三年高考(2017-2019)理科数学高考真题分类汇总:解三角形
(完整)解三角形高考真题汇总,推荐文档

π A. 12
π B. 6
π C. 4
π D. 3
4.(2016 全国卷 2 理科) ABC 的内角 A, B, C 的对边分别为 a, b, c
sin( A C) 8sin2 B . 2
(1)求 cos B
,已知
7.(2017 全国卷 3 文科)△ABC 的内角 A,B,C 的对边分别为 a,b,c。已知n(
B)
sin2 B 。
3
3
(Ⅰ)求角 A 的值; (Ⅱ)若 ABAAC 12, a 2 7 ,求 b, c (其中
b c )。
15.在 ABC 中, BC 5, AC 3,sin C 2sin A
(Ⅰ)求 AB 的值。
(Ⅱ)求 sin(2A ) 的值。 4
12.(2017 浙江高考题)已知△ABC,AB=AC=4,BC=2. 点 D 为 AB 延长线 上一点,BD=2,连结 CD,则△BDC 的面积是___________,
cos∠BDC=__________.
14.设 ABC 是锐角三角形, a,b, c 分别是内角 A, B,C 所对边长,并且
sin 2
本文下载后请自行对内容编辑修改删除,上传更多的专业资 已知a b ,a 5,c 6,sin B 3 .(Ⅰ)求b 和sin A 的值; 5
13.在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若
(Ⅱ)求 sin(2A π ) 的值. 4
AB AC BA BC k(k R).
6.(2017 全国卷 3 理科)△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知
(Ⅰ)求 sinC 的值;
sinA+ 3 cosA=0,a=2 7 ,b=2.
三年高考(2017_2019)高考数学真题分项汇编专题09三角函数理

【答案】D
【解析】①若 f (x) 在[0, 2π] 上有 5 个零点,可画出大致图象,
由图 1 可知, f (x) 在 (0, 2π) 有且仅有 3 个极大值点.故①正确;
②由图 1、2 可知, f (x) 在 (0, 2π) 有且仅有 2 个或 3 个极小值点.故②错误;
④当
f
x =sin( x
π
作出 y sin 2x 的图象如图 3,由图象知,其周期为 2 ,在区间( 4 , 2 )单调递减,排除 B,
故选 A.
图1
图2
图3
【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数
y
图象,即可作出选择.本题也可利用二级结论:①函数
f (x) 的周期是函数 y
(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;
(2)由函数的单调性,判断图象的变化趋势;
(3)由函数的奇偶性,判断图象的对称性;
(4)由函数的周期性,判断图象的循环往复.
2π 11.【2017 年高考全国Ⅰ理数】已知曲线 C1:y=cos x,C2:y=sin (2x+ ),则下面结论正确的是
2 sin
x
,它有一个零点: π
,故
f
x 在
,
有
3
个零点:
0
,故③错误.
x 2k , 2k k N f x 2sin x x 2k , 2k 2k N
当
时,
;当
时,
f
x
sin
x
sin
f (x) 周期的一半;
三年高考(2017-2019)理科数学高考真题分类汇总:三角函数的综合应用

第十一讲 三角函数的综合应用2019年1.(2019江苏18)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.解析 解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,联结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H. 以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-,直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,联结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q(a ,9),由15(4)AQ a ==>,得a =4+所以Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+因此,d 最小时,P ,Q 两点间的距离为17+2017、2018年一、选择题1.(2018北京)在平面直角坐标系中,记d 为点(cos ,sin )P θθ到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 A .1B .2C .3D .4C 【解析】由题意可得d ====(其中cos ϕ=,sin ϕ=,∵1sin()1θϕ--≤≤,d1=∴当0m =时,d 取得最大值3,故选C . 二、解答题1.(2018江苏)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.NM POAB CD。
三年高考(2017_2019)高考数学真题分项汇编专题08平面解析几何(解答题)理

5.【2019
年高考天津卷理数】设椭圆
x2 a2
y2 b2
1(a
b
0) 的左焦点为 F
,上顶点为 B .已知椭圆的短
5 轴长为 4,离心率为 5 .
