三年高考(2017-2019)理科数学高考真题分类汇总:解三角形

三年高考(2017-2019)理科数学高考真题分类汇总:解三角形
三年高考(2017-2019)理科数学高考真题分类汇总:解三角形

第十二讲 解三角形

2019年

1.(2019全国Ⅰ理17)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.

(1)求A ;

(2

2b c +=,求sin C .

解:(1)由已知得,故由正弦定理得.

由余弦定理得. 因为,所以.

(2)由(1)知,

, 即,可得. 由于,所以,故

. 2.(2019全国Ⅱ理

15)ABC △的内角

,,A B C 的对边分别为,,a b c .若π6,2,3b a c B ==

=,则ABC △的面积为__________.

解析:由余弦定理有,

因为,,,所以, 所以,

222sin sin sin sin sin B C A B C +-=222b c a bc +-=2221cos 22

b c a A bc +-==0180A ??<<60A ?=120B C ?=-()

sin 1202sin A C C ?+-=1sin 2sin 222

C C C ++=()cos 602C ?+=-0120C ??<<()sin 602

C ?+=()sin sin 6060C C ??=+-()()sin 60cos60cos 60sin 60C C ????=+-+4

=2222cos b a c ac B =+-6b =2a c =π3

B =222π36(2)4cos 3c c c =+-212c =21sin sin 2

ABC S ac B c B ===△

3.(2019全国Ⅲ理18)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知sin

sin 2A C a b A +=. (1)求B ;

(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.

解析(1)由题设及正弦定理得. 因为,所以. 由,可得,故. 因为,故,因此. (2)由题设及(1)知△ABC 的面积. 由正弦定理得.

由于为锐角三角形,故,,由(1)知,所以,故

. 因此,面积的取值范围是

4.(2019江苏12)如图,在ABC △中,D 是BC 的中点,E 在边

AB 上,BE =2EA ,

AD 与

CE 交于点O .若6AB AC AO EC ?=

?u u u r u u u r u u u r u u u r ,则AB AC

的值是 .

解析 设, sin sin sin sin 2

A C A

B A +=sin 0A ≠sin sin 2

A C

B +=180A B

C ?++=sin

cos 22A C B +=cos 2sin cos 222B B B =cos 02B ≠1sin 22

B =60B =?AB

C S =

△()sin 120sin 1sin sin 2

C c A a C C ?-===ABC △090A ?<

()2

AD AB A AO C λλ==+u u u u r u u u u u r u u u r r

所以,解得, 所以,, , 因为,所以, 所以,所以

5.(2019江苏15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .

(1)若a =3c ,b ,cos B =23

,求c 的值; (2)若sin cos

2A B a b =,求sin()2

B π+的值. 解析 (1)由余弦定理,得,即. 所以. (2)因为, 由正弦定理

,得,所以. 1()(1)3

AO AE EO AE EC AE AC AE AE AC AB AC μμμμμμ-=+=+=+-=-+=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 1232λμλμ-?=????=??121

4

λμ?=????=??11()24AO AD AB AC ==+u u u r u u u r u u u r u u u r 13

EC AC AE AB AC =-=-+u u u r u u u r u u u r u u u r u u u r 221131266()()()43233

AO EC AB AC AB AC AB AB AC AC ?=?+?-+=-+?+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 221322

AB AB AC AC -+?+u u u r u u u r u u u r u u u r 221322AB AC AB AB AC AC ?=-+?+u u u r u u u r u u u r u u u r u u u r u u u r 221322

AB AC =u u u r u u u r 223AB AC

=u u u r u u u r AB AC =222cos 2a c b B ac

+-=2222(3)323c c c c +-=??213c =c =sin cos 2A B a b

=sin sin a b A B =cos sin 2B B b b =cos 2sin B B =

从而,即,故. 因为,所以,从而. 因此. 6.(2019浙江14)在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,

若45BDC ∠=?,则BD =____,cos ABD ∠=________.

解析:在直角三角形ABC 中,,,,, 在中,,可得; ,

, 所以

.

7.(2019北京15)在ABC △中,a =3,b -c =2 ,1cos 2B =-

. (Ⅰ)求b ,c 的值;

(Ⅱ)求sin(B -C ) 的值.

解析:(I )由余弦定理,得. 22cos (2sin )B B =()22cos 41cos B B =-24cos 5

B =sin 0B >cos 2sin 0B B =>cos B =πsin cos 25

B B ?

?+== ???4AB =3BC =5AC =4sin 5

C =BC

D △sin sin BD BC C BDC

=∠5BD =135CBD C ∠=-o 43sin sin(135)sin )225510

CBD C C C ??∠=-=+=?+= ???o ()72cos cos 90sin 10

ABD CBD CBD ∠=-∠=∠=o 2222cos b a c ac B =+-22213232b c c ??=+-???- ???

