1)上是增函数 B .m =1,且f (x )在(0,1)上是减函数 C .m =-1,且f (x )在(0,1)上是增函数 D .m =-1,且f (x )在(0,1)上是减函数4.(2018·某某一模)已知函数f (x )满足:①对任意x 1,x 2∈(0,+∞)且x 1≠x 2,都有f x 1-f x 2x 1-x 2>0;②对定义域内任意x ,都有f (x )=f (-x ),则符合上述条件的函数是( A )A .f (x )=x 2+|x |+1 B .f (x )=1x-xC .f (x )=ln|x +1|D .f (x )=cos x解析:由题意得f (x )是偶函数,在(0,+∞)递增,对于A ,f (-x )=f (x ),是偶函数,且x >0时,f (x )=x 2+x +1,f ′(x )=2x +1>0,故f (x )在(0,+∞)递增,符合题意;对于B ,函数f (x )是奇函数,不合题意;对于C ,由x +1=0,解得x ≠-1,定义域不关于原点对称,故函数f (x )不是偶函数,不合题意;对于D ,函数f (x )在(0,+∞)无单调性,不合题意.5.若函数f (x )=x 2-12ln x +1在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值X 围是( B ) A .[1,+∞)B .⎣⎢⎡⎭⎪⎫1,32C .[1,2)D .⎣⎢⎡⎭⎪⎫32,2 解析:由题意知f ′(x )=2x -12x=2x +12x -12x ,易知函数f (x )在x =12处取得极值,所以有k -1<12<k +1,且k -1≥0,得k ∈⎣⎢⎡⎭⎪⎫1,32. 6.(2018·铁东区校级一模)指数函数f (x )=a x(a >0,且a ≠1)在R 上是减函数,则函数g (x )=a -2x 2在其定义域上的单调性为( C ) A .单调递增 B .单调递减C .在(0,+∞)上递增,在(-∞,0)上递减D .在(0,+∞)上递减,在(-∞,0)上递增 解析:∵指数函数f (x )=a x在R 上是减函数, ∴0<a <1,∴-2<a -2<-1,函数y =1x2在(-∞,0)上递增,在(0,+∞)上递减.∴g (x )在(-∞,0)上递减,在(0,+∞)上递增. 7.已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( C ) A .sgn[g (x )]=sgn x B .sgn[g (x )]=sgn[f (x )] C .sgn[g (x )]=-sgn x D .sgn[g (x )]=-sgn[f (x )]8.若f (x )=e x -a e -x为奇函数,则f (x -1)<e -1e 的解集为( A )A .(-∞,2)B .(-∞,1)C .(2,+∞)D .(1,+∞)9.已知函数f (x )=lg(a x-b x)+x 中,常数a ,b 满足a >1>b >0,且a =b +1,那么f (x )>1的解集为( B ) A .(0,1) B .(1,+∞) C .(1,10)D .(10,+∞)10.(2018·兴庆区校级三模)已知函数f (x )=⎩⎪⎨⎪⎧a x -1-b ,x ≤1,-log 2x +1,x >1(a >0,a ≠1),在其定义域上单调,则ab 的值不可能的是( D ) A .-1 B .1 C .-2D .2解析:由于函数f (x )在R 上单调,当x >1时,函数f (x )=-log 2(x +1)单调递减,则当x ≤1时,函数f (x )=a x -1-b 单调递减,所以0<a <1,且a1-1-b ≥-log 2(1+1),即1-b ≥-1,解得b ≤2.当0<b ≤2时,0<ab <2;当b ≤0时,则ab ≤0.因此,ab ≠2,故选D.11.已知函数f (x )是定义在R 上的单调递增函数,且满足对任意的实数x 都有f (f (x )-3x)=4,则f (x )+f (-x )的最小值等于( B ) A .2 B .4 C .8D .12解析:由f (x )的单调性知存在唯一实数K 使f (K )=4,即f (x )=3x+K ,令x =K 得f (K )=3K +K =4,所以K =1,从而f (x )=3x +1,即f (x )+f (-x )=3x+13x +2≥23x·13x +2=4,当且仅当x =0时取等号.故选B.12.(2018·某某二模)已知函数f (x )=(x +2 012)(x +2 014)(x +2 016)(x +2 018),x ∈R ,则函数f (x )的最小值是 -16 解析:令x +2 012=t ,t ∈R ,则y =t (t +2)(t +4)(t +6)=(t 2+6t )(t 2+6t +8)=(t 2+6t )2+8(t 2+6t )=(t 2+6t +4)2-16,当t 2+6t +4=0,即t =-3±5时,取得最小值-16.13.(2017·某某东营广饶一中模拟)已知f (x )=⎩⎪⎨⎪⎧3a -1x +4a ,x ≤1,log a x ,x >1是R 上的减函数,则a 的取值X 围是 ⎣⎢⎡⎭⎪⎫17,13 . 解析:由函数f (x )为单调递减函数可得g (x )=(3a -1)x +4a 在(-∞,1]上单调递减,函数h (x )=log a x 在(1,+∞)上单调递减,且g (1)≥h (1), ∴⎩⎪⎨⎪⎧3a -1<0,0<a <1,7a -1≥0,∴17≤a <13. 14.已知函数f (x )=则f (f (3))= -3 ,函数f (x )的最大值是1 . 解析:f (3)=3=-1,∴f (f (3))=f (-1)=-(-1)2-2=-3. 当x >1时,f (x )=x 为减函数,可得f (x )<0;当x ≤1时,f (x )=-x 2+2x =-(x -1)2+1,最大值为1. 15.(2017·模拟)已知函数f (x )=xx 2+1,关于f (x )的性质,有下列四个结论:①f (x )的定义域是(-∞,+∞);②f (x )的值域是⎣⎢⎡⎦⎥⎤-12,12; ③f (x )是奇函数;④f (x )是区间(0,2)上的增函数.其中正确结论的个数是 3 . 解析:对于①,∵函数f (x )=xx 2+1,∴f (x )的定义域是(-∞,+∞),故①正确; 对于②,当x ≠0时,f (x )=1x +1x,若x >0,则0<f (x )≤12,若x <0,则-12≤f (x )<0;当x =0时,f (x )=0,故f (x )的值域是⎣⎢⎡⎦⎥⎤-12,12,故②正确; 对于③,f (-x )=-f (x ),∴f (x )是奇函数,故③正确; 对于④,f ′(x )=1-x2x 2+12,令f ′(x )>0,解得-1<x <1,令f ′(x )<0,解得x >1或x <-1,∴f (x )在区间(0,2)上先增后减,故④错误. 综上可知,正确结论的个数是3.。