(1)求椭圆的方程;
(2)设点 P 在椭圆上,且异于椭圆的上、下顶点,点 M 为直线 PB 与 x 轴的交点,点 N 在 y 轴的负 半轴上.若| ON || OF | ( O 为原点),且 OP MN ,求直线 PB 的斜率.
令 DA DB 0 ,即 4 (n 1)2 0 ,则 n 1 或 n 3 .
综上,以 AB 为直径的圆经过 y 轴上的定点 (0,1) 和 (0, 3) .
【名师点睛】本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的性
质及其应用等知识,意在考查学生的转化能力和计算求解能力.
又 F1(−1,0),所以直线 AF1:y=2x+2.
由
y 2x 2
(x
1)2
y2
16
,得 5x2
6x
11
0
,解得
x
1或
x
11 5
.
将x11 5代入y
2x
2
,得
y
12 5
,
代入 C
的方程得
x1
3,
x2
1 3
.
| AB | 4 13
故
3.
【名师点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及平面向量、弦长的求 解方法,解题关键是能够通过直线与抛物线方程的联立,利用根与系数的关系构造等量关系. 2.【2019 年高考全国Ⅱ卷理数】已知点 A(−2,0),B(2,0),动点 M(x,y)满足直线 AM 与 BM 的斜率之积
2017-2019年高考真题数学(理)分项汇编_专题10 解三角形

专题10 解三角形1.【2018年高考全国Ⅱ理数】在ABC △中,cos 25C =,1BC =,5AC =,则AB =A . BCD .【答案】A【解析】因为223cos 2cos 121,25C C =-=⨯-=-⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则,故选A.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件,灵活转化为边和角之间的关系,从而达到解决问题的目的.2.【2018年高考全国Ⅲ理数】ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3 C .π4D .π6【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=, 由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =,故选C. 【名师点睛】本题主要考查余弦定理与三角形的面积公式在解三角形中的应用,考查考生的运算求解能力,考查的核心素养是数学运算.3.【2017年高考山东卷理数】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 A .2a b = B .2b a = C .2A B =D .2B A =【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=, 故选A.【名师点睛】本题较为容易,关键是要利用两角和与差的三角函数公式进行恒等变形.首先用两角和的正弦公式转化为含有A ,B ,C 的式子,再用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.4.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==,11sin 22ABC S ac B ==⨯=△ 【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.5.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【答案】5,10【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以5BD =.ππcos cos()cos cos sin sin 44ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征.6.【2018年高考浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sin B =___________,c =___________.【答案】7,3【解析】由正弦定理得sinsin a A b B =,所以πsin sin 3B == 由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.解答本题时,根据正弦定理得sin B ,根据余弦定理解出c .7.【2017年高考浙江卷】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【答案】,24【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 4DBC DBC ∠=-∠==,∴1sin 2BCD S BD BC DBC =⨯⨯⨯∠=△. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos 4BDC ∠=或cos 4BDC ∠=-(舍去).综上可得,△BCD 面积为2,cos 4BDC ∠=. 【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.8.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)60A ︒=;(2)sin C =【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=, 故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=. (2)由(1)知120B C ︒=-,()sin 1202sin A C C ︒+-=,即1cos sin 2sin 222C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 602C ︒+=,故()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.9.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=.(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 【答案】(1)B =60°;(2)()82. 【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =, 因此B =60°.(2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2C c A a C C ︒-===.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°, 由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△.因此,△ABC 面积的取值范围是82⎛ ⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 10.