天津市近五年高考数学真题分类汇总

天津市近五年高考数学试题分类汇总 [2011 ?天津卷]i是虚数单位,复数1 3i 1 i = C. 1 2i A. 2 i B. 2 i 【答案】A. 1 3i 【解析】'3i(1 3i)(1 i) 42i2 i. 1 i(1 i)(1 i)2 【2010】(1) i是虚数单位,复数 1 3i( 1 2i (A)1 + i(B)5+ 5i (C)-5-5i(D)-1 —i 5i 【2009,1】i是虚数单位,5=( ) 2 i (A) 1+2i(B) -1-2i(C) 1-2i 选择题1:—复数 【考点定位】本小题考查复数的运算,基础 题。) D. 1 2i (D) -1+2i 解析:旦5^ 2 i 5 1 2i,故选择D o 【2008 】 1. ?3 i是虚数单位i i 1() i是虚数单位,i1 (A) 1 (B) 1(C) i(D) i A 【2007】 2i3 1.i是虚数单位,——() 1 i A.1i B.1 i C.1 【答 案】 C 【分 析】2i32i3(1 i)2i(1 i)i 1,故选C 1i (1 i)(1 i)2 D. 1 i 2 (1)i 3 1,i 4 i,i1 复数运算技巧: 4n i 1,i 4n 1 4n 2 i,i 4n 3 hi n n 1n 2n 3 ■ i■ i■ i■ i0 复数概念、复数运算、共轭复数、复数几何意义。 (2)(1 i)2 2i

i i A.充分而不必要条件 B.必要而不充分条件 .1 i i,r _ i ⑷设 -1+凋 3 2 1, — 2 3 , 0 2 , 选择题 2: 充要条件与命题 [2011 ? 天津卷]设x,y R,则 2 2 “x 2 且 y 2 ”是“ x y 4 的 充分而不必要条件 A . B .必要而不充分条件 C . 充分必要条件 D .即不充分也不必要条件 【答案 】A 【解 析 】当x 2且y 2时, 「疋有x y 4 ;反过来当 【2010】(3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是 (A) 若f(x)是偶函数,则f(-x)是偶函数 (B) 若f(x)不是奇函数,则f(-x)不是奇函数 (C) 若f(-x)是奇函数,贝U f(x)是奇函数 (D) 若f(-x)不是奇函数,则f(x)不是奇函数 B 【2009】(3)命题“存在x 0 R , 2x0 0”的否定是 (A )不存在 x 0 R, 2x0 >0 (B )存在 X 。R, 2x0 0 (C )对任意的x R, 2x 0 (D )对任意的x R, 2x >0 【考点定位】本小考查四种命题的改写,基础题。 解析:由题否定即“不存在 x 0 R ,使2x0 0”,故选择D o 【2007 】3." —"是"ta n 2cos — "的 3 2 x 2 y 2 4,不一定有x 2且y 2,例如x 4, y 0也可以,故选A 【2008】(4)设 a,b 是两条直线, 是两个平面,则a b 的一个充分条件是 C (A) a , b 〃 , (C) a ,b , // (B) a ,b , // (D) a ,b 〃 ,

2019-2020高考数学试题分类汇编

2019---2020年真题分类汇编 一、 集合(2019) 1,(全国1理1)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2,(全国1文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A = A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3,(全国2理1)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1) C .(–3,–1) D .(3,+∞) 4,(全国2文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2) C .(-1,2) D .? 5,(全国3文、理1)已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B = A .{}1,0,1- B .{}0,1 C .{}1,1- D .{}0,1,2 6,(北京文,1)已知集合A ={x |–11},则A ∪B = (A )(–1,1) (B )(1,2) (C )(–1,+∞) (D )(1,+∞) 7,(天津文、理,1)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤∈R ,则A B = . 10,(上海1)已知集合{1A =,2,3,4,5},{3B =,5,6},则A B = . 一、 集合(2020) 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则 a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.