2019届高考数学一轮复习 第二章 函数、导数及其应用 第11讲 导数与函数的单调性讲义 文 新人教版

2019届高考数学一轮复习 第二章 函数、导数及其应用 第11讲 导数与函数的单调性讲义 文 新人教版

方法感悟 导数法证明函数f(x)在(a,b)内的单调性的步骤 1.求f′(x); 2.确认f′(x)在(a,b)内的符号; 3.作出结论:f′(x)>0时为增函数;f′(x)<0时为减函数. 提醒:研究含参数函数的单调性时,需注意依据参数取值对不 等式解集的影响进行分类讨论.
【针对补偿】 1.已知函数 f(x)=-aln x+2xa2+x(a≠0),讨论 f(x)的单调性. [解] 依题意得函数的定义域为(0,+∞). 因为 f′(x)=-ax-2xa22+1=x2-axx2-2a2=x+ax2x-2a(x>0). ①当 a>0 时,由 f′(x)>0,及 x>0 得 x>2a; 由 f′(x)<0,及 x>0 得 0<x<2a. 所以当 a>0 时,函数 f(x)在(2a,+∞)上单调递增, 在(0,2a)上单调递减.
方法感悟 已知函数单调性,求参数范围的两个方法 (1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区 间(a,b)是相应单调区间的子集. (2)转化为不等式的恒成立问题:即“若函数单调递增,则 f′(x)≥0;若函数单调递减,则f′(x)≤0”来求解. 提醒:f(x)为增函数的充要条件是对任意的x∈(a,b)都有 f′(x)≥0且在(a,b)内的任一非空子区间上f′(x)≠0.应注意此时式 子中的等号不能省略,否则漏解.

