2015高考数学考前20天冲刺 解三角形

合集下载

2015年高考数学复习学案:解三角形

2015年高考数学复习学案:解三角形

【考点概述】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2、能运用正弦、余弦定理等知识和方法解决一些与几何计算和测量有关的实际问题. 【重点难点】三角形中的边角互化、一解两解问题以及动态最值问题.【命题趋势】1、 近几年高考命题加强了对知识综合性和应用性的考察,故三角形中三角问题常常与其他数学知识相联系,既考查解三角形的知识与方法,又考查运用三角公式进行恒等变形的技能及三角函数的应用意识.2、解三角形问题在高考中经常以填空题出现(2010年江苏卷第13题,2010年上海理科卷第18题,2010年全国理科卷第16题、2010年天津理科卷第15题、2010年北京理科卷第10题、2010年广东理科卷第11题、2010年山东理科卷第15题等),但近几年来以解答题形式出现的频率较高(2010年江苏卷第17题、2010年陕西理科卷第17题、2010年福建理科卷第19题、2009年海南理理科卷第17题、2009年天津理科卷第17题、2009年辽宁理科卷第17题、2009年安徽理科卷第16题、2009年浙江理科卷第18题等),因为与实际问题的联系密切,今后这部分仍然是高考命题的一个热点.【知识要点】:1、 正弦定理:CcB b A a sin sin sin ===2R 正弦定理的变形:sin :sin :sin ::A BC a b c =利用正弦定理,可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和一角.(2)已知两边和其中一边对角,求另一边的对角,进而求出其他的边和角. 2、余弦定理:=2a A bc cb cos 222-+; cos A =bca cb 2222-+=2b B ac c a cos 222-+; cos B =acb c a 2222-+=2c C ab b a cos 222-+; cos C =abc b a 2222-+利用余弦定理,可以解决以下三类有关三角形的问题: (1)已知三边,求三个角.(2)已知两边和它们的夹角,求第三边和其他两个角. (3)已知两边和其中一边对角,求第三边和其他两个角. 3、三角形的面积公式:C ab S ABC sin 21=∆=A bc B ac sin 21sin 21=.4、射影定理: a =c cos B +b cos C ,b =a cos C +c cos A ,c =a cos B +b cos A ,【基础训练】1、在ABC △中,已知2AC =,3BC =,4cos 5A =-,求sin B = . 2、在ABC ∆中,若sin A ︰sin B ︰sin C =5︰7︰8,则B = .3、在ABC ∆中,B A sin sin >是A >B 的 条件(填“充分不必要、必要不充分、既不充分也不必要、充要”).4、在ABC ∆中,已知a ,b ,c 分别是角A 、B 、C 的对边,若,cos cos ABb a =则ABC ∆的形状是 .【典例分析】:例1、(1)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若a =3,b =32,A =30°,则B = .变式1:在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若a =2,b =32,A =30°,则边c = .变式2:在A B C ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,已知a =33,b =32,A =30°,则B 有几解?例2:在ABC ∆中,c b a ,,分别是角C B A ,,的对边,且2sin2)2cos(12CB A +=++π. (Ⅰ)求角A 的大小;(Ⅱ)当a =6时,求其面积的最大值,并判断此时ABC ∆的形状.例3:如图:在ABC ∆中,若4,7b c ==,BC 的中点为D ,且72AD =,求cos A .【巩固练习】1、(2010年北京理10)在△ABC 中,若b = 1,c23C π∠=,则a = . 2、( 2010年上海理18) 某人要制作一个三角形,要求它的三条高的长度分别为111,,13115,则此人根据上述条件,下列说法正确的是 .(1)不能作出这样的三角形 (2)可作出一个锐角三角形 (3)可作出一个直角三角形 (4)可作出一个钝角三角形3、(2009年广东理6) 一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知1F ,2F 成060角,且1F ,2F 的大小分别为2和4,则3F 的大小为 . 4、(2010年广东理11)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,bA +C =2B ,则sinC = .5、 (2010年全国理16)在△ABC 中,D 为边BC 上一点,BD =12DC ,∠ADB =120°,AD =2,若△ADC的面积为3∠BAC =______ _ .【课外作业】1、(2010年山东理15)在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,若a =2b =,sin cos B B +=,则角A 的大小为 .2、(2007年山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的序号是 .(1)2AC AC AB =⋅ (2) 2BC BA BC =⋅ (3)2AB AC CD =⋅ (4) 22()()AC AB BA BC CD AB⋅⨯⋅=3、(2008年海南理3)如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为 .4、(08江苏高考13)满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值是 .5、(2010年天津理7)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -=, sin C =B ,则A = .6、(2010年天津理15)如图,在ABC ∆中,AD AB ⊥,1==BC ,则AC AD ⋅=7、(2010年江苏高考17)(14分)某兴趣小组测量电视塔AE 的高度H (单位m ),如示意图,垂直放置的标杆BC 高度h =4m ,仰角∠ABE =α,∠ADE =β (1)该小组已经测得一组α、β的值,tan α=1.24,tan β=1.20,,请据此算出H 的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位m ),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m ,问d 为多少时,α-β最大E【反思感悟】1、 解三角形常用方法:“化边为角”, “化角为边”.2、 已知两边和其中一边的对角,解三角形时,注意解的个数问题.3、 正、余弦两个定理的的灵活运用及内涵(余弦定理的向量本质).4、 应熟练掌握和运用内角和定理:A +B +C =兀,2222π=++C B A 中互补和互余的关系,结合诱导公式可以减少角的种数. 5、三角形中的动态最值问题的解法.课外探究:已知a ,b 及一边对角A ,则三角形解的情况.。

[科学备考]2015届高考数学[文,通用版]大一轮复习配套精品试题-解三角形[含2014模拟考试题答案及解析]]