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值.【答案】(1)7b =,5c =;(2. 【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭. 解得5c =. 所以7b =.(2)由1cos 2B =-得sin B =.由正弦定理得sin sin 14c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin 7B C B C B C -=-=. 【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.11.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)716+-. 【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅.(2)由(1)可得sin B ==,从而sin 22sin cos 8B B B ==-,227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=⨯= ⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.12.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 【答案】(1)3c =;(2)5.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得23=,即213c =.所以3c =. (2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 25B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.13.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+.【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,1CQ=此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+因此,d最小时,P,Q两点间的距离为17+.解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3.因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(−4,−3),直线AB的斜率为3 4 .因为PB⊥AB,所以直线PB的斜率为43 -,直线PB的方程为42533 y x=--.所以P(−13,9),15PB==.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3),所以线段AD:36(44)4y x x=-+-剟.在线段AD上取点M(3,154),因为5OM=<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.14.【2018年高考全国Ⅰ理数】在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =BC .【答案】(1(2)5. 【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin 45sin ADB =︒∠,所以sin ADB ∠=.由题设知,90ADB ∠<︒,所以cos ADB ∠==(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯ 25=.所以5BC =.【名师点睛】求解此类问题的突破口:一是观察所给的四边形的特征,正确分析已知图形中的边角关系,判断是用正弦定理,还是用余弦定理,求边角;二是注意大边对大角,在解三角形中的应用.15.【2017年高考全国Ⅰ理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求ABC △的周长.【答案】(1)23;(2)3+. 【解析】(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =. 由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin 2B C B C -=-,即1cos()2B C +=-. 所以2π3B C +=,故π3A =. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即2()39b c bc +-=,得b c +=.故△ABC 的周长为3【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.16.【2018年高考天津卷理数】在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2)A B -的值.【答案】(1)π3;(2)b sin(2)A B -. 【解析】本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分. (1)在△ABC 中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =.又因为(0π)B ∈,,可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7b a c ac B =+-=,故b .由πsin cos()6b A a B =-,可得sin A =.因为a <c ,故cosA =因此sin 22sin cos A A A ==21cos22cos 17A A =-=.所以,sin(2)sin 2cos cos2sin A B A B A B -=-=1127-=【名师点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.17.【2017年高考全国Ⅱ理数】ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin2BA C +=. (1)求cosB ;(2)若6a c +=,ABC △的面积为2,求b . 【答案】(1)15cos 17B =;(2)2b =. 【解析】(1)由题设及A B C ++=π,可得2sin 8sin 2BB =,故()sin 41cos B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=,解得cos 1B =(舍去),15cos 17B =. (2)由15cos 17B =得8sin 17B =,故14=sin 217△ABC S ac B ac =. 又=2ABC S △,则172ac =.由余弦定理及6a c +=得:()()222217152cos 21cos 362(1)4,217b ac ac B a c ac B =+-=+-+=-⨯⨯+= 所以2b =.