2011—2019年新课标全国卷1理科数学分类汇编——9.解析几何

9.解析几何(含解析) 一、选择题 【2019,10】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =, 1||||AB BF =,则C 的方程为 A .2 212x y += B .22132x y += C .22143x y += D .22154 x y += 【2018.8】抛物线C :y 2=4x 焦点为F ,过点(–2,0)且斜率为 23直线与C 交于M ,N 两点,则FM FN ?u u u u r u u u r = A .5 B .6 C .7 D .8 【2018.11】已知双曲线C :2 213 x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |= A . 32 B .3 C . D .4 【2017,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10 【2016,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( ) A .2 B .4 C .6 D .8 【2016,5】已知方程1322 22=--+n m y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的 取值范围是( ) A .)3,1(- B .)3,1(- C .)3,0( D .)3,0( 【2015,5】已知00(,)M x y 是双曲线C :2 212 x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ?的一个焦点,则点F 到C 的一条渐近线的距离为 A B .3 C D .3m

历年高考数学真题精选45 排列组合

历年高考数学真题精选(按考点分类) 专题45 排列组合(学生版) 一.选择题(共20小题) 1.(2009?全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( ) A.150种B.180种C.300种D.345种2.(2010?广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是() A.1205秒B.1200秒C.1195秒D.1190秒3.(2007?全国卷Ⅱ)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有() A.10种B.20种C.25种D.32种4.(2006?湖南)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是() A.6B.12C.24D.18 5.(2009?陕西)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为() A.432B.288C.216D.108 6.(2014?辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为() A.144B.120C.72D.24 7.(2012?浙江)若从1,2,3,?,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有() A.60种B.63种C.65种D.66种8.(2012?北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位

2015年高考数学真题分类汇编:专题(08)直线与圆(文科)及

2015年高考数学真题分类汇编 专题08 直线与圆 文 1.【2015高考北京,文2】圆心为()1,1且过原点的圆的方程是( ) A .()()22111x y -+-= B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-= 【答案】D 【解析】由题意可得圆的半径为r = ()()22112x y -+-=,故选D. 【考点定位】圆的标准方程. 【名师点晴】本题主要考查的是圆的标准方程,属于容易题.解题时一定要抓住重要字眼“过原点”,否则很容易出现错误.解本题需要掌握的知识点是圆的标准方程,即圆心(),a b ,半径为r 的圆的标准方程是()()222x a y b r -+-=. 2.【2015高考四川,文10】设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是 ( ) (A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)

【考点定位】本题考查直线、圆及抛物线等基本概念,考查直线与圆、直线与抛物线的位置关系、参数取值范围等综合问题,考查数形结合和分类与整合的思想,考查学生分析问题和处理问题的能力. 【名师点睛】本题实质是考查弦的中垂线过定点问题,注意到弦的斜率不可能为0,但有可能不存在,故将直线方程设为x =ty +m ,可以避免忘掉对斜率不存在情况的讨论.在对r 的讨论中,要注意图形的对称性,斜率存在时,直线必定是成对出现,因此,斜率不存在(t =0)时也必须要有两条直线满足条件.再根据方程的判别式找到另外两条直线存在对应的r 取值范围即可.属于难题. 3.【2015高考湖南,文13】若直线3450x y -+=与圆()2220x y r r +=>相交于A,B 两点,且120o AOB ∠=(O 为坐标原点),则r =_____. 【答案】 【解析】如图直线3450x y -+=与圆2220x y r r +=(>) 交于A 、B 两点,O 为坐标原点,且120o AOB ∠=,则圆心(0,0)到直线3450x y -+=的距离为12 r , 12 r r =∴,=2 .故答案为2. 【考点定位】直线与圆的位置关系 【名师点睛】涉及圆的弦长的常用方法为几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则222().2 l r d =-本题条件是圆心角,可利用直角三角形转化为弦心距与半径之间关系,再根据点到直线距离公式列等量关系.

全国高考理科数学试题分类汇编—统计

年高考真题理科数学解析分类汇编 12 统计
1. 【 高 考 上 海 理 17 】 设 10 ? x1 ? x2 ? x3 ? x4 ? 10 4 , x5 ? 10 5 , 随 机 变 量 ?1 取 值
x1、x 2、x 3、x 4、x 5 的 概 率 均 为 0.2 , 随 机 变 量 ? 2 取 值
x1
? 2
x2
、x2
? 2
x3
、x3
? 2
x4
、x4
? 2
x5
、x5
? 2
x1
的概率也均为 0.2
,若记
D?1、D? 2
分别为
?1、?2 的方差,则( )
A. D?1 ? D?2
B. D?1 ? D?2
C. D?1 ? D?2
D. D?1 与 D? 2 的大小关系与 x1、x2、x3、x4 的取值有关
【答案】A
【 解 析 】 由 随 机 变 量 ?1,?2 的 取 值 情 况 , 它 们 的 平 均 数 分 别 为 :
1 x1 ? 5 (x1 ? x2 ? x3 ? x4 ? x5 ),

x2
?
1? 5 ??
x1
? 2
x2
?
x2
? 2
x3
?
x3
? 2
x4
?
x4
? 2
x5
?
x5
? 2
x1
? ??
?
x1,
且随机变量?1 ,? 2 的概率都为 0.2 ,所以有 D?1 > D? 2 . 故选择 A.
【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提 和基础,本题属于中档题. 2.【高考陕西理 6】从甲乙两个城市分别随机抽取 16 台自动售货机,对其销售额进行统计,
统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为 x甲 , x乙 ,中位数分
别为 m甲 , m乙,则(