[科学备考]2015届高考数学[文,通用版]大一轮复习配套精品试题-解三角形[含2014模拟考试题答案及解析]]

精品题库试题文数1.(河北省衡水中学2014届高三下学期二调) 设是双曲线的两个焦点, 是上一点, 若且的最小内角为, 则的离心率为( )A.B.C.D.[解析] 1.不妨设点在左支上,则又所以,在中由余弦定理得,整理得,即,得.2.(天津市蓟县邦均中学2014届高三第一次模拟考试) 在△中,内角A、B、C的对边分别为、、,且,则△是()A.钝角三角形B.直角三角形C.锐角三角形 D.等边三角形[解析] 2. 因为,所以,得,为钝角.3.(北京市海淀区2014届高三年级第一学期期末练习)在中,若,面积记作,则下列结论中一定成立的是A.B.C.D.[解析] 3.4.(福建省政和一中、周宁一中2014届高三第四次联考)在△中,角所对的边分别为,若,则△的面积等于( )A.10 B.C.20 D.[解析] 4.由余弦定理得,,所以5.(广东省中山市2013-2014学年第一学期高三期末考试) 如图,设A、B两点在河的两岸,一测量者在A的同侧所在的河岸边选定一点C,测出AC的距离为50m,后,就可以计算出A、B两点的距离为()A. B.C.D.[解析] 5.因为,所以由余弦定理得6.(河北衡水中学2014届高三上学期第五次调研)在中,已知内角,边,则的面积的最大值为.[解析] 6.,由余弦定理得,即,7.(重庆一中2014年高三下期第一次月考) 三角形,则[解析] 7.由余弦定理得,所以.8.(广西省桂林中学2014届高三月考测试题) 在中,,若以A、B为焦点的椭圆经过点C,则该椭圆的离心率e=。

[解析] 8.设,则由余弦定理得,,由椭圆的定义知,.9.(辽宁省大连市高三第一次模拟考试)已知△三个内角、、,且,则的值为.[解析] 9.因为,所以由正弦定理得,设,则.10.(吉林省长春市2014届高中毕业班第二次调研测试) 在△中,三个内角,,所对的边分别为,,,若,则.[解析] 10.由正弦定理,,所以,即,所以.11.(河南省郑州市2014届高中毕业班第一次质量预测) 已知三棱柱的侧棱垂直于底面,各顶点都在同一球面上,若.,则此球的表面积等于_________.[解析] 11.如图所示,由余弦定理得,所以的外接圆半径为,所以,解得,所以球的表面积为12.(南京市、盐城市2014届高三第一次模拟考试) 在中,,,则的最小值为.[解析] 12.由余弦定理得,,所以的最小值为13.(天津七校联考高三数学(文)学科试卷)在中,角所对的边分别是,已知点是边的中点,且,则角[解析] 13. 因为,所以,所以14.(河北省衡水中学2014届高三下学期二调) 已知函数,的最大值为2.(Ⅰ)求函数在上的值域;(Ⅱ) 已知外接圆半径,,角所对的边分别是,求的值.[解析] 14.(Ⅰ)由题意,的最大值为,所以,而,于是,在上递增.在递减,所以函数在上的值域为;(Ⅱ) 化简得.由正弦定理,得,因为△ABC的外接圆半径为..所以15.(河北省石家庄市2014届高三第二次教学质量检测)在∆ABC中,角A、B、C 的对边长分别为, 且满足(Ⅰ)求角B的值;(Ⅱ)若, 求∆ABC的面积.[解析] 15.(1) 由正弦定理得(2),16.(江苏省南京市、盐城市2014届高三第二次模拟) 如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M、N (异于村庄A) ,要求PM=PN=MN=2(单位:千米) .如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远) .[解析] 16.解法一:设∠AMN=θ,在△AMN中,,因为MN=2,所以AM=sin(120°-θ) .在△APM中,cos∠AMP=cos(60°+θ) .AP2=AM2+MP2-2 AM·MP·cos∠AMP=sin2(120°-θ) +4-2×2×sin(120°-θ) cos(60°+θ)=sin2(θ+60°) -sin(θ+60°) cos(θ+60°) +4=[1-cos (2θ+120°) ]-sin(2θ+120°) +4=-[sin(2θ+120°) +cos (2θ+120°) ]+=-sin(2θ+150°) ,θ∈(0,120°) .当且仅当2θ+150°=270°,即θ=60°时,AP2取得最大值12,即AP取得最大值2.答:设计∠AMN为时,工厂产生的噪声对居民的影响最小.解法二(构造直角三角形) :设∠PMD=θ,在△PMD中,∵PM=2,∴PD=2sinθ,MD=2cosθ.在△AMN中,∠ANM=∠PMD=θ,,AM=sinθ,∴AD=sinθ+2cosθ,(θ≥时,结论也正确) .AP2=AD2+PD2=(sinθ+2cosθ) 2+(2sinθ) 2=sin2θ+sinθcosθ+4cos2θ+4sin2θ=·+sin2θ+4=sin2θ-cos2θ+=+sin(2θ-) ,θ∈(0,) .当且仅当2θ-=,即θ=时,AP2取得最大值12,即AP取得最大值2.此时AM=AN=2,∠PAB=30°17.(河南省豫东豫北十所名校2014届高中毕业班阶段性检测(四)) 在△ABC中,a, b, c分别为角A,B,C所对的边,且(I) 求角A的大小;(Ⅱ) 若△ABC的面积为3,求a的值.[解析] 17.(1)因为,所以,即,又在中,,则,得,故,当时,,则均为钝角,与矛盾,故舍去,故,则(2)由,可得,则,在中,有,则,则,所以18.(广东省汕头市2014届高三三月高考模拟)已知函数(1)求函数的最小正周期(2) 在中,角的对边分别为, 且满足,求的值.[解析] 18.(1),所以函数的最小正周期为,(2)解法一,整理得,所以,又因为,所以,.解法二,,又因为,所以,所以,又因为,所以,.19.(山西省太原市2014届高三模拟考试)已知△ABC中,三个内角A,B,C的对边分别为, 若△ABC的外接圆的半径为,且(I)求∠C;(Ⅱ)求△ABC的面积S的最大值.[解析] 19.(I)由及正弦定理,得,即,由余弦定理,得,所以,又,所以。