3a
3



33a,+∞ 上为增函数,在



33a,
33a上为减函数.
(2)因为f(x)在(-∞,+∞)上是增函数,
所以f′(x)=3x2-a≥0在(-∞,+∞)上恒成立,
即a≤3x2对x∈R恒成立.

2019版数学(理)高分计划一轮高分讲义:第2章 函数、导数及其应用 2.4 二次函数与幂函数

2019版数学(理)高分计划一轮高分讲义:第2章 函数、导数及其应用 2.4 二次函数与幂函数

2.4二次函数与幂函数[知识梳理]1.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③两根式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图象和性质2.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象(3)常见的5种幂函数的性质[诊断自测]1.概念思辨(1)当α<0时,幂函数y=xα是定义域上的减函数.()(2)关于x的不等式ax2+bx+c>0恒成立的充要条件是错误!()(3)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.()(4)在y=ax2+bx+c(a≠0)中,a决定了图象的开口方向和在同一直角坐标系中的开口大小.()答案(1)×(2)×(3)×(4)√2.教材衍化(1)(必修A1P44T9)函数y=(x2-3x+10)-1的递增区间是()A.(-∞,-2) B.(5,+∞)C.错误!D。

错误!答案C解析由于x2-3x+10〉0恒成立,即函数的定义域为(-∞,+∞).设t=x2-3x-10,则y=t-1是(0,+∞)上的减函数,根据复合函数单调性的性质,要求函数y=(x2-3x+10)-1的递增区间,即求t=x2-3x+10的单调递减区间,∵t=x2-3x+10的单调递减区间是错误!,∴所求函数的递增区间为错误!.故选C。