A. x甲 ? x乙 , m甲 ? m乙
B. x甲 ? x乙 , m甲 ? m乙
C. x甲 ? x乙 , m甲 ? m乙
D. x甲 ? x乙 , m甲 ? m乙
【答案】B.
【解析】根据平均数的概念易计算出
x甲
?
x乙
,又 m甲
?
18 ? 22 2
?
20 ,m乙
?
27 ? 31 2
?
29
故选 B.
3.【高考山东理 4】采用系统抽样方法从 960 人中抽取 32 人做问卷调查,为此将他们随机编
号为 1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为 9.抽到的 32
人中,编号落入区间?1, 450?的人做问卷 A ,编号落入区间?451, 750? 的人做问卷 B ,其余

2019年高考数学真题分类汇编专题18:数列(综合题)

2019年高考数学真题分类汇编 专题18:数列(综合题) 1.(2019?江苏)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }()* n N ∈满足:245324,440a a a a a a =-+=,求证:数列{a n }为 “M-数列”; (2)已知数列{b n }满足: 111221,n n n b S b b +==- ,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式; ②设m 为正整数,若存在“M-数列”{c n }()* n N ∈ ,对任意正整数k , 当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值. 【答案】 (1)解:设等比数列{a n }的公比为q , 所以a 1≠0,q ≠0. 由 ,得 ,解得 . 因此数列 为“M—数列”. (2)解:①因为 ,所以 . 由 得 ,则 . 由 ,得 , 当 时,由 ,得 , 整理得 . 所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n . ②由①知,b k =k , .

因为数列{c n}为“M–数列”,设公比为q,所以c1=1,q>0. 因为c k≤b k≤c k+1,所以,其中k=1,2,3,…,m. 当k=1时,有q≥1; 当k=2,3,…,m时,有. 设f(x)= ,则. 令,得x=e.列表如下: x e (e,+∞) + 0 – f(x)极大值 因为,所以. 取,当k=1,2,3,4,5时,,即, 经检验知也成立. 因此所求m的最大值不小于5. 若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6. 综上,所求m的最大值为5. 【考点】导数在最大值、最小值问题中的应用,等比数列的通项公式,等差关系的确定 【解析】【分析】(1)利用已知条件结合等比数列的通项公式,用“M-数列”的定义证出数列{a n}为“M-数列”。(2)①利用与的关系式结合已知条件得出数列为等差数列,并利用等差数列通项公式求出数列的通项

高考数学真题分类汇编专题直线与圆理科及答案

专题八 直线 与圆 1.【2015高考重庆,理8】已知直线l :x +ay -1=0(a ∈R )是圆C :2 2 4210x y x y +--+=的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |= ( ) A 、2 B 、 C 、6 D 、 【答案】C 【解析】圆C 标准方程为2 2 (2)(1)4x y -+-=,圆心为(2,1)C ,半径为2r =,因此 2110a +?-=,1a =-,即(4,1)A --,6AB ===. 选C . 【考点定位】直线与圆的位置关系. 【名师点晴】首先圆是一个对称图形,它关于圆心成中心对称,关于每一条直径所在直线都是它的对称轴,当然其对称轴一定过圆心,其次直线与圆有相交、相切、相离三种位置关系,判断方法可用几何与代数两种方法研究,圆的切线长我们用勾股定理求解,设圆外一点P 到 圆的距离为d ,圆的半径为r ,则由点P 所作切线的长l = . 2.【2015高考新课标2,理7】过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C 【解析】由已知得321143AB k -= =--,27 341 CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ?为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为 22(1)(2)25x y -++=,令0x =,得2y =±-,所以MN =C . 【考点定位】圆的方程. 【名师点睛】本题考查三角形的外接圆方程,要注意边之间斜率的关系,得出ABC ?是直角三角形,可以简洁快速地求出外接圆方程,进而求弦MN 的长,属于中档题. 3.【2015高考广东,理5】平行于直线012=++y x 且与圆52 2 =+y x 相切的直线的方程是( ) A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y x