2015高考数学一轮方法测评练:步骤规范练——解三角形

2015高考数学一轮方法测评练:步骤规范练——解三角形

步骤规范练——解三角形(建议用时:90分钟)一、填空题1.(2013·山东师大附中月考)化简sin 2 35°-12cos 10°cos 80°=________.解析 sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°·sin 10°=-12cos 70°12sin 20°=-1.答案 -12.(2014·潮州二模)在△ABC 中,A =π3,AB =2,且△ABC 的面积为32,则边AC 的长为________.解析 由题意知S △ABC =12×AB ×AC ×sin A =12×2×AC ×32=32,∴AC =1. 答案 13.(2013·成都五校联考)已知锐角α满足cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α,则sin 2α等于______.解析 ∵α∈⎝ ⎛⎭⎪⎫0,π2,∴2α∈(0,π),π4-α∈⎝ ⎛⎭⎪⎫-π4,π4. 又cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α,2α=π4-α或2α+π4-α=0,∴α=π12或α=-π4(舍). ∴sin 2α=sin π6=12. 答案 124.(2014·中山模拟)已知角A 为△ABC 的内角,且sin 2A =-34,则sin A -cos A =________.解析 ∵A 为△ABC 的内角,且sin 2A =2sin A cos A =-34<0,∴sin A >0,cos A <0,∴sin A -cos A >0. 又(sin A -cos A )2=1-2sin A cos A =74. ∴sin A -cos A =72. 答案 725.(2013·临沂一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin 2 A +sin 2 C -sin 2 B =3sin A sin C ,则角B 的大小为________.解析 由正弦定理可得a 2+c 2-b 2=3ac ,所以cos B =a 2+c 2-b 22ac =3ac2ac =32,所以B =π6. 答案 π66.(2014·南通、无锡调研)已知sin ⎝ ⎛⎭⎪⎫x +π6=14,则sin ⎝ ⎛⎭⎪⎫5π6-x +sin 2⎝ ⎛⎭⎪⎫π3-x =________. 解析 因为sin ⎝ ⎛⎭⎪⎫x +π6=14,所以sin ⎝ ⎛⎭⎪⎫56π-x +sin 2⎝ ⎛⎭⎪⎫π3-x =sin ⎝ ⎛⎭⎪⎫x +π6+cos 2⎝ ⎛⎭⎪⎫x +π6=14+1-116=1916. 答案 19167.(2013·安徽卷改编)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =________. 解析 由3sin A =5sin B ,得3a =5b ,∴a =53b , 代入b +c =2a 中,得c =73b .由余弦定理,得cos C =a 2+b 2-c 22ab =-12,∴C =2π3. 答案 2π38.(2013·东北三校联考)设α,β都是锐角,且cos α=55,sin(α+β)=35,则cos β=________.解析 α,β都是锐角, 当cos α=55时,sin α=255. 因为cos α=55<12,所以α>60°. 又sin(α+β)=35<32, 所以α+β<60°或α+β>120°.显然α+β<60°不可能,所以α+β为钝角. 又sin(α+β)=35,因此cos(α+β)=-45, 所以cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=-45+6525=2525.答案 25259.(2013·新课标全国Ⅰ卷改编)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =________.解析 化简23cos 2A +cos 2A =0,得23cos 2A +2cos 2A -1=0,解得cos A =15.由余弦定理,知a 2=b 2+c 2-2bc cos A ,代入数据,得b =5. 答案 510.(2013·天津卷改编)在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC =________.解析 由余弦定理,得AC 2=BA 2+BC 2-2BA · BC cos B =(2)2+32-2×2×3cos π4=5. ∴AC =5,由正弦定理BC sin ∠BAC =ACsin ∠ABC,得sin ∠BAC =BC ·sin ∠ABC AC =3×sin π45=3×225=31010.答案3101011.(2013·浙江五校联盟联考)已知sin ⎝ ⎛⎭⎪⎫π4-x =34,且x ∈⎝ ⎛⎭⎪⎫-π2,-π4,则cos 2x的值为________.解析 sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =1-2sin 2⎝ ⎛⎭⎪⎫π4-x=1-2×⎝ ⎛⎭⎪⎫342=-18,∵x ∈⎝ ⎛⎭⎪⎫-π2,-π4,∴2x ∈⎝ ⎛⎭⎪⎫-π,-π2.∴cos 2x =-1-sin 22x =-378.答案 -37812.已知△ABC 的三个内角A 、B 、C 成等差数列,且AB =1,BC =4,则边BC 上的中线AD 的长为________.解析 由△ABC 的三个内角A 、B 、C 成等差数列,可得B =60°.又在△ABD 中,AB =1,BD =2,由余弦定理可得AD =AB 2+BD 2-2AB ·BD cos B = 3. 答案313.(2013·济宁期末考试)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23π,则S △ABC =________.解析 因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B =π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34. 答案 3414.(2014·天水模拟)f (x )=2sin 2⎝ ⎛⎭⎪⎫π4+x -3cos 2x -1,x ∈⎣⎢⎡⎦⎥⎤π4,π2,则f (x )的最小值为________ .解析 f (x )=2sin 2⎝ ⎛⎭⎪⎫π4+x -3cos 2x -1=1-cos 2⎝ ⎛⎭⎪⎫π4+x -3cos 2x -1=-cos ⎝ ⎛⎭⎪⎫π2+2x -3cos 2x =sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3,因为π4≤x ≤π2,所以π6≤2x -π3≤2π3,所以12≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1,所以1≤2sin ⎝ ⎛⎭⎪⎫2x -π3≤2,即1≤f (x )≤2,所以f (x )的最小值为1. 答案 1 二、解答题15.(2014·金华十校模拟)已知函数f (x )=3sin x cos x +cos 2x -12,△ABC 三个内角A ,B ,C 的对边分别为a ,b ,c ,且f (B )=1. (1)求角B 的大小;(2)若a =3,b =1,求c 的值. 解 (1)因为f (x )=32sin 2x +12cos 2x = sin ⎝ ⎛⎭⎪⎫2x +π6, 所以f (B )=sin ⎝ ⎛⎭⎪⎫2B +π6=1,又2B +π6∈⎝ ⎛⎭⎪⎫π6,13π6,所以2B +π6=π2,所以B =π6.(2)法一 由余弦定理b 2=a 2+c 2-2ac cos B , 得c 2-3c +2=0,所以c =1或c =2. 法二 由正弦定理a sin A =bsin B , 得sin A =32,所以A =π3或A =2π3, 当A =π3时,C =π2,所以c =2; 当A =2π3时,C =π6,所以c =1.所以c =1或c =2.16.(2013·韶关调研)△ABC 的三个内角A ,B ,C 对应的三条边长分别是a ,b ,c ,且满足c sin A -3a cos C =0. (1)求角C 的大小;(2)若cos A =277,c =14,求sin B 和b 的值. 解 (1)由c sin A -3a cos C =0, 得sin C sin A -3sin A cos C =0. ∵A 为△ABC 的内角,∴sin A ≠0, ∴sin C -3cos C =0, 即tan C =3,所以C =π3.(2)由cos A =277,得sin A =217, ∴sin B =sin(A +C )=sin A cos C +cos A sin C =217×12+277×32=32114.在△ABC 中,由正弦定理b sin B =csin C , 得b =c sin B sin C =14×3211432=3 2.17.(2013·无锡一模)已知△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B +3b sin A =c . (1)求角A 的大小;(2)若a =1,AB →·AC →=3,求b +c 的值. 解 (1)由a cos B +3b sin A =c ,得 sin A cos B +3sin B sin A =sin (A +B ), 即 3sin B sin A =cos A sin B , 所以tan A =33,故A =π6.(2)由AB →·AC →=3,得bc cos π6=3,即bc =23,① 又a =1,∴1=b 2+c 2-2bc cos π6,②由①②可得(b +c )2=7+43,所以b +c =2+ 3.18.(2013·福建卷)如图,在等腰直角△OPQ 中,∠POQ =90°,OP =22,点M 在线段PQ 上.(1)若OM =5,求PM 的长;(2)若点N 在线段MQ 上,且∠MON =30°,问:当∠POM 取何值时,△OMN 的面积最小?并求出面积的最小值.解 (1)在△OMP 中,∠OPM =45°,OM =5,OP =22, 由余弦定理得OM 2=OP 2+MP 2-2×OP ×MP × cos 45°,即MP 2-4MP +3=0,解得MP =1或MP =3. (2)设∠POM =α,0°≤α≤60°, 在△OMP 中,由正弦定理得OM sin ∠OPM =OPsin ∠OMP,所以OM =OP sin 45°sin (45°+α),同理,ON =OP sin 45°sin (75°+α).故S △OMN =12×OM ×ON ×sin ∠MON =14×OP 2sin 2 45°sin (45°+α)sin (75°+α)=1sin (45°+α)sin (45°+α+30°)=1sin (45°+α)⎣⎢⎡⎦⎥⎤32sin (45°+α)+12cos (45°+α)=132sin2(45°+α)+12sin(45°+α)cos(45°+α)=134[]1-cos()90°+2α+14sin(90°+2α)=134+34sin 2α+14cos 2α=134+12sin(2α+30°).因为0°≤α≤60°,30°≤2α+30°≤150°,所以当α=30°时,sin(2α+30°)的最大值为1,此时△OMN的面积取到最小值.即∠POM=30°时,△OMN的面积的最小值为8-4 3.。