(2)(必修A1P78探究)若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图,则a,b,c,d的大小关系是()A.d〉c>b〉a B.a〉b>c>dC.d>c>a〉b D.a〉b〉d>c答案B解析幂函数a=2,b=错误!,c=-错误!,d=-1的图象,正好和题目所给的形式相符合,在第一象限内,x=1的右侧部分的图象,图象由下至上,幂指数增大,所以a>b>c>d。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2节函数的单调性与最值
基础巩固(时间:30分钟)
1.(2016·北京卷)下列函数中,在区间(-1,1)上为减函数的是( D )
(A)y= (B)y=cos x
(C)y=ln(x+1) (D)y=2-x
解析:函数y=2-x=()x在(-1,1)上为减函数.故选D.
2.若函数f(x)=x2-2x+m在[3,+∞)上的最小值为1,则实数m的值为( B )
(A)-3 (B)-2 (C)-1 (D)1
解析:因为f(x)=(x-1)2+m-1在[3,+∞)上为增函数,且f(x)在[3,+∞)上的最小值为1,所以f(3)=1,
即22+m-1=1,m=-2.故选B.
3.(2017·西宁二模)若偶函数f(x)在(-∞,0]上单调递减,a=
f(log23),b=f(log45),c=f(),则a,b,c满足( B )
(A)a<b<c (B)b<a<c
(C)c<a<b (D)c<b<a
解析:因为偶函数f(x)在(-∞,0]上单调递减,
所以f(x)在(0,+∞)上单调递增,
因为2>log23=log49>log45,>2,
所以f(log45)<f(log23)<f(),
所以b<a<c.故选B.
4.函数f(x)=的单调增区间是( C )
(A)(-∞,1) (B)(1,+∞)
(C)(-∞,1),(1,+∞) (D)(-∞,-1),(1,+∞)
解析:f(x)==-1+,
所以f(x)的图象是由y=-的图象沿x轴向右平移1个单位,然后沿y轴向下平移一个单位得到,而y=-的单调增区间为(-∞,0),(0,+∞);
所以f(x)的单调增区间是(-∞,1),(1,+∞).
故选C.
5.(2017·河北唐山二模)函数y=,x∈(m,n]最小值为0,则m的取值范围是( D )
(A)(1,2) (B)(-1,2)
(C)[1,2) (D)[-1,2)
解析:函数y===-1,
且在x∈(-1,+∞)时单调递减,
在x=2时,y=0;
根据题意x∈(m,n]时y的最小值为0,
所以-1≤m<2.
故选D.
6.(2017·四川南充三模)已知f(x)=是(-∞,+∞)上的增函数,那么实数a的取值范围是( D )
(A)(0,3) (B)(1,3)
(C)(1,+∞) (D)[,3]
解析:由题意得解得≤a<3.
故选D.
7.(2017·江西上饶二模)函数y=lo(-x2+2x+3)的单调增区间是( C )
(A)(-1,1] (B)(-∞,1)
(C)[1,3) (D)(1,+∞)
解析:令t=-x2+2x+3,由-x2+2x+3>0,得-1<x<3.
函数t=-x2+2x+3的对称轴方程为x=1,
二次函数t=-x2+2x+3在[1,3)上为减函数,
而函数y=lo t为定义域内的减函数,
所以函数y=lo(-x2+2x+3)的单调增区间是[1,3).
故选C.
·北京石景山区一模)已知函数f(x)=
若f(a)>f(2-a),则a的取值范围是.
解析:函数f(x)=在R上单调递增,
因为f(a)>f(2-a),所以a>2-a,所以a>1.
答案:(1,+∞)
能力提升(时间:15分钟)
9.已知函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=
在区间(1,+∞)上一定( D )
(A)有最小值(B)有最大值
(C)是减函数 (D)是增函数
解析:由题意知a<1,
又函数g(x)=x+-2a在[,+∞)上为增函数.
故选D.
·福建龙岩一模)已知f(x)=x3,若x∈[1,2]时,f(x2-ax)+f(1-x)≤0,则a的取值范围是( C )
(A)(-∞,1] (B)[1,+∞)
(C)[,+∞) (D)(-∞,]
解析:f(-x)=-f(x),
且f(x)在(-∞,+∞)上单调递增.
所以由f(x2-ax)+f(1-x)≤0得:
f(x2-ax)≤f(x-1),
所以x2-ax≤x-1,即x2-(a+1)x+1≤0;
设g(x)=x2-(a+1)x+1,则
所以a≥.故选C.
11.函数f(x)=()x-log2(x+2)在区间[-1,1]上的最大值为.
解析:由于y=()x在R上递减,y=log2(x+2)在[-1,1]上递增,所以f(x)在[-1,1]上单调递减,故f(x)在[-1,1]上的最大值为f(-1)=3.
答案:3
12.(2017·北京朝阳区二模)设函数f(x)=则f(1)=
;若f(x)在其定义域内为单调递增函数,则实数a的取值范围是.
解析:因为函数f(x)=则f(1)=1+1=2;
若f(x)在其定义域内为单调递增函数,
则a≤1,即实数a的取值范围是(-∞,1].
答案:2 (-∞,1]
13.对于任意实数a,b,定义min{a,b}=设函数f(x)=-x+3,
g(x)=log2x,则函数h(x)=min{f(x),g(x)}的最大值是.
解析:依题意,h(x)=
当0<x≤2时,h(x)=log2x是增函数,
当x>2时,h(x)=3-x是减函数,
所以h(x)在x=2时,取得最大值h(2)=1.
答案:1
14.已知函数f(x)= - (a>0,x>0).
(1)求证:f(x)在(0,+∞)上是增函数;
(2)若f(x)在[,2]上的值域是[,2],求a的值. (1)证明:设x2>x1>0,则x2-x1>0,x1x2>0,
因为f(x2)-f(x1)=( -)-(-)
=-
=>0,
所以f(x2)>f(x1),所以f(x)在(0,+∞)上是增函数.
(2)解:因为f(x)在[,2]上的值域是[,2],
又由(1)得f(x)在[,2]上是单调增函数,
所以f()=,f(2)=2,
解得a=.。

相关文档
最新文档