【名师点睛】解三角形问题是高考的高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理,三角形的面积公式等知识进行求解.解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者之间的关系,这样的题目小而活,备受命题者的青睐.18.【2018年高考北京卷理数】在△ABC 中,a =7,b =8,cos B =–17. (1)求∠A ;(2)求AC 边上的高.【答案】(1)π3;(2 【解析】(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B 7=.由正弦定理得sin sin a b A B =⇒7sin A∴sin A . ∵B ∈(π2,π),∴A ∈(0,π2), ∴∠A =π3.(2)在△ABC 中,sin C =sin (A +B )=sin A cos B +sin B cos A 11()72-+.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=7=,∴AC 边上的高为2.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的,基本步聚是:第一步,定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向; 第二步,定工具,即根据条件和所求合理选择转化的工具,实施边、角之间的互化; 第三步,求结果.19.【2017年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (1)求b 和sin A 的值; (2)求πsin(2)4A +的值.【答案】(1)b sin A 的值为13(2)26. 【解析】(1)在ABC △中,因为a b >,故由3sin 5B =,可得4cos 5B =. 由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b =.由正弦定理sin sin a b A B =,得sin sin a B A b ==.所以,b sin A(2)由(1)及a c <,得cos 13A =, 所以12sin 22sin cos 13A A A ==,25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 44426A A A +=+=. 【名师点睛】(1)利用正弦定理进行“边转角”可寻求角的关系,利用“角转边”可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.(2)利用正、余弦定理解三角形是高考的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进行解题.20.【2017年高考全国Ⅲ理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知sin 0A A =,a ,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.【答案】(1)4c =;(2【解析】(1)由已知可得tan A =2π3A =. 在ABC △中,由余弦定理得22π2844cos 3c c =+-,即22240c c +-=.解得6c =- (舍去),4c =.(2)由题设可得π2CAD ∠=, 所以π6BAD BAC CAD ∠=∠-∠=. 故ABD △面积与ACD △面积的比值为1πsin 26112AB AD AC AD ⋅⋅=⋅.又ABC △的面积为142sin 2BAC ⨯⨯∠=所以ABD △【名师点睛】在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断. (1)由题意首先求得2π3A =,然后利用余弦定理列方程,边长取方程的正实数根可得4c =; (2)利用题意首先求得ABD △的面积与ACD △的面积的比值,然后结合ABC △的面积可求得ABD △.21.【2017年高考江苏卷】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【答案】(1)16cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm);(2)20cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm).【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥. 记玻璃棒的另一端落在1CC 上点M 处.因为40AC AM ==,所以30MC ==,从而3sin 4MAC =∠, 记AM 与水面的交点为1P ,过1P 作P 1Q 1⊥AC ,Q 1为垂足, 则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=1116sin P MACQ =∠.答:玻璃棒l 没入水中部分的长度为16cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而140GG ===. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-. 在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠.记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH , 故P 2Q 2=12,从而EP 2=2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)【名师点睛】解答本题时,(1)转化为直角三角形ACM 中,利用相似性质求解AP 1;(2)转化到三角形EGN 中,先利用直角梯形性质求角1EGG ∠,再利用正弦定理求角ENG ∠,最后根据直角三角形求高,即为l 没入水中部分的长度.解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向; 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化; 第三步:求结果.22.【2017年高考北京卷理数】在△ABC 中,A ∠=60°,c =37a . (1)求sin C 的值;(2)若a =7,求△ABC 的面积.【答案】(1)14;(2)【解析】(1)在△ABC 中,因为60A ∠=︒,37c a =,所以由正弦定理得sin 3sin 7214c A C a ==⨯=. (2)因为7a =,所以3737c =⨯=.由余弦定理2222cos a b c bc A =+-得222173232b b =+-⨯⨯, 解得8b =或5b =-(舍).所以△ABC 的面积11sin 8322S bc A ==⨯⨯=【名师点睛】高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理实现边角互化;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. (1)根据正弦定理sin sin a cA C=求sin C 的值; (2)根据条件可知7,3,a c ==根据余弦定理求出b 的值,最后利用三角形的面积公式1sin 2S bc A =进行求解即可.。