近3年2015-2017各地高考数学真题分类专题汇总--导数及其应用

2017年高考数学试题分类汇编及答案解析---导数及其应用 一、选择题(在每小题给出的四个选项中?只有一项是符合题目要求的) 1(2017北京文)已知函数1()3()3 x x f x =-?则()f x ( ) .A 是偶函数?且在R 上是增函数 .B 是奇函数?且在R 上是增函数 .C 是偶函数?且在R 上是减函数 .D 是奇函数?且在R 上是增函数 2.(2017新课标Ⅱ文)函数2()ln(28)f x x x =--的单调递增区间是( ) .A (,2)-∞- .B (,1)-∞ .C (1, )+∞ .D (4,)+∞ З.(2017山东文)设()()1 21,1x f x x x <<=-≥?? ,若()()1f a f a =+,则 1f a ?? = ??? ( )2.A 4.B 6.C 8.D 4.(2017山东文)若函数()e x f x 在()f x 的定义域上单调递增,则称函数()f x 具有M 性 质.下列函数中具有M 性质的是( ) x x f A -=2)(. .B ()2f x x = .C ()3x f x -= .D ()c o s f x x = 5.(2017新课标Ⅰ文数)函数sin21cos x y x = -的部分图像大致为( ) б.(2017新课标Ⅰ文数)已知函数()ln ln(2)f x x x =+-?则( ) .A )(x f y =在)2,0(单调递增 .B )(x f y =在)2,0(单调递减 .C )(x f y =的图像关于直线1=x 对称 .D )(x f y =的图像关于点)0,1(对称 7.(2017天津文)已知奇函数()f x 在R 上是增函数.若 0.8221 (log ),(log 4.1),(2)5a f b f c f =-==?则,,a b c 的大小关系为( ) .A a b c << .B b a c << .C c b a << .D c a b <<

三年高考(2017-2019)理科数学高考真题分类汇总:函数的综合及其应用

函数的综合及其应用 一、选择题 1.(2017天津)已知函数23,1, ()2 , 1.x x x f x x x x ?-+? =?+>? ? ≤设a ∈R ,若关于x 的不等式()||2x f x a +≥在R 上恒成立,则a 的取值范围是 A .47[,2]16 - B .4739 [,]1616- C .[- D .39 []16 - A 【解析】解法一 根据题意,作出()f x 的大致图象,如图所示 当1x ≤时,若要()| |2x f x a +≥恒成立,结合图象,只需2 3()2 x x x a -+-+≥,即2302x x a -++≥,故对于方程2302x x a -++=,21 ()4(3)02a ?=--+≤,解得 4716a -≥;当1x >时,若要()||2x f x a +≥恒成立,结合图象,只需22 x x a x ++≥, 即22x a x +≥,又222x x +≥,当且仅当2 2x x =,即2x =时等号成立,所以2a ≤,综上,a 的取值范围是47 [,2]16 - .选A . 解法二 由题意()f x 的最小值为114,此时12 x =.不等式()||2x f x a +≥在R 上恒成立 等价于11 | |24 x a +≤在R 上恒成立. 当a =-1 2 x = ,11|| |28x -=>,不符合,排除C 、D ; 当3916a = 时,令12x =,394311 ||||216168 x +=>,不符合,排除B .选A . 二、填空题 x

1.(2017山东)若函数e ()x f x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单 调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 . ①()2 x f x -= ②2 ()f x x = ③()3 x f x -= ④()cos f x x = ①④【解析】①()2()2 x x x x e e f x e -=?=在R 上单调递增,故()2x f x -=具有M 性质; ②()3()3 x x x x e e f x e -=?=在R 上单调递减,故()3x f x -=不具有M 性质; ③3 ()x x e f x e x =?,令3 ()x g x e x =?,则3 2 2()3(2)x x x g x e x e x x e x '=?+?=+, ∴当2x >-时,()0g x '>,当2x <-时,()0g x '<, ∴3()x x e f x e x =?在(),2-∞-上单调递减,在()2,-+∞上单调递增, 故()3 f x x =不具有M 性质; ④2 ()(2)x x e f x e x =+,令()() 22x g x e x =+, 则22 ()(2)2[(1)1]0x x x g x e x e x e x '=++?=++>, ∴2()(2)x x e f x e x =+在R 上单调递增,故2()2f x x =+具有M 性质. 2.(2017江苏)设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,(),x x D f x x x D ?∈=? ??其中集合1 {|,}n D x x n n -==∈*N ,则方程()lg 0f x x -=的解的个数是 . 8【解析】由于,则需考虑的情况, 在此范围内,且时,设,且互质, 若,则由,可设,且,m n 互质, 因此,则,此时左边为整数,右边为非整数,矛盾, 因此, ()[0,1)f x ∈110x ≤

2019年高考理科数学分类汇编:数列(解析版)

题08 数列 1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B . 310n a n =- C .2 28n S n n =- D .2 122 n S n n = - 【答案】A 【解析】由题知,415 144302 45d S a a a d ? =+??=???=+=?,解得132a d =-??=?,∴25n a n =-,2 4n S n n =-,故选A . 【名师点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,再适当计算即可做了判断. 2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8 C .4 D .2 【答案】C 【解析】设正数的等比数列{a n }的公比为q ,则23111142 111 15 34a a q a q a q a q a q a ?+++=?=+?, 解得11,2 a q =??=?,2 314a a q ∴==,故选C . 【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2 +b ,n *∈N ,则 A . 当101 ,102 b a = > B . 当101 ,104 b a = > C . 当102,10b a =-> D . 当104,10b a =-> 【答案】A 【解析】①当b =0时,取a =0,则0,n a n * =∈N .

全国高考理科数学历年试题分类汇编

全国高考理科数学历年试题分类汇编 (一)小题分类 集合 (2015卷1)已知集合A={x x=3n+2,n ∈N},B={6,8,10,12,14},则集合A ?B 中的元素个( )(A ) 5 (B )4 (C )3 (D )2 1. (2013卷2)已知集合M ={x|-3<x <1},N ={-3,-2,-1,0,1},则M∩N =( ). A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0} D .{-3,-2,-1} 2. (2009卷1)已知集合A=1,3,5,7,9},B={0,3,6,9,12},则A ?B= A .{3,5} B .{3,6} C .{3,7} D .{3,9} 3. (2008卷1)已知集合M ={ x|(x + 2)(x -1) < 0 }, N ={ x| x + 1 < 0 },则M∩N =( ) {A. (-1,1) B. (-2,1) C. (-2,-1) D. (1,2) 复数 1. (2015卷1)已知复数z 满足(z-1)i=1+i ,则z=( ) (A ) -2-i (B )-2+i (C )2-i (D )2+i 2. (2015卷2)若a 实数,且 i ai ++12=3+i,则a= ( ) A.-4 B. -3 C. 3 D. 4 3. (2010卷1)已知复数() 2 313i i z -+= ,其中=?z z z z 的共轭复数,则是( ) A= 4 1 B= 2 1 C=1 D=2 向量 1. (2015卷1)已知点A(0,1),B(3,2),向量AC =(-4,-3),则向量BC = ( ) (A ) (-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) 2. (2015卷2)已知向量=(0,-1),=(-1,2),则() ?+2=( ) A. -1 B. 0 C. 1 D. 2 3. (2013卷3)已知两个单位向量,的夹角为60度,()0,1=?-+=t t 且,那么t= 程序框图 (2015卷2)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。执行该程序框图,若输入的a,b 分别为14,18,则输出的a 为 A . 0 B. 2 C. 4 D.14

2015年高考数学真题分类汇编:专题(01)集合与常用逻辑用语(理科)及答案

专题一 集合与常用逻辑用语 1.【2015高考四川、理1】设集合{|(1)(2)0}A x x x =+-<、集合{|13}B x x =<<、则A B =( ) (){|13}A x x -<< (){|11}B x x -<< (){|12}C x x << (){|23}D x x << 【答案】A 【解析】 {|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<<、选A. 【考点定位】集合的基本运算. 【名师点睛】集合的概念及运算一直是高考的热点、几乎是每年必考内容、属于容易题.一般是结合不等式、函数的定义域值域考查、解题的关键是结合韦恩图或数轴解答. 2.【2015高考广东、理1】若集合{|(4)(1)0}M x x x =++=、{|(4)(1)0}N x x x =--=、则M N =( ) A .? B .{}1,4-- C .{}0 D .{}1,4 【答案】A . 【解析】因为()(){}{}|4104,1M x x x =++==--、()(){}{}|4101,4N x x x =--==、所以M N =?、故选A . 【考点定位】一元二次方程的解集、集合的基本运算. 【名师点睛】本题主要考查一元二次方程的解集、有限集合的交集运算和运算求解能力、属于容易题. 3.【2015高考新课标1、理3】设命题p :2,2n n N n ?∈>、则p ?为( ) (A )2,2n n N n ?∈> (B )2,2n n N n ?∈≤ (C )2,2n n N n ?∈≤ (D )2,=2n n N n ?∈ 【答案】C 【解析】p ?:2,2n n N n ?∈≤、故选C. 【考点定位】本题主要考查特称命题的否定 【名师点睛】全称命题的否定与特称命题的否定是高考考查的重点、对特称命题的否定、将存在换成任意、后边变为其否定形式、注意全称命题与特称命题否定的书写、是常规题、很好考查了学生对双基的掌握程度. 4.【2015高考陕西、理1】设集合2{|}M x x x ==、{|lg 0}N x x =≤、则M N =( )

2019年高考数学分类汇编:算法初步

训练一:2019年高考数学新课标Ⅰ卷文科第9题理科第8题:如图是求 2 12121++ 的程序框图,图中空白框中应填 入( ) A.A A += 21 B.A A 12+= C.A A 211+= D.A A 21 1+= 本题解答:本题目考察是算法中循环计算的推理。 计数器k 的初始值,循环计算1+=k k ,循环条件12=?≤k k 和2=k ?进行两次循环就可以输出。 2 12121++ 第一次计算分母上 2 121+,A 初始值为 A +? 2121。执行A A +=21 的循环语句,此时新得到 2 1 21+= A 。第二次计算整体 2 12121++ ,新的2 121+= A A +? 21。执行A A +=21之后2 12121 ++ =A 。 所以:循环语句是A A += 21 。 训练二:2019年高考数学新课标Ⅲ卷文科第9题理科第9题:执行下边的程序框图,如果输入的ξ为01.0,则输出的s 的值等于( )

A.4212- B.5212- C.6212- D.72 12- 本题解答:如下表所示:

所以:输出的62 1 26416412864112864127-=-=-== s 。 训练三:2019年高考数学北京卷文科第4题理科第2题:执行如图所示的程序框图,输出的s 的值为( ) A.1 B.2 C.3 D.4 本题解答:如下表所示:

所以:输出的 2 =s 。 训练四:2019年高考数学天津卷文科第4题理科第4题:阅读如图的程序框图,运行相应的程序,输出S 的值为( ) A.5 B.8 C.24 D.29 本题解答:如下表所示:

2020年全国高考理科数学试题分类汇编5:平面向量

2020年全国高考理科数学试题分类汇编5:平面向量 一、选择题 1 .(2020年高考上海卷(理))在边长为1的正六边形ABCDEF 中,记以 A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a u r u u r u u r u u r u u r ;以 D 为起点,其 余顶点为终点的向量分别为 12345 ,,,,d d d d d u u r u u r u u r u u r u u r .若 ,m M 分别为 ()() i j k r s t a a a d d d ++?++u r u u r u u r u u r u u r u u r 的最小值、最大值,其中 {,,}{1,2,3,4,5}i j k ?,{,,}{1,2,3,4,5}r s t ?,则,m M 满足 ( ) A .0,0m M => B .0,0m M <> C .0,0m M <= D .0,0m M << 【答案】 D . 2 .(2020年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已 知点()()1,3,4,1,A B AB -u u u r 则与向量同方向的单位向量为 ( ) A .345 5?? ??? ,- B .435 5?? ??? ,- C .3455??- ??? , D .4355?? - ??? , 【答案】A 3 .(2020年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版)) 设0,P ABC ?是边AB 上一定点,满足AB B P 4 10=,且对于边AB 上任一点P , 恒有C P B P PC PB 00?≥?.则 ( ) A .090=∠ABC B .090=∠BA C C .AC AB = D .BC AC = 【答案】D 4 .(2020年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版)) 在四边形ABCD 中,(1,2)AC =u u u r ,(4,2)BD =-u u u r ,则四边形的面积为 ( )

关于历年成人高考数学真题分类汇总文

2011-15成考数学真题题型分类汇总(文) 一、 集合与简易逻辑 (2011) 已知集合A={1,2,3,4}, B={x|—1- B {}1x x > D {}12x x ≤≤ (2014)若,,a b c 设甲:2 40b ac -≥ 乙:20ax bx c ++=有实数根。 则( ) A 甲是乙的必要条件,但不是乙的充分条件 B 甲是乙的充分条件,但不是乙的必要条件 C 甲既不是乙的充分条件,也不是乙的必要条件 D 甲是乙的充分必要条件 (2015)设集合M={2,5,8},N={6,8},则M U N= (A){8} (B){6} (C){2,5,6,8} (D){2,5,6} (2015)设甲:函数Y=kx+b 的图像过点(1,1), 乙:k+b=1,则 (A)甲是乙的必要条件,但不是乙的充分条件 (B)甲是乙的充分条件,但不是乙的必要条件 (C)甲不是乙的充分条件,也不是乙的必要条件 (D)甲是乙的充分必要条件

(完整版)2019年高考数学真题分类汇编01:集合

2019年高考数学真题分类汇编 专题01:集合 一、单选题 1.(2019?浙江)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则=() A. {-1} B. {0,1} C. {-1,2,3} D. {-1,0,1,3} 【答案】 A 2.(2019?天津)设集合 ,则() A.{2} B.{2,3} C.{-1,2,3} D.{1,2,3,4} 【答案】 D 3.(2019?全国Ⅲ)已知集合A={-1,0,1,2},B={x|x2≤1},则 A∩B=() A.{-1,0,1} B.{0,1} C.{-1,1} D.{0,1,2} 【答案】 A 4.(2019?卷Ⅱ)已知集合A={x|x>-1},B={x|x<2},则A∩B=( ) A.(-1,+∞) B.(-∞,2)

C.( -1,2) D. 【答案】 C 5.(2019?卷Ⅱ)设集合A={x|x2-5x+6>0},B={ x|x-1<0},则 A∩B=() A.(-∞,1) B.(-2,1) C.(-3,-1) D.(3,+∞) 【答案】 A 6.(2019?北京)已知集合A={x|-11},则AUB=( ) A.(-1,1) B.(1,2) C.(-1,+∞) D.(1,+∞) 【答案】 C 7.(2019?卷Ⅰ)已知集合U= ,A= ,B= 则=() A. B. C. D. 【答案】 C 8.(2019?卷Ⅰ)已知集合M= ,N= ,则M N=() A. B. C. D. 【答案】 C

9.(2019?全国Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著。某中学为了 了解本校学生阅读四大名著的情况,随机调查了100位学生,其中 阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为() A.0.5 B.0.6 C.0.7 D.0.8 【答案】 C 二、填空题 10.(2019?江苏)已知集合,,则 ________. 【答案】

高中高考数学易错易混易忘题分类汇总及解析

高中高考数学易错易混易忘题分类汇总及解析
"会而不对,对而不全"一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何 解决这个问题对决定学生的高考成败起着至关重要的作用.本文结合笔者的多年高三教学经验精心挑选学 生在考试中常见的 66 个易错,易混,易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏,怪, 难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在, 另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风 破浪,实现自已的理想报负. 【易错点 1】忽视空集是任何非空集合的子集导致思维不全面. 例1, 设
A = { x | x 2 8 x + 15 = 0} , B = { x | ax 1 = 0} ,若 A ∩ B = B ,求实数 a 组成的集
合的子集有多少个? 【易错点分析】此题由条件
A ∩ B = B 易知 B A ,由于空集是任何非空集合的子集,但在解题中极易
忽略这种特殊情况而造成求解满足条件的 a 值产生漏解现象. 解析:集合 A 化简得
A = {3,5} ,由 A ∩ B = B 知 B A 故(Ⅰ)当 B = φ 时,即方程 ax 1 = 0 无
≠φ
时,即方程 ax 1 = 0 的解为 3 或 5,代入得 a
解,此时 a=0 符合已知条件(Ⅱ)当 B
=
1 1 或 . 3 5
综上满足条件的 a 组成的集合为 0,
1 1 , ,故其子集共有 23 = 8 个. 3 5
B时,要树立起分类讨论的数学思想,
【知识点归类点拔】 (1)在应用条件 A∪B=B A∩B=A A 将集合A是空集Φ的情况优先进行讨论.
(2)在解答集合问题时,要注意集合的性质"确定性,无序性,互异性"特别是互异性对集合元素的限制. 有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语 言)和自然语言之间的转化如:
A = {( x, y ) | x 2 + y 2 = 4} ,
2
B=
{( x, y ) | ( x 3)
2
+ ( y 4) = r 2
}
,其中 r
> 0 ,若 A ∩ B = φ 求 r 的取值范围.将集合所表达
的数学语言向自然语言进行转化就是:集合 A 表示以原点为圆心以 2 的半径的圆,集合 B 表示以(3,4) 为圆心,以 r 为半径的圆,当两圆无公共点即两圆相离或内含时,求半径 r 的取值范围.思维马上就可利 用两圆的位置关系来解答.此外如不等式的解集等也要注意集合语言的应用. 【练 1】已知集合
A = { x | x 2 + 4 x = 0} , B = { x | x 2 + 2 ( a + 1) x + a 2 1 = 0} ,若 B A ,
.答案: a
则实数 a 的取值范围是
= 1 或 a ≤ 1 .
【易错点 2】求解函数值域或单调区间易忽视定义域优先的原则.
例 2,已知
( x + 2)
2
+
y2 = 1 ,求 x 2 + y 2 的取值范围 4
【易错点分析】此题学生很容易只是利用消元的思路将问题转化为关于 x 的函数最值求解,但极易忽略 x,
y 满足
( x + 2)
2
y2 + = 1 这个条件中的两个变量的约束关系而造成定义域范围的扩大. 4
1

相关文档
最新文档