【走向高考】2015高考数学(通用版)二轮复习课件 专题2 第2讲 三角变换与解三角形

【走向高考】2015高考数学(通用版)二轮复习课件 专题2 第2讲 三角变换与解三角形

而 b2+c2≥2b c ,∴b c +4≥2b c ,∴b c ≤4 (当 且 仅 当 等 号 成 立 ), 1 3 3 所 以 S△ABC=2b cs n i A= 4 b c ≤ 4 ×4= 3, 当△ABC 的 面 积 取 最 大 值 时 , b=c.
b=c 时
π 又 A=3, 故 此 时 △ABC 为 等 边 三 角 形 .
3.三角变换的基本策略: (1)1的变换;(2)切化弦;(3)升 降次;(4)引入辅助角;(5)角的变换与项的分拆.
专题二 第二讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
三角形形状的判定
(文)已知向量
1 m=sinA,2与
n=(3,sinA+ 3
cosA)共线,其中 A 是△ABC 的内角. (1)求角 A 的大小; (2)若 BC=2,求△ABC 的面积 S 的最大值,并判断 S 取得 最大值时△ABC 的形状.
专题二 第二讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
2. 倍 角 公 式 ( 1 ) s n i2 ( 2 ) c o s 2 ( 3 a ) tn 2 α=2 s n i αc o s α; α=c o s 2α-s n i 2α=2 c o s 2 a tn α α= . 1-a tn 2α
1-c o s α s n i α α = s 2=1+c n i α . o s α
专题二 第二讲ห้องสมุดไป่ตู้
走向高考 ·二轮专题复习 ·新课标版 ·数学
4.正 弦 定 理 接 圆 的 直 径 s n i A=s n i B=s n i C=2R(2R 为△ABC 外 5.余 弦 定 理 a2=b2+c2-2b cc o s A, b2=a2+c2-2a cc o s B, c2=a2+b2-2a bc o s C. a b c ).

2015届高考数学(人教,理科)大一轮配套练透:第3章 三角函数、解三角形 第7节

2015届高考数学(人教,理科)大一轮配套练透:第3章 三角函数、解三角形 第7节

[课堂练通考点]1.(2014·安庆模拟)在△ABC中,A∶B=1∶2,sin C=1,则a∶b∶c等于() A.1∶2∶3B.3∶2∶1C.1∶3∶2 D.2∶3∶1解析:选C由sin C=1,∴C=π2,由A∶B=1∶2,故A+B=3A=π2,得A=π6,B=π3,由正弦定理得,a∶b∶c=sin A∶sin B∶sin C=12∶32∶1=1∶3∶2.2.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是() A.锐角三角形B.直角三角形C.钝角三角形D.不能确定解析:选C由正弦定理得a2+b2<c2,所以cos C=a2+b2-c22ab<0,所以C是钝角,故△ABC是钝角三角形.3.某人向正东方向走x千米后,他向右转150°,然后朝新方向走3千米,结果他离出发点恰好为3千米,则x的值是()A. 3 B.2 3C.3或2 3 D.3解析:选C先根据已知条件画出草图,再用余弦定理或正弦定理列方程,解方程即可,故选C.4.(2013·山东高考)△ABC的内角A,B,C所对的边分别为a,b,c,若B =2A,a=1,b=3,则c=()A.2 3 B.2C. 2 D.1解析:选B由已知及正弦定理得1sin A=3sin B=3sin 2A=32sin A cos A,所以cos A=32,A=30°.结合余弦定理得12=(3)2+c2-2c×3×32,整理得c2-3c+2=0,解得c=1或c=2.当c=1时,△ABC为等腰三角形,A=C=30°,B=2A=60°,不满足内角和定理,故c=2.5.(2013·江西高考)在△ABC中,角A,B,C的对边分别为a,b,c,已知sin A sin B+sin B sin C+cos 2B=1.(1)求证:a,b,c成等差数列;(2)若C=2π3,求ab的值.解:(1)证明:由已知得sin A sin B+sin B sin C=2sin2B. 因为sin B≠0,所以sin A+sin C=2sin B.由正弦定理得a+c=2b,即a,b,c成等差数列.(2)由C=2π3,c=2b-a及余弦定理得(2b-a)2=a2+b2+ab,即有5ab-3b2=0,所以ab=35.[课下提升考能]第Ⅰ卷:夯基保分卷1.(2014·石家庄质检)在△ABC中,角A,B,C所对的边长分别为a,b,c,sin A,sin B,sin C成等比数列,且c=2a,则cos B的值为()A.14 B.34C.24 D.23解析:选B因为sin A,sin B,sin C成等比数列,所以sin2B=sin A sin C,由正弦定理得b2=ac,又c=2a,故cos B=a2+c2-b22ac=a2+4a2-2a24a2=34.2.在△ABC中,已知b=40,c=20,C=60°,则此三角形的解的情况是() A.有一解B.有两解C.无解D.有解但解的个数不确定解析:选C 由正弦定理得b sin B =csin C , ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,若lg sin A -lg cos B -lg sin C =lg 2,则△ABC 的形状是( )A .直角三角形B .等腰直角三角形C .等边三角形D .等腰三角形解析:选D 由条件得sin Acos B ·sin C =2, 即2cos B sin C =sin A .由正、余弦定理得,2·a 2+c 2-b 22ac ·c =a , 整理得c =b ,故△ABC 为等腰三角形.4.(2013·全国卷Ⅰ)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5解析:选D 化简23cos 2A +cos 2A =0,得23cos 2A +2cos 2 A -1=0,解得cos A =15.由余弦定理,知a 2=b 2+c 2-2bc cos A ,代入数据解方程,得b =5.5.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .若b =2a sin B ,则角A 的大小为________.解析:由正弦定理得sin B =2sin A sin B ,∵sin B ≠0, ∴sin A =12,∴A =30°或A =150°. 答案:30°或150°6.(2014·广东重点中学联考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A -3cos C cos B =3c -a b ,则sin Csin A 的值为________.解析:由正弦定理asin A=bsin B=csin C得cos A-3cos Ccos B=3c-ab=3sin C-sin Asin B,即(cos A-3cos C)sin B=(3sin C-sin A)·cos B,化简可得,sin(A+B)=3sin(B+C),又知A+B+C=π,所以sin C=3sin A,因此sin Csin A=3.答案:37.(2013·湖北高考)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos 2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=53,b=5,求sin B sin C的值.解:(1)由cos 2A-3cos(B+C)=1,得2cos2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0,解得cos A=12或cos A=-2(舍去).因为0<A<π,所以A=π3.(2)由S=12bc sin A=12bc·32=34bc=5 3,得bc=20,又b=5,知c=4.由余弦定理得a2=b2+c2-2bc cos A=25+16-20=21,故a=21.从而由正弦定理得sin B sin C=ba sin A·ca sin A=bca2sin2A=2021×34=57.8.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin B(tan A +tan C)=tan A tan C.(1)求证:a,b,c成等比数列;(2)若a =1,c =2,求△ABC 的面积S . 解:(1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C , 所以sin B ⎝ ⎛⎭⎪⎫sin A cos A +sin C cos C =sin A cos A ·sin Ccos C , 因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C . 又A +B +C =π, 所以sin(A +C )=sin B , 因此sin 2B =sin A sin C . 由正弦定理得b 2=ac , 即a ,b ,c 成等比数列.(2)因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34,因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74. 第Ⅱ卷:提能增分卷1.(2014·江西省七校联考)已知在△ABC 中,C =2A ,cos A =34,且2BA ·CB =-27.(1)求cos B 的值; (2)求AC 的长度.解:(1)∵C =2A ,∴cos C =cos 2A =2cos 2A -1=18, ∴sin C =378,sin A =74.∴cos B =-cos(A +C )=sin A ·sin C -cos A ·cos C =916. (2)∵AB sin C =BC sin A ,∴AB =32BC .∵2BA ·CB =-27,cos B =916, ∴|BA ||CB|=24,∴BC 2=16,AB =6,∴AC =BC 2+AB 2-2BC ·AB ·cos B =16+36-2×4×6×916=5.2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解:(1)由a 2-(b -c )2=(2-3)bc ,得a 2-b 2-c 2=-3bc , ∴cos A =b 2+c 2-a 22bc =32,又0<A <π,∴A =π6. 由sin A sin B =cos 2C 2,得12sin B =1+cos C 2,即sin B =1+cos C ,则cos C <0,即C 为钝角,∴B 为锐角,且B +C =5π6, 则sin ⎝ ⎛⎭⎪⎫5π6-C =1+cos C ,化简得cos ⎝ ⎛⎭⎪⎫C +π3=-1,解得C =2π3,∴B =π6.(2)由(1)知,a =b ,由余弦定理得AM 2=b 2+⎝ ⎛⎭⎪⎫a 22-2b ·a 2·cos C =b 2+b 24+b 22=(7)2,解得b =2,故S △ABC =12ab sin C =12×2×2×32= 3.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2b -c )cos A -a cos C =0.(1)求角A 的大小;(2)若a =3,S △ABC =334,试判断△ABC 的形状,并说明理由. 解:(1)法一:由(2b -c )cos A -a cos C =0及正弦定理,得 (2sin B -sin C )cos A -sin A cos C =0, ∴2sin B cos A -sin(A +C )=0, sin B (2cos A -1)=0.∵0<B <π,∴sin B ≠0,∴cos A =12. ∵0<A <π,∴A =π3.法二:由(2b -c )cos A -a cos C =0,及余弦定理,得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab =0, 整理,得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc=12,∵0<A <π,∴A =π3. (2)△ABC 为等边三角形. ∵S △ABC =12bc sin A =334, 即12bc sin π3=334, ∴bc =3,①∵a 2=b 2+c 2-2bc cos A ,a =3,A =π3, ∴b 2+c 2=6,② 由①②得b =c =3, ∴△ABC 为等边三角形.。

2015届高考数学(人教,理科)大一轮配套练透:第3章 三角函数、解三角形 第1节

2015届高考数学(人教,理科)大一轮配套练透:第3章 三角函数、解三角形 第1节

[课堂练通考点]1.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ)解析:选A 由三角函数的定义知P (cos θ,sin θ),选A.2.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1或4 B .1 C .4D .8解析:选A 设扇形的半径和弧长分别为r ,l , 则易得⎩⎪⎨⎪⎧l +2r =6,12lr =2,解得⎩⎨⎧ l =4r =1或⎩⎨⎧l =2,r =2.故扇形的圆心角的弧度数是4或1.3.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上. ∴⎩⎨⎧3a -9≤0,a +2>0,∴-2<a ≤3.故选A. 4.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________.解析:2 010°=676π=12π-5π6,∴与2 010°终边相同的角中绝对值最小的角的弧度数为5π6. 答案:5π65.(2014·辽源模拟)若三角形的两个内角α,β满足sin αcos β<0,则此三角形为________.解析:∵sin αcos β<0,且α,β是三角形的两个内角. ∴sin α>0,cos β<0,∴β为钝角. 故此三角形为钝角三角形. 答案:钝角三角形6.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,求α的三角函数值.解:∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴-1<cos θ<0,∴r =9cos 2θ+16cos 2θ=-5cos θ, 故sin α=-45,cos α=35,tan α=-43.[课下提升考能]第Ⅰ组:全员必做题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3B.π6 C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角. 故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16. 即为-16×2π=-π3.2.已知cos θ·tan θ<0,那么角θ是( ) A .第一或第二象限角B .第二或第三象限角C .第三或第四象限角D .第一或第四象限角解析:选C 易知sin θ<0,且cos θ≠0,∴θ是第三或第四象限角. 3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( ) A .-32 B.32 C .-12D.12解析:选D 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z ),又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12 解析:选A 由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32.5.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan 17π9,其中符号为负的是( ) A .① B .② C .③D .④解析:选C sin(-1 000°)=sin 80°>0;cos(-2 200°) =cos(-40°)=cos 40°>0;tan(-10)=tan(3π-10)<0; sin 7π10cos πtan 17π9=-sin 7π10tan 17π9,sin 7π10>0,tan 17π9<0,∴原式>0. 6.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3).答案:(-1,3)7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.解析:因为A 点纵坐标y A =45,且A 点在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.答案:-358.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.解析:由α是第三象限角,知2k π+π<α<2k π+3π2(k ∈Z ),k π+π2<α2<k π+3π4(k ∈Z ),知α2是第二或第四象限角,再由⎪⎪⎪⎪⎪⎪sin α2=-sin α2知sin α2<0,所以α2只能是第四象限角.答案:四9.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .解:设圆的半径为r cm , 弧长为l cm ,则⎩⎪⎨⎪⎧12lr =1,l +2r =4,解得⎩⎨⎧r =1,l =2.∴圆心角α=lr =2.如图,过O 作OH ⊥AB 于H .则∠AOH =1弧度. ∴AH =1·sin 1=sin 1(cm), ∴AB =2sin 1(cm). 10.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限; (3)试判断tan α2sin α2cos α2的符号. 解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限, 故α角在第三象限,其集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪(2k +1)π<α<2k π+3π2,k ∈Z. (2)由(2k +1)π<α<2k π+3π2, 得k π+π2<α2<k π+3π4,k ∈Z , 故α2终边在第二、四象限. (3)当α2在第二象限时, tan α2<0,sin α2>0,cos α2<0, 所以tan α2sin α2cos α2取正号;当α2在第四象限时,tan α2<0,sin α2<0,cos α2>0, 所以tan α2sin α2cos α2也取正号. 因此,tan α2sin α2cos α2取正号. 第Ⅱ组:重点选做题1.满足cos α≤-12的角α的集合为________.解析作直线x =-12交单位圆于C 、D 两点,连接OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z2.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.解析:如图,连接AP ,分别过P ,A 作PC ,AB 垂直x 轴于C ,B 点,过A作AD ⊥PC 于D 点.由题意知 BP的长为2. ∵圆的半径为1, ∴∠BAP =2, 故∠DAP =2-π2.∴DP =AP ·sin ⎝ ⎛⎭⎪⎫2-π2=-cos 2,∴PC =1-cos 2,DA =AP cos ⎝ ⎛⎭⎪⎫2-π2=sin 2.∴OC =2-sin 2.故OP=(2-sin 2,1-cos 2). 答案:(2-sin 2,1-cos 2)。