近5年全国高考数学真题分类汇编:三角函数与解三角形(文理合卷)(..

近5年全国高考数学真题分类汇编:三角函数与解三角形(文理合卷)理科试题1.[2019年天津理科07】己知函数f(x)=ASin(ωx+φ)(A>0,ω>0,∣φ∣<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(X)的最小正周期为2ττ,且g(―)=V z2,则/"(—)=()48A.-2B.-√2C.√2D.22.[2019年新课标3理科12】设函数f(x)=Sin(sx+壹)(ω>0),已知f(x)在[0,2用有且仅有5个零点.下述四个结论:①/(x)在(O,2π)有且仅有3个极大值点@f(x)在(O,2π)有且仅有2个极小值点③/(X)在(O,ɪ)单调递增1229(4)ω的取值范围是[=,—)其中所有正确结论的编号是()A-①④ B.②③ C.①②③D.①③④3.[2019年新课标]理科Ill关于函数/(x)=SinlΛ-∣+∣sinx∣有下述四个结论:®f(x)是偶函数②T(X)在区间(?,π)单调递增®f(x)在[-n,ττ]有4个零点@f(x)的最大值为2其中所有正确结论的编号是()A-①②④B.②④ C.①④ D.①③4.[2018年北京理科07】在平面直角坐标系中,记[为点P(cosθ,sin。
)到直线χ-my~2=。
的距离.当。
、MJ变化时,H的最大值为()A.1B.2C.3D.45.[2017年天津理科07】设函数f(x)=2SirI(ω^+φ),XW R,其中ω>0,∣φ∣<π.若/(—)=2,f(---)88=0,且f Cr)的最小正周期大于2n,则()2L 12=(p 2-3A.W=Φ 2-3- ω B.C. ω= ɪ, (P=—4^-D. ω= ɪ, (P=云6. [2016 年新课标 1 理科 12】已知函数∕*(∙x) =Sin (ωx+φ) (ω>0, ∣φ∣≤p, X= Jf(X)的零点,X=为y=f (x)图象的对称轴,且f (x)在(三,—)上单调,则3的最大值为()18 36A. 11B. 9C. 7D. 57. [2013 年新课标 2 理科 12】已知点 A ( - 1, O), B (1, O), C (0, 1),直线 y=ax+b (tz>O)将ZkABC分割为面积相等的两部分,则8的取值范围是()A. (0, 1) B . (1 — ʌɪ z 5) C . (1 — ʒL ZD. [ɪ f §)8. [2011年新课标1理科11】设函数f (λ) =Sin (ωx+φ) +cos (ωx+φ) (ω>0, I(PI <y)的最小正周期为π,且/ ( - x) =f (x),贝!]()A. /(x)在(0,与)单调递减B. 了(X)在(二—)单调递减44C. f (x)在(0,:)单调递增D. f (%)在(:,?)单调递增9. [2010年浙江理科09】设函数/(x)=4sin(2x+l ) -扃则在下列区间中函数Hx)不存在零点的是()A. [-4, - 2]B. [-2, 0]C. [0, 2]D. [2, 4]10. [2010年上海理科18】某人要制作一个三角形,要求它的三条高的长度分别为上,~f则此人将13115( )A.不能作出这样的三角形B.作出一个锐角三角形C.作出一个直角三角形D.作出一个钝角三角形tana 2 Tr11. [2019年江苏13】已知------- =一一,则Sin (2α+≡)的值是____.tαn(α+-) 3 冬12.[2018年新课标1理科16】己知函数f(x)=2sin%+sin2jr,则f(x)的最小值是・13.[2017年浙江14】已知∕V1BC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结C D,则DC的面积是,CoSZBDC=.14.[2016年江苏14】在锐角三角形ABC中,若SinA=2sinBsinC,贝IJ IanAtanBtanC的最小值是.15.[2016年上海理科13】设S⅛∈R,c∈[0,2π),若对于任意实数工都有2sin(3尤一§)=asin(⅛x+c),则满足条件的有序实数组(S b,C)的组数为.16.[2015年新课标1理科16】在平面四边形ABCD中,ZA=ZB=ZC=75o.BC=2,则Ag的取值范围是.17.[2015年上海理科13】已知函数f(x)=Sin若存在由,尤2,…,λ⅛满足0WXlVx2<∙∙∙Vλ⅛W6h,且l/(ɪi)-f(、2)1+[/(互)-f危3)l+∙∙∙+l∕(∙x⅛τ)-f(切)I=12SN2,m∈N),则m的最小值为.18.[2014年江苏14】若ZkABC的内角满足SinA+√ΣsinB=2sinC,则COSC的最小值是・19.[2014年新课标1理科16】己知b,C分别为'λBC的三个内角A,B f C的对边,a=2且(2+人) (SinA-SinB)=(C-⅛)sinC,则Z∖A8C面积的最大值为.20.[2014年上海理科12】设常数。
解三角形高考真题汇总

2017高考真题解三角形汇编1.(2017北京高考题)在△ABC 中,A ∠ =60°,c =37a .(Ⅰ)求sin C 的值;(Ⅱ)若a =7,求△ABC 的面积.2.(2017全国卷1理科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin aA(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.3.(2017全国卷1文科)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
已知sin sin (sin cos )0B A C C +-=,a =2,cC =BA .π12B .π6C .π4D .π34.(2016全国卷2理科)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2B AC +=. (1)求cos B(2)若6a c += , ABC ∆面积为2,求.b5.(2017全国卷2文科16)△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=6.(2017全国卷3理科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin Acos A =0,a,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥ AC,求△ABD 的面积.7.(2017全国卷3文科)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 。
已知C =60°,b,c =3,则A =_________。