2015届高考数学总复习第三章 第八节解三角形的应用精讲课件 文

2015届高考数学总复习第三章 第八节解三角形的应用精讲课件 文

变式探究
3.在海岸A处,发现北偏东45°方向,距离A处(
里的 C 处的缉私船奉命以每小时 10
-1)海
里的B 处有一艘走私船,在A 处北偏西 75°方向,距离A处 2 海 海里的速度追截走私
船.此时,走私船正以每小时 10 海里的速度从 B 处向北偏东
30°方向逃窜.问:缉私船沿什么方向能最快追上走私船?
变式探究
1. 某兴趣小组测量电视塔AE的高度H(单位:m).如示 意图,垂直放置的标杆BC的高度h=4 m,仰角∠ABE=α, ∠ADE=β,该小组已经测得一组 α、β的值,算出了tan α= 1.24,tan β=1.20,请据此算出H的值.
距离问题 【例2】 某城市有一块不规则的绿地如图所示,城建
第三章
第八节 解三角形的应用
高度问题 【例 1】 如下图,用同样高度的两个测角仪 AB 和CD同
时望见气球E在它们的正西方向的上空,分别测得气球的仰角
是α和β,已知B、D间的距离为a,测角仪的高度是b,求气球
的高度.
思路点拨: 在Rt△EGA中求解EG,只有角 α一个条件,需 要再有一边长被确定,而△ EAC 中有较多已知条件,故可在 △ EAC 中考虑 EA 边长的求解,而在△ EAC 中有角 β , ∠ EAC =
∵∠CBD=90°+30°=120°, 在△BCD中,由正弦定理,
∴∠BCD = 30°,即缉私船沿东偏北 30°方向能最快追 上走私船.
180°-α两角与BD=a一边,故可以利用正弦定理求解EA. 自主解答:


点评:高度的测量借助于两个或者多个三角形进行,基 本思想是把测量的高所在线段纳入到一个(或两个)可解三角 形中.测量底部不可到达的物体的高度,通常在基线上选 取两个观测点,在同一平面内至少测量三个数据(角边角),

2015届高考数学(人教,理科)大一轮配套练透:第3章 三角函数、解三角形 第5节

2015届高考数学(人教,理科)大一轮配套练透:第3章 三角函数、解三角形 第5节

[课堂练通考点]1.(2014·青岛高三期末)已知sin ⎝ ⎛⎭⎪⎫π4+x =35,则sin 2x 的值为( )A .-2425 B.2425 C .-725D.725解析:选C sin 2x =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4-π2 =-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4=-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫x +π4=-725.2.已知cos ⎝ ⎛⎭⎪⎫x -π6=-33,则cos x +cos ⎝ ⎛⎭⎪⎫x -π3的值是( )A .-233 B .±233 C .-1D .±1解析:选C cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝ ⎛⎭⎪⎫32cos x +12sin x =3cos ⎝ ⎛⎭⎪⎫x -π6=-1.3.若f (α)=2tan α-2sin 2α2-1sin α2cos α2,则f⎝ ⎛⎭⎪⎫π12=________. 解析:∵f (α)=2tan α--cos α12sin α=2sin αcos α+2cos αsin α=4sin 2α,∴f ⎝ ⎛⎭⎪⎫π12=4sin π6=8.答案:84.已知cos(α+β)=16,cos(α-β)=13,则tan αtan β的值为________. 解析:因为cos(α+β)=16, 所以cos αcos β-sin αsin β=16.① 因为cos(α-β)=13,所以cos αcos β+sin αsin β=13.② ①+②得cos αcos β=14. ②-①得sin αsin β=112. 所以tan αtan β=sin αsin βcos αcos β=13. 答案:135.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62.(1)求 cos α的值;(2)若sin(α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值.解:(1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32. (2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2, 故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45. cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝ ⎛⎭⎪⎫-35=-43+310.[课下提升考能]第Ⅰ组:全员必做题1.化简cos 15°cos 45°-cos 75°sin 45°的值为( ) A.12B.32 C .-12D .-32解析:选A cos 15°cos 45°-cos 75°sin 45°=cos 15°cos 45°-sin 15°sin 45°=cos(15°+45°)=cos 60°=12.2.设tan α,tan β是方程x 2-3x +2=0的两根,则tan (α+β)的值为( ) A .-3 B .-1 C .1D .3解析:选A 由题意可知tan α+tan β=3,tan α·tan β=2, 则tan(α+β)=tan α+tan β1-tan αtan β=-3.3.(2013·洛阳统考)函数f (x )=2sin 2⎝ ⎛⎭⎪⎫π4+x -3cos 2x ⎝ ⎛⎭⎪⎫π4≤x ≤π2的最大值为( )A .2B .3C .2+ 3D .2- 3解析:选B 依题意,f (x )=1-cos 2⎝ ⎛⎭⎪⎫π4+x -3cos 2x =sin 2x -3cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x -π3+1,当π4≤x ≤π2时,π6≤2x -π3≤2π3,12≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1,此时f (x )的最大值是3,选B.4.(2014·兰州检测)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( )A.π4 B.π3 C.π2D.3π4解析:选A 由题意知,sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C1-tan B tan C=-1=-tan A ,即tan A =1,所以A =π4.5.对于集合{a 1,a 2,…,a n }和常数a 0,定义:ω=sin 2(a 1-a 0)+sin 2(a 2-a 0)+…+sin 2(a n -a 0)n为集合{a 1,a 2,…,a n }相对a 0的“正弦方差”,则集合⎩⎨⎧⎭⎬⎫π2,5π6,7π6相对a 0的“正弦方差”为( ) A.12 B.13C.14D .与a 0有关的一个值解析:选A集合⎩⎨⎧⎭⎬⎫π2,5π6,7π6相对a 0的“正弦方差”ω=sin 2⎝ ⎛⎭⎪⎫π2-a 0+sin 2⎝ ⎛⎭⎪⎫5π6-a 0+sin 2⎝ ⎛⎭⎪⎫7π6-a 03=cos 2a 0+sin 2⎝ ⎛⎭⎪⎫π6+a 0+sin 2⎝ ⎛⎭⎪⎫π6-a 03=cos 2a 0+⎝ ⎛⎭⎪⎫12cos a 0+32sin a 02+⎝ ⎛⎭⎪⎫12cos a 0-32sin a 023=cos 2a 0+12cos 2a 0+32sin 2a 03=32(sin 2a 0+cos 2a 0)3=12.6.已知α是第二象限的角,tan(π+2α)=-43,则tan α=________. 解析:因为tan(π+2α)=tan 2α=-43, 所以tan 2α=2tan α1-tan 2α=-43, 整理得2tan 2α-3tan α-2=0, 解得tan α=2或tan α=-12,又α是第二象限的角,所以tan α=-12. 答案:-127.化简sin 2⎝ ⎛⎭⎪⎫α-π6+sin 2⎝ ⎛⎭⎪⎫α+π6-sin 2α的结果是________.解析:原式=1-cos ⎝ ⎛⎭⎪⎫2α-π32+1-cos ⎝ ⎛⎭⎪⎫2α+π32-sin 2α=1-12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2α-π3+cos ⎝ ⎛⎭⎪⎫2α+π3-sin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.答案:12 8.化简2tan (45°-α)1-tan 2(45°-α)·sin αcos αcos 2α-sin 2α=________.解析:原式=tan(90°-2α)·12sin 2αcos 2α=sin (90°-2α)cos (90°-2α)·12·sin 2αcos 2α=cos 2αsin 2α·12·sin 2αcos 2α=12.答案:129.已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=12,求tan 2α和sin ⎝ ⎛⎭⎪⎫2α+π3的值.解:∵tan α=12,∴tan 2α=2tan α1-tan 2α=2×121-14=43,且sin αcos α=12,即cos α=2sin α,又sin 2α+cos 2α=1,∴5sin 2α=1,而α∈⎝ ⎛⎭⎪⎫0,π2,∴sin α=55,cos α=255.∴sin 2α=2sin αcos α=2×55×255=45, cos 2α=cos 2α-sin 2α=45-15=35,∴sin ⎝ ⎛⎭⎪⎫2α+π3=sin 2αcos π3+cos 2αsin π3=45×12+35×32=4+3310.10.已知函数f (x )=sin x 2sin ⎝ ⎛⎭⎪⎫π2+x 2.(1)求函数f (x )在[-π,0]上的单调区间.(2)已知角α满足α∈⎝ ⎛⎭⎪⎫0,π2,2f (2α)+4f ⎝ ⎛⎭⎪⎫π2-2α=1,求f (α)的值. 解:f (x )=sin x 2sin ⎝ ⎛⎭⎪⎫π2+x 2=sin x 2cos x 2=12sin x .(1)函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤-π,-π2,单调递增区间为⎣⎢⎡⎦⎥⎤-π2,0.(2)2f (2α)+4f ⎝ ⎛⎭⎪⎫π2-2α=1⇒sin 2α+2sin ⎝ ⎛⎭⎪⎫π2-2α=1⇒2sin αcos α+2(cos 2α-sin 2α)=1 ⇒cos 2α+2sin αcos α-3sin 2α=0 ⇒(cos α+3sin α)(cos α-sin α)=0. ∵α∈⎝ ⎛⎭⎪⎫0,π2,∴cos α-sin α=0⇒tan α=1得α=π4, 故sin α=22,∴f (α)=12sin α=24. 第Ⅱ组:重点选做题1.若tan α=lg(10a ),tan β=lg ⎝ ⎛⎭⎪⎫1a ,且α+β=π4,则实数a 的值为( )A .1B.110 C .1或110D .1或10解析:选C tan(α+β)=1⇒tan α+tan β1-tan αtan β=lg (10a )+lg ⎝ ⎛⎭⎪⎫1a 1-lg (10a )·lg ⎝ ⎛⎭⎪⎫1a =1 ⇒lg 2a +lg a =0,所以lg a =0或lg a =-1,即a =1或110.2.(2014·烟台模拟)已知角α,β的顶点在坐标原点,始边与x 轴的正半轴重合,α,β∈(0,π),角β的终边与单位圆交点的横坐标是-13,角α+β的终边与单位圆交点的纵坐标是45,则cos α=________.解析:依题设及三角函数的定义得: cos β=-13,sin(α+β)=45. 又∵0<β<π,∴π2<β<π,π2<α+β<π,sin β=223,cos(α+β)=-35. ∴cos α=cos[(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β =-35×⎝ ⎛⎭⎪⎫-13+45×223=3+8215.答案:3+8215。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档