8.(2017山东高考题理科)在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆A B 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是( )(A )2a b = (B )2b a = (C )2A =B (D )2B =A 9.(2017山东高考题文科)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .10.(2017天津高考题理科)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =.(Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值.11.(2017天津高考题文科)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,222)ac a b c =--.(I )求cos A 的值; (II )求sin(2)B A -的值.12.(2017浙江高考题)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD=2,连结CD ,则△BDC 的面积是___________,cos ∠BDC =__________.13.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若).(R k k BC BA AC AB ∈=⋅=⋅(Ⅰ)判断△ABC 的形状; (Ⅱ)若k c 求,2=的值.14.设ABC ∆是锐角三角形,,,a b c 分别是内角,,A B C 所对边长,并且22sin sin() sin() sin 33A B B B ππ=+-+。
专题11解三角形—三年高考2017数学理真题分项版解析解析版

1.【2017山东,理9】在中,角,,的对边分别为,,.若为锐角三角形,且满足,则下列等式成立的是 (A )(B )(C )(D )【答案】A【解析】试题分析:所以,选A.【考点】1.三角函数的和差角公式2.正弦定理.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形.首先用两角和的正弦公式转化为含有,,的式子,用正弦定理将角转化为边,得到.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.2.【2016高考新课标3理数】在ABC △中,π4B,BC 边上的高等于13BC ,则cos A ( )(A B (C )10(D )310【答案】C 【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以AC ==,AB =.由余弦定理,知222cos2AB AC BC A AB AC +-===⋅,故选C .考点:余弦定理.3.【2016高考天津理数】在△ABC 中,若AB ,BC=3,120C ∠= ,则AC = ()(A )1(B )2(C )3(D )4【答案】A 【解析】试题分析:由余弦定理得213931AC AC AC =++⇒=,选A. 考点:余弦定理【名师点睛】1.正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.4.【2017浙江,14】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【解析】试题分析:取BC 中点E ,DC 中点F ,由题意:,AE BC BF CD ⊥⊥,△ABE 中,1cos 4BE ABC AB ∠==,1cos ,sin 4DBC DBC ∴∠=-∠==,BC 1sin 2D S BD BC DBC ∴=⨯⨯⨯∠=△.又21cos 12sin ,sin 4DBC DBF DBF ∴∠=-∠=-∴∠=,cos sin BDC DBF ∴∠=∠=综上可得,△BCD ,cos BDC ∠=. 【考点】解三角形5.【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc+-==⋅2425361616256⨯+-=⋅=⨯⨯ 考点定位:本题考点为正弦定理、余弦定理的应用及二倍角公式,灵活使用正弦定理、余弦定理进行边化角、角化边.【名师点睛】本题考查二倍角公式及正弦定理和余弦定理,本题属于基础题,题目所求分式的分子为二倍角正弦,应用二倍角的正弦公式进行恒等变形,变形后为角的正弦、余弦式,灵活运用正弦定理和余弦定理进行角化边,再把边长代入求值.6.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是. 【答案】8.【解析】sin sin(B C)2sin sin tan tan 2tan tan A B C B C B C =+=⇒+=,因此tan tan tan tan tan tan tan 2tan tan tan tan tan 8A B C A B C A B C A B C =++=+≥≥,即最小值为8.考点:三角恒等变换,切的性质应用【名师点睛】消元与降次是高中数学主旋律,利用三角形中隐含的边角关系作为消元依据是本题突破口,斜三角形ABC 中恒有tan tan tan tan tan tan A B C A B C =++,这类同于正余弦定理,是一个关于切的等量关系,平时多总结积累常见的三角恒等变形,提高转化问题能力,培养消元意识7.【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是.【答案】【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B =∠C =75°,∠E =30°,BC =2,由正弦定理可得sin sin BC BEE C=∠∠,即o o2sin 30sin 75BE=,解得BE ,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B =∠BFC =75°,∠FCB =30°,由正弦定理知,sin sin BF BCFCB BFC=∠∠,即o o2sin 30sin 75BF =,解得BF ,所以AB 的取值范围为).【考点定位】正余弦定理;数形结合思想8.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b =. 【答案】2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin[()]sin()sin cos cos sin 65B AC A B A C A C π=-+=+=+=,又因为sin sin a bA B=, 所以sin 21sin 13a Bb A ==.考点:三角函数和差公式,正弦定理.能用到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二讲 解三角形
2019年
1.(2019全国Ⅰ理17)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.
(1)求A ;
(2
2b c +=,求sin C .
解:(1)由已知得,故由正弦定理得.
由余弦定理得. 因为,所以.
(2)由(1)知,
, 即,可得. 由于,所以,故
. 2.(2019全国Ⅱ理
15)ABC △的内角
,,A B C 的对边分别为,,a b c .若π6,2,3b a c B ==
=,则ABC △的面积为__________.
解析:由余弦定理有,
因为,,,所以, 所以,
222sin sin sin sin sin B C A B C +-=222b c a bc +-=2221cos 22
b c a A bc +-==0180A ︒︒<<60A ︒=120B C ︒=-()
sin 1202sin A C C ︒+-=1sin 2sin 222
C C C ++=()cos 602C ︒+=-0120C ︒︒<<()sin 602
C ︒+=()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+4
=2222cos b a c ac B =+-6b =2a c =π3
B =222π36(2)4cos 3c c c =+-212c =21sin sin 2
ABC S ac B c B ===△
3.(2019全国Ⅲ理18)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知sin
sin 2A C a b A +=. (1)求B ;
(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.
解析(1)由题设及正弦定理得. 因为,所以. 由,可得,故. 因为,故,因此. (2)由题设及(1)知△ABC 的面积. 由正弦定理得.
由于为锐角三角形,故,,由(1)知,所以,故
. 因此,面积的取值范围是.
4.(2019江苏12)如图,在ABC △中,D 是BC 的中点,E 在边
AB 上,BE =2EA ,
AD 与
CE 交于点O .若6AB AC AO EC ⋅=
⋅,则AB AC
的值是 . 解析 设,
sin sin sin sin 2
A C A
B A +=sin 0A ≠sin sin 2
A C
B +=180A B
C ︒++=sin
cos 22A C B +=cos 2sin cos 222B B B =cos 02B ≠1sin 22
B =60B =︒AB
C S =
△()sin 120sin 1sin sin 2
C c A a C C ︒-===ABC △090A ︒<<︒090C ︒<<︒120A C +=︒3090C ︒<<︒122a <<ABC S <<△ABC △⎝⎭
()2AD AB A AO C λ
λ==+
, 所以,解得, 所以,, , 因为,所以,
所以,所以
5.(2019江苏15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .
(1)若a =3c ,b ,cos B =23
,求c 的值; (2)若sin cos 2
A B a b =,求sin()2
B π+的值. 解析 (1)由余弦定理,得,即. 所以. (2)因为, 由正弦定理
,得,所以. 1()(1)3
AO AE EO AE EC AE AC AE AE AC AB AC μμμμμμ-=+=+=+-=-+=
+1232λμλμ-⎧=⎪⎪⎨⎪=⎪⎩121
4
λμ⎧=⎪⎪⎨⎪=⎪⎩11()24AO AD AB AC ==+13
EC AC AE AB AC =-=-+221131266()()()43233
AO EC AB AC AB AC AB AB AC AC ⋅=⨯+⨯-+=-+⋅+=221322
AB AB AC AC -+⋅+221322AB AC AB AB AC AC ⋅=-
+⋅+221322AB AC =2
23AB
AC =AB AC
=222cos 2a c b B ac
+-=2222(3)323c c c c +-=⨯⨯213c =c =sin cos 2A B a b
=sin sin a b A B =cos sin 2B B b b =cos 2sin B B =
从而,即,故. 因为,所以,从而. 因此. 6.(2019浙江14)在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,
若45BDC ∠=︒,则BD =____,cos ABD ∠=________.
解析:在直角三角形ABC 中,,,,, 在中,,可得; ,
, 所以
.
7.(2019北京15)在ABC △中,a =3,b -c =2 ,1cos 2B =-
. (Ⅰ)求b ,c 的值;
(Ⅱ)求sin(B -C ) 的值.
解析:(I )由余弦定理,得. 22cos (2sin )B B =()22cos 41cos B B =-24cos 5
B =sin 0B >cos 2sin 0B B =>cos B =πsin cos 25
B B ⎛
⎫+== ⎪⎝⎭4AB =3BC =5AC =4sin 5
C =BC
D △sin sin BD BC C BDC
=∠5BD =135CBD C ∠=-43sin sin(135)sin )225510
CBD C C C ⎛⎫∠=-=+=⨯+= ⎪⎝⎭()72cos cos 90sin 10
ABD CBD CBD ∠=-∠=∠=2222cos b a c ac B =+-22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭。