2016高考数学试题分类汇编
2016年全国各地高考数学试题及解答分类大全(集合)

2016年全国各地高考数学试题及解答分类大全(集合)一、选择题:1. (2016北京文)已知集合={|24}A x x <<,{|3B x x =<或5}x >,则AB =( )A.{|25}x x <<B.{|4x x <或5}x >C.{|23}x x <<D.{|2x x <或5}x > 【答案】C考点: 集合交集【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.2.(2016北京理)已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则AB =( )A. {0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}- 【答案】C考点:集合交集.【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.3. (2016全国Ⅰ文)设集合{}1,3,5,7A =,{}25B x x =,则AB = ( )(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} 【答案】B考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.4.(2016全国Ⅰ理)设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.5.(2016全国Ⅲ文)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =( ) (A ){48}, (B ){026},,(C ){02610},,,(D ){0246810},,,,,【答案】C【解析】试题分析:由补集的概念,得C {0,2,6,10}A B =,故选C . 考点:集合的补集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.6.(2016全国Ⅲ理)设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T =( )(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0, 2][3,+∞)【答案】D考点:1、不等式的解法;2、集合的交集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.7.(2016全国Ⅱ理)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 【答案】C【解析】 试题分析:集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以A B {0,1,2,3}=,故选C.考点: 集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.8.(2016全国Ⅱ文)已知集合{123}A =,,,2{|9}B x x =<,则A B =( )(A ){210123}--,,,,, (B ){21012}--,,,,(C ){123},,(D ){12},【答案】D考点: 一元二次不等式的解法,集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.9.(2016山东文)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()UA B =( )(A ){2,6} (B ){3,6}(C ){1,3,4,5}(D ){1,2,4,6}【答案】A【解析】 试题分析:由已知,{13,5}{3,4,5}{1,3,4,5}A B ⋃=⋃=,,所以(){1,3,4,5}{2,6}U U C A B C ⋃==,选A.考点:集合的运算【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.10.(2016山东理)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则AB =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.11.(2016四川文) 设集合{|15}A x x =≤≤,Z 为整数集,则集合A ∩Z 中元素的个数是( )(A)6 (B) 5 (C)4 (D)3 【答案】B考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.12.(2016四川理)集合{|22}A x x =-≤≤,Z 为整数集,则AZ 中元素的个数是( )(A )3 (B )4 (C )5 (D )6 【答案】C【解析】试题分析:由题意,{2,1,0,1,2}A Z =--,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般 是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.13.(2016天津文)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则AB =( )(A )}3,1{ (B )}2,1{(C )}3,2{(D )}3,2,1{【答案】A【解析】试题分析:{1,3,5},{1,3}B AB ==,选A.考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.14.(2016天津理)已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则AB =( )(A ){1}(B ){4}(C ){1,3}(D ){1,4}【答案】D【解析】试题分析:{1,4,7,10},A B {1,4}.B ==选D . 考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.15.(2016浙江文)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()=( )A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5} 【答案】C考点:补集的运算.【易错点睛】解本题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.16. (2016浙江理)已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ( )A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞ 【答案】B考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,2x 的系数一定要保证为正数,若2x 的系数是负数,一定要化为正数,否则很容易出错.二、填空题:1. (2016江苏)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ________▲________. 【答案】{}1,2- 【解析】试题分析:{1,2,3,6}{|23}{1,2}A B x x =--<<=-考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确江苏高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解.。
2016年全国各地高考数学试题及解答分类汇编大全(13 立体几何 )

2016 年全国各地高考数学试题及解答分类汇编大全(13立体几何)一、选择题1.(2016北京理)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1【答案】A【解析】试题分析:分析三视图可知,该几何体为一三棱锥P ABC-,其体积111111326V=⋅⋅⋅⋅=,故选A.考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅰ文、理)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A)17π(B)18π(C)20π(D)28π【答案】A【解析】试题分析:该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R,则37428V R833ππ=⨯=,解得R2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以 三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.3.(2016全国Ⅰ文、理)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1, ABCD m α=平面,11ABB A n α=平面,则m 、n 所成角的正弦值为 ( )(A)3 (B )2 (C)3 (D)13【答案】A【解析】试题分析:如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角. 延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm , 同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成 的角即为1,A B BD 所成的角,即为60︒,故,m n 所成角的 正弦值为32,选A. 考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.4.(2016全国Ⅱ文)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )(A )12π (B )323π(C )8π (D )4π 【答案】A【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球面的表面积为24(3)12ππ⋅=,故选A. 考点: 正方体的性质,球的表面积.【名师点睛】棱长为a 的正方体中有三个球: 外接球、内切球和与各条棱都相切的球.其半径分别为3a 、2a 和22a .5.(2016全国Ⅱ文、理)如图是由圆柱与圆锥组合而成的几何体的三视图, 则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C考点: 三视图,空间几何体的体积.【名师点睛】以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解. 【名师点睛】由三视图还原几何体的方法:6. (2016全国Ⅲ文、理)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81 【答案】B考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.7.(2016全国Ⅲ文、理)在封闭的直三棱柱111ABCA B C-内有一个体积为V的球,若AB BC⊥,6AB=,8BC=,13AA=,则V的最大值是()(A)4π (B)92π(C)6π (D)323π【答案】B【解析】试题分析:要使球的体积V最大,必须球的半径R最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322Rπππ==,故选B.考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.8.(2016山东文、理)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)1233+π(B)123+π(C)123+π(D)21+π【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.9.(2016上海文)如图,在正方体ABCD−A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()(A)直线AA1 (B)直线A1B1 (C)直线A1D1(D)直线B1C1【答案】D【解析】只有11B C与EF在同一平面内,是相交的,其他A,B,C中直线与EF都是异面直线,故选D.考点:1.正方体的几何特征;2.直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等.10.(2016天津文)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【答案】B【解析】试题分析:由题意得截去的是长方体前右上方顶点,故选B考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.11.(2016浙江文、理)已知互相垂直的平面αβ,交于直线l.若直线m,n满足,m nαβ∥⊥,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【答案】C【解析】试题分析:由题意知,l lαββ=∴⊂,,n n lβ⊥∴⊥.故选C.考点:空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.二、填空1.(2016北京文)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3.2考点:三视图【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅱ理),αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④考点: 空间中的线面关系.【名师点睛】求解本题应注意在空间中考虑线、面关系.3、(2016上海理)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________. 【答案】22【解析】试题分析:由题意得111122tan 223332DD DBD DD BD ∠==⇒=⇒=.考点:1.正四棱柱的几何特征;2.直线与平面所成的角.【名师点睛】涉及立体几何中的角的问题,往往要将空间问题转化成平面问题,做出角,构建三角形,在三角形中解决问题;也可以通过建立空间直角坐标系,利用空间向量方法求解,应根据具体情况选择不同方法,本题难度不大,能较好地考查考生的空间想象能力、基本计算能力等.4. (2016四川文)已知某三菱锥的三视图如图所示,则该三菱锥的体积.侧视图俯视图【答案】3【解析】试题分析:由三视图可知该几何体是一个三棱锥,且底面积为112S =⨯=1,所以该几何体的体积为11133V Sh ===考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.5.(2016四川理)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33【答案】3【解析】试题分析:由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,则底面等腰三角形的顶角为120︒,所以三棱锥的体积为1122sin120132V =⨯⨯⨯⨯︒⨯=.考点:三视图,几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.6.(2016浙江文、理)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80;40. 【解析】试题分析:由三视图知该组合体是一个长方体上面放置了 一个小正方体, 22262244242280S =⨯+⨯+⨯⨯-⨯=表,3244240V =+⨯⨯=.考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积. 7.(2016浙江文)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______. 【答案】69【解析】试题分析:设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得6AC =,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,由6(0,,0)A ,30(,0,0)B ,6(0,,0)C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直, 2666CD CH CA ===,则63OH =,153066DH ⨯==,因此可设30630'(cos ,,sin )636D αα-, 则3030630'(cos ,,sin )BD αα=--, 与CA 平行的单位向量为(0,1,0)n =,所以cos cos ',BD n θ=<>''BD n BD n⋅==6395cos α-,HD'DCBA zyO所以cos1α=时,cos θ取最大值69. 考点:异面直线所成角.【思路点睛】先建立空间直角坐标系,再计算与C A 平行的单位向量n 和D 'B ,进而可得直线C A 与D 'B 所成角的余弦值,最后利用三角函数的性质可得直线C A 与D 'B 所成角的余弦值的最大值.8.(2016天津理)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3. 【答案】2【解析】试题分析:由三视图知四棱锥高为3,底面平行四边形 的底为2,高为1,因此体积为1(21)323V =⨯⨯⨯=.故答案为2. 考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.三、解答题1.(2016北京文)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(III )存在.理由见解析.(III )棱PB 上存在点F ,使得//PA 平面C F E .证明如下: 取PB 中点F ,连结F E ,C E ,CF . 又因为E 为AB 的中点, 所以F//E PA . 又因为PA ⊄平面C F E , 所以//PA 平面C F E .考点:空间垂直判定与性质;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.2. (2016北京理)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由. 【答案】(1)见解析;(2)33;(3)存在,14AM AP =(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得AP AM λ=.因此点),,1(),,1,0(λλλλ--=-BM M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅n BM , 即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM . 考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.3.(2016江苏)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB , BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析考点:直线与直线、平面与平面位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.4. (2016江苏)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1PO 的四倍. (1)若16,PO 2,AB m m ==则仓库的容积是多少?(2)若正四棱柱的侧棱长为6m,则当1PO 为多少时,仓库的容积最大?【答案】(1)312(2)123PO =考点:函数的概念、导数的应用、棱柱和棱锥的体积【名师点睛】对应用题的训练,一般从读题、审题、剖析题目、寻找切入点方面进行强化,注重培养将文字语言转化为数学语言能力,强化构建数学模型的几种方法.而江苏应用题,往往需结合导数知识解决相应数学最值问题,因此掌握利用导数求最值方法是一项基本要求,需熟练掌握.5.(2016全国Ⅰ文)如图,在已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面P AC 内的 正投影F (说明作法及理由),并求四面体PDEF 的体积. 【答案】(I )见解析(II )作图见解析,体积为43试题解析:(I )因为P 在平面ABC 内的正投影为D , 所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点.(II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(I )知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此21,.33==PE PG DE PC 由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,2 2.==DE PE 在等腰直角三角形EFP 中,可得 2.==EF PF 所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V 考点:线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.PABD CGE6.(2016全国Ⅰ理)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,90AFD∠=,且二面角D-AF-E与二面角C-BE-F都是60.(I)证明:平面ABEF⊥平面EFDC;(II)求二面角E-BC-A的余弦值.【答案】(I)见解析(II )219-试题解析:(I)由已知可得F DFA⊥,F FA⊥E,所以FA⊥平面FDCE.又FA⊂平面FABE,故平面FABE⊥平面FDCE.(II)过D作DG F⊥E,垂足为G,由(I)知DG⊥平面FABE.以G为坐标原点,GF的方向为x轴正方向,GF为单位长度,建立如图所示的空间直角坐标系G xyz-.由(I)知DF∠E为二面角D F-A-E的平面角,故DF60∠E=,则DF2=,DG3=,可得()1,4,0A,()3,4,0B-,()3,0,0E-,(D3.由已知,//FAB E,所以//AB平面FDCE.又平面CDAB平面FDC DCE=,故//CDAB,CD//FE .由//FBE A,可得BE⊥平面FDCE,所以C F∠E为二面角C F-BE-的平面角,C F60∠E=.从而可得(C3-.所以(C3E=,()0,4,0EB=,(C 3,3A=--,()4,0,0AB=-.设(),,n x y z=是平面CB E的法向量,则C0nn⎧⋅E=⎪⎨⋅EB=⎪⎩,即3040x zy⎧+=⎪⎨=⎪⎩,所以可取(3,0,3n=-.设m是平面CDAB的法向量,则C0mm⎧⋅A=⎪⎨⋅AB=⎪⎩,同理可取()0,3,4m=.则219cos,n mn mn m⋅==-.CBDEF故二面角C E-B -A 的余弦值为21919-.考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.7.(2016全国Ⅱ文) 如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE CF =,EF交BD 于点H ,将DEF ∆沿EF 折到'D EF ∆的位置. (Ⅰ)证明:'AC HD ⊥; (Ⅱ)若55,6,,'224AB AC AE OD ====,求五棱锥D ABCEF '-体积.【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)根据勾股定理证明OD H '∆是直角三角形,从而得到.'⊥OD OH 进而有⊥AC 平面BHD ',证明'⊥OD 平面.ABC 根据菱形的面积减去三角形DEF 的面积求得五边形ABCFE 的面积,最后由椎体的体积公式求五棱锥D ABCEF '-体积. 试题解析:(I )由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD .五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S 所以五棱锥'ABCEF D -体积16923222.34=⨯⨯=V 考点: 空间中的线面关系判断,几何体的体积.【名师点睛】立体几何中的折叠问题,应注意折叠前后线段的长度、角哪些变了,哪些没变.8.(2016全国Ⅱ理)如图,菱形ABCD 的对角线AC 与BD 交于点O , 5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,10OD '=.(Ⅰ)证明:D H'⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)9525.又D H EF '⊥,而OH EF H ⋂=, 所以D H ABCD '⊥平面.ABDD'E H Oz xF(II )如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -, 则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量,则0m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩,即11111340330x y x y z -=⎧⎨++=⎩, 所以可以取()4,3,5m =-.设()222,,n x y z =是平面'ACD 的法向量,则0n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩,即222260330x x y z =⎧⎨++=⎩,所以可以取()0,3,1n =-.于是75cos ,||||5010m n m n m n ⋅<>===⋅⨯, 295sin ,25m n <>=.因此二面角B D A C'--的正弦值是29525.考点:线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a∥b,a⊥α⇒b⊥α;③α∥β,a⊥α⇒a⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.9.(2016全国Ⅲ文)如图,四棱锥P ABC-中,PA⊥平面ABCD,AD BC,3AB AD AC===,4PA BC==,M为线段AD上一点,2AM MD=,N为PC的中点.(I)证明MN平面PAB;(II)求四面体N BCM-的体积.【答案】(Ⅰ)见解析;(Ⅱ)453.试题解析:(Ⅰ)由已知得232==ADAM,取BP的中点T,连接TNAT,,由N为PC中点知BCTN//,221==BCTN. ......3分又BCAD//,故TN AM,四边形AMNT为平行四边形,于是ATMN//.因为⊂AT平面PAB,⊄MN平面PAB,所以//MN平面PAB. ........6分(Ⅱ)因为⊥PA平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA21. ....9分取BC的中点E,连结AE.由3==ACAB得BCAE⊥,522=-=BEABAE.由BCAM∥得M到BC的距离为5,故525421=⨯⨯=∆BCMS,所以四面体BCMN-的体积354231=⨯⨯=∆-PASVBCMBCMN. .....12分考点:1、直线与平面间的平行与垂直关系;2、三棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又推出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.10.(2016全国Ⅲ理)如图,四棱锥P ABC -中,PA ⊥地面ABCD ,AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.(I )证明MN平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.【答案】(Ⅰ)见解析;(Ⅱ)8525.【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)以A 为坐标原点,以,AD AP 所在直线分别为,y z 轴建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 法向量的夹角来处理AN 与平面PMN 所成角.试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN .又BC AD //,故TN AM,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =,于是||85|cos,|25||||n ANn ANn AN⋅<>==.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.11.(2016山东文)在如图所示的几何体中,D是AC的中点,EF∥DB.(I)已知AB=BC,AE=EC.求证:AC⊥FB;(II)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.【答案】(Ⅰ))证明:见解析;(Ⅱ)见解析.【解析】试题分析:(Ⅰ))根据BDEF//,知EF与BD确定一个平面,连接DE,得到ACDE⊥,ACBD⊥,从而⊥AC平面BDEF,证得FBAC⊥.(Ⅱ)设FC的中点为I,连HIGI,,在CEF∆,CFB∆中,由三角形中位线定理可得线线平行,证得平面//GHI平面ABC,进一步得到//GH平面ABC.试题解析:(Ⅰ))证明:因BDEF//,所以EF与BD确定一个平面,连接DE,因为EECAE,=为AC的中点,所以ACDE⊥;同理可得ACBD⊥,又因为DDEBD=,所以⊥AC平面BDEF,因为⊂FB平面BDEF,FBAC⊥。
2016年高考试题分类汇编(集合)

2016年高考试题分类汇编(集合)考点1 集合的基本概念1.(2016·四川卷·文科)设集合{|15}A x x =≤≤,Z 为整数集,则A Z 中元素的个数是A.3B.4C.5D.62.(2016·四川卷·理科)设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是A.3B.4C.5D.6考点2 集合的基本关系考点3 集合的基本运算考法1 交集1.(2016·江苏卷·理科)已知集合{}1,2,3,6A =-,{}23B x x =-<<,则 A B = ___ __.2.(2016·全国卷Ⅰ·文科)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =A. {1,3}B. {3,5}C. {5,7}D. {1,7}3.(2016·天津卷·文理)已知集合{}1,2,3,4A =,{}32,B y y x x A ==-∈,则 A B =A. {}1B. {}4C. {}13,D. {}14,4.(2016·北京卷·理科)已知集合{}2A x x =<,{}1,0,1,2,3B =-,则A B =A. {}0,1B. {}0,1,2C. {}1,0,1-D. {}1,0,1,2-5.(2016·北京卷·文科)已知集合{}24A x x =<<,{}35B x x x =<>或,则A B = A.{}25x x << B.{}45x x x <>或 C.{}23x x << D.{}25x x x <>或6.(2016·全国卷Ⅰ·理科)设集合{}2430A x x x =-+<,{}230B x x =->,则A B = A. 3(3,)2-- B. 3(3,)2- C. 3(1,)2 D. 3(3)2, 7.(2016·全国卷Ⅱ·文科)已知集合{}1,2,3A =,{}29B x x =<,则A B =A.{}210,1,2,3--,,B.{}21012--,,,,C. {}123,,D. {}12, 考法2 并集1.(2016·全国卷Ⅲ·理科)设集合{}(2)(3)0S x x x =--≥,{}0T x x =>,则S T =IA. []23,B. (][),23-∞+∞,UC. [)3+∞,D.(][)0,23+∞,U 2.(2016·全国卷Ⅱ·理科)已知集合{}1,2,3A =,{|(1)(2)0,}B x x x x =+-<∈Z , 则A B =A.{}1B. {}1,2C. {}0,1,2,3D. {}1,0,1,2,3-3.(2016·山东卷·理科)设集合{}2,x A y y x R ==∈,{}210B x x =-<, 则 A B = A. (1,1)- B. (0,1) C. (1,)-+∞ D. (0,)+∞考法3 补集1.(2016·全国卷Ⅲ·文科)设集合{}0,2,4,6,8,10A =,{}4,8B =,则A C B =A.{}4,8B. {}0,2,6C. {}0,2,6,10D. {}0,2,4,6,8,10 考法4 交、并不混合运算1.(2016·浙江卷·理科)已知集合{}13P x R x =∈≤≤, {}24Q x R x =∈≥,则()R P C Q =A .[]23,B .(]2,3-C .[)1,2D .(,2][1,)-∞-+∞2.(2016·浙江卷·文科)已知全集{}123456U =,,,,,,{}135P =,,,{}1,2,4Q =, 则()R C P Q =A. {}1B. {}35,C. {}1246,,,D. {}12345,,,,3.(2016·山东卷·文科)设集合{}123456U =,,,,,,{}135A =,,,{}345B =,,, 则 ()U C A B =A. {}26,B. {}36,C. {}1345,,,D. {}124,6,,。
2016年高考数学理试题分类汇编_圆锥曲线(含答案与解析)

2016 年全国高考数学试题分类汇编:圆锥曲线(理科)一、选择题1、(2016 年四川高考)设 O 为坐标原点, P 是以 F 为焦点的抛物线 y 22px(p 0)上随意一点, M 是线段 PF上的点,且PM =2 MF, 则直线 OM 的斜率的最大值为( A )3(B )2( C ) 2( D )1332【答案】 C2、( 2016 年天津高考)已知双曲线x 2y 2 =1( b >024b),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线订交于、 、 、 四点,四边形的 的面积为 2 ,则双曲线的方程为( )A B C DABCD b22=1( B ) x 2222 22( A ) x3 y4y =1( C ) xy2 =1( D ) xy =14 443 4b412【答案】 D3、( 2016 年全国 I高考)已知方程x 2y 2=1 表示双曲线,且该双曲线两焦点间的距离为4,则 n 的取值2–2m +n 3m – n范围是(A ) ( – 1,3)(B )( –1, 3)(C ) (0,3)( D ) (0,3)【答案】 A4(、 2016 年全国 I 高考)以抛物线 C 的极点为圆心的圆交C 于 A ,B 两点,交 C 的准线于D ,E 两点 . 已知 | AB |= 4 2 ,| DE|=2 5 ,则 C 的焦点到准线的距离为 ( A )2 (B )4(C )6(D ) 8【答案】 B5、( 2016 年全国 II 高考)圆 x 2y 2 2 x 8 y 130 的圆心到直线 axy 1 0 的距离为 1,则 a=()( A ) 4( B )3( C )3( D )234【答案】 A6、( 2016 年全国 IIF 1, F 2 是双曲线 E :x 2 y 2M 在 E 上, MF 1 与 x 轴垂高考)圆已知a 2b 2 1 的左,右焦点,点直,sinMF 2 F 11, 则 E 的离心率为()3( A)2(B)3(C)3(D) 2 2【答案】 A7、(2016年全国 III高考)已知 O为坐标原点, F 是椭圆 C:x2y21(a b 0) 的左焦点,A,B分别为C a2b2的左,右极点 . P为 C上一点,且PF x 轴.过点A的直线l与线段 PF 交于点M,与y轴交于点E.若直线BM经过OE的中点,则 C的离心率为(A)1(B)1(C)2(D)3 3234【答案】 A8、( 2016 年浙江高考)已知椭圆C:x22x22m2+y=1( m>1) 与双曲线 C:n2– y =1( n>0) 的焦点重合, e ,e 分别为12121, 2 的离心率,则C CA.m>n且e e >1 B .m>n且e e <1 C .m<n且e e >1 D .m<n且e e <112121212【答案】 A二、填空题1、( 2016 年北京高考)双曲线x2y21(a0 , b0 )的渐近线为正方形OABC的边 OA,OC所在的直线,a2 b 2点 B 为该双曲线的焦点,若正方形OABC的边长为2,则a_______________.【答案】 22、( 2016 年山东高考)已知双曲线E: x2y21( a>, b>),若矩形 ABCD的四个极点在 E 上, AB,a2b200的中点为E 的两个焦点,且 2||=3|| ,则E的离心率是 _______.CD AB BC 【答案】 2【分析】由题意 BC = 2c ,所以 AB = 3c ,于是点329c2,c c-2= 1( c,) 在双曲线 E 上,代入方程,得24b 2a在由 a2+ b2 = c2得 E 的离心率为 e = c= 2,应填 2. a3、( 2016 年上海高考)已知平行直线l1 : 2x y 1 0,l 2 : 2x y 10 ,则 l1,l 2的距离_______________【答案】2554、( 2016 年浙江高考)若抛物线y2=4上的点到焦点的距离为 10,则到轴的距离是 _______ .x M M y【答案】 9三、解答题1、( 2016 年北京高考)已知椭圆 C:x2y2 1 (a b 0 )的离心率为3, A( a,0) ,B(0, b) ,O(0,0) ,a2b22OAB 的面积为 1.(1)求椭圆 C的方程;(2)设P的椭圆C上一点,直线PA与y轴交于点 M,直线 PB与x轴交于点 N.求证: AN BM为定值 .【分析】⑴由已知,c 3,1ab 1 ,又 a2b2c2,a22解得 a2, b1,c 3.x2y21.∴椭圆的方程为4⑵方法一:设椭圆上一点 P x0 , y0,则x2y21.y042y0 .直线 PA : y2x 2 ,令x0 ,得y Mx0x0 2∴ BM12 y0 x02直线 PB : y y01x 1,令 y0 ,得 x Ny0x0.x01∴ AN2x0 y01AN BM2x012 y0 y01x02x0 2 y0 2 x02y02 x02y01x2 4 y24x0y4x8y400x0 y0 x02y022x2将0y01代入上式得AN BM =4故 AN BM 为定值.方法二:设椭圆上一点 P2cos,sin,PA: y sinx2, 令x0 ,得y Msin直线2cos21. cossin cos1∴ BM 1 cos直线 PB : y sin 1 x1, 令y0,得 x N2cos.2cos1sin2sin2cos2∴AN1sinAN BM2sin2cos2sin cos1 1sin1cos222sin2cos2sin cos1sin cos sin cos4故 AN BM 为定值.2、( 2016 年山东高考)平面直角坐标系xOy 中,椭圆C:x2y2 1 a>b>0的离心率是3,抛物线a2b22:2E x 2 y 的焦点F是C的一个极点.(I )求椭圆C的方程;(II )设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不一样的两点A,B,线段AB的中点为D,直线 OD与过 P且垂直于 x 轴的直线交于点M.( i )求证:点M在定直线上;( ii)直线 l 与y轴交于点G,记△PFG 的面积为 S1,△PDM的面积为 S2,求S1的最大值及获得最大值S2时点 P的坐标.【分析】 (Ⅰ)由离心率是3 ,有 a 2 = 4b 2 ,2又抛物线 x 2 = 2 y 的焦点坐标为F(0, 1 ) ,所以 b = 1 ,于是 a = 1,2 2所以椭圆 C 的方程为 x 2 + 4 y 2 = 1 .m 2 ( Ⅱ ) ( i )设 P 点坐标为 P (m,), (m > 0) ,2由 x 2 = 2 y 得 y ′= x ,所以 E 在点 P 处的切线 l 的斜率为 m ,所以切线 l 的方程为 y = mx -m 2, 2设 A( x 1 , y 1 ), B( x 2 , y 2 ) , D (x 0 , y 0 ) ,2 将 y = mx -m代入 x 2 + 4 y 2 = 1,得2(1 + 4m 2 ) x 2- 4m 3 x + m 2-1 = 0 .于是 x 1 + x 2 =4m 3 2 , x 0 = x 1+ x 2= 2m 3 2 ,1+ 4m 2 1 + 4m又 y 0 m 2 -m 2= mx 0-=2,22(1 + 4m )于是直线 OD 的方程为 y = -1x .4m联立方程 y = -1x 与 x = m ,得 M 的坐标为 M(m, - 1 ) .4m41 所以点 M 在定直线 y = - 上.4( ii m 2中,令 x = 0 ,得 y = -m 2)在切线 l 的方程为 y = mx -,22m 2m 21即点 G 的坐标为 G(0, - 2 ) ,又 P(m, 2 ) , F(0,2 ) ,所以 S 1 =1m ×GF=m(m 2 + 1)24;再由D(2m 3,-m 2) ,得4m 2+1 2(4m 2+ 1)S 2 = 1 2m 2 + 1 2m 3 + m=m(2m 2 +1) 22 ×4× 4m 2 +1 8(4m 2 + 1)于是有S 1 2( 4m 2 +1)(m 2 +1)S 2 =( 2m 2 +1)2.1S 12(t - )(t +1)1 1令 t = 2m 2+1,得=2t 2=2+ -t 2S 2t当 1 =1 时,即 t =2 时, S 1获得最大值 9 .t2 S 2 4此时 m2=1, m = 2 ,所以 P 点的坐标为 P( 2 , 1 ) .222 4所以S 1的最大值为 9 ,获得最大值时点P 的坐标为 P( 2 , 1) .S 242 43、( 2016 年上海高考)有一块正方形菜地EFGH , EH 所在直线是一条小河,收货的蔬菜可送到 F 点或河边运走。
2016年全国各地高考数学试卷分类汇编大全(14 算法初步、框图)含解析

第1页 (共9页)2016年全国各地高考数学试卷分类汇编大全( 14 算法初步、框图 )一、选择题1. (2016北京文)执行如图所示的程序框图,输出的s 值为( )A.8 B .9 C.27 D.36 【答案】B2. (2016北京理)执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为( )A.1B.2C.3D.4【答案】B【解析】试题分析:输入1=a ,则0=k ,1=b ; 进入循环体,21-=a ,否,1=k ,2-=a ,否, 2=k ,1=a ,此时1==b a ,输出k ,则2=k ,选B.变量的初值、步长、终值(或控制循环的条件)循环次数比较少时,可依次列出,循环次数较多时,可先循 环几次,找出规律,要特别注意最后输出的是什么,不要出 现多一次或少一次循环的错误.3.(2016全国Ⅰ文)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足( )(A )2y x = (B )3y x =(C)4y x=(D)5y x=【答案】C【解析】试题分析:第一次循环:0,1,2x y n===,第二次循环:1,2,32x y n===,第三次循环:3,6,32x y n===,此时满足条件2236x y+≥,循环结束,3,62x y==,满足4y x=.故选C4.(2016全国Ⅰ理)执行右面的程序框图,如果输入的011x y n===,,,则输出x,y的值满足 ( )(A)2y x=(B)3y x=(C)4y x=(D)5y x=【答案】C5.(2016全国Ⅱ文、理)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的第2页(共9页)。
2016年全国各地高考数学试题及解答分类汇编大全(02 常用逻辑用语)

2016年全国各地高考数学试题及解答分类汇编大全(02常用逻辑用语)一.选择题:1.(2016山东文、理)已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件【答案】A【解析】试题分析: “直线a 和直线b 相交”⇒“平面α和平面β相交”,但 “平面α和平面β相交”⇒“直线a 和直线b 相交”,所以“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件,故选A .考点:1.充要条件;2.直线与平面的位置关系.【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及直线与平面的位置关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、空间想象能力等.2.(2016上海文、理)设R a ∈,则“1>a ”是“12>a ”的( )(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分也非必要条件【答案】A【解析】试题分析:2211,111a a a a a >⇒>>⇒><-或,所以是充分非必要条件,选A. 考点:充要条件【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及不等关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、逻辑推理能力等.3.(2016四川文)设p:实数x ,y 满足1x >且1y >,q: 实数x ,y 满足2x y +>,则p 是q 的( )(A)充分不必要条件 (B)必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件【答案】A【解析】试题分析:由题意,1x >且1y >,则2x y +>,而当2x y +>时不能得出,1x >且1y >.故p 是q 的充分不必要条件,选A.考点:充分必要条件.【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考.有许多情况下可利用充分性、必要性和集合的包含关系得出结论.4.(2016四川理)设p :实数x ,y 满足22(1)(1)2x y -+-≤,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的 ( )(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )既不充分也不必要条件【答案】A考点:1.充分条件、必要条件的判断;2.线性规划.【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考,本题条件与结论可以转化为平面区域的关系,利用充分性、必要性和集合的包含关系得结论.5.(2016天津文)设0>x ,R y ∈,则“y x >”是“||y x >”的( )(A )充要条件 (B )充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件【答案】C【解析】试题分析:34,3|4|>-<-,所以充分性不成立;||x y y x y >≥⇒>,必要性成立,故选C 考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如 “p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.6.(2016天津理)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件【答案】C【解析】试题分析:由题意得,22212(1)21210()0(1)0(,1)n n n n n a a a q q q q q ----+<⇔+<⇔+<⇔∈-∞-, 故是必要不充分条件,故选C.考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.7. (2016浙江文)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】试题分析:由题意知222()()24=+=+-b b f x x bx x ,最小值为24-b . 令2=+t x bx ,则2222(())()(),244==+=+-≥-b b b f f x f t t bt t t , 当0<b 时,(())f f x 的最小值为24-b ,所以“0<b ”能推出“(())f f x 的最小值与()f x 的最小值相等”;当0=b 时,4(())=f f x x 的最小值为0,()f x 的最小值也为0,所以“(())f f x 的最小值与()f x 的最小值相等”不能推出“0<b ”.故选A .考点:充分必要条件.【方法点睛】解题时一定要注意p q ⇒时,p 是q 的充分条件,q 是p 的必要条件,否则很容易出现错误.充分、必要条件的判断即判断命题的真假,在解题中可以根据原命题与其逆否命题进行等价转化.8.(2016浙江理)命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( )A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x <【答案】D【解析】试题分析:∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D .考点:全称命题与特称命题的否定.【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定.二.填空题:。
全国高考数学试题分类汇编

C.{1,3, 4,5}
D.{1, 2, 4,6}
【解析】A
由已知,A B {1,3,5} {3,4,5}={1,3,4,5} ,所以 U (A B)= U{1,3,4,5}={2,6} ,选 A.
16.(2016 全国 III 文 1)
设集合 A 0 , 2 , 4 , 6 , 8 , 10 , B 4 , 8 ,则 AB ( )
B.必要不充分条件 D.既不充分也不必要条件
由题意知
f
(x)
x2
bx
x
b 2
2
b2 4
,最小值为
b2 4
.
令t
x2
bx ,则
f(
f
( x))
f
(t)
t2
bt
t
b
2
2
b2 4
, t ≥ b2 4
,
当 b 0 时, f ( f ( x))的最小值为 -b2 ,所以“ b 0 ”能推出“ f ( f (x)) 的最小值与 4
A. 1,1
B. 0,1
C. 1,
D. 0,
【解析】C A {y | y 0} , B={x | 1 x 1} ,则 A B (1,) ,选 C.
10.(2016 全国 I 文 1)
设集合 A 1, 3 , 5 , 7 , B x 2≤ x ≤5 ,则 A B ( )
A.1, 3
B.3 , 5
C.5 , 7
D.1, 7
【解析】B 集合 A 与集合 B 的公共元素有 3,5,故 A B {3,5} .
11.(2016 全国 II 文)
已知集合 A 1, 2 , 3 , B x | x2 9 ,则 A B ( )
2016年全国各地高考数学试题及解答分类汇编大全(09 解三角形)

2016年全国各地高考数学试题及解答分类汇编大全(09解三角形)一、选择题1.(2016全国Ⅰ文)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=( )(A(B(C )2 (D )3【答案】D【解析】试题分析:由余弦定理得3222452⨯⨯⨯-+=b b ,解得3=b (31-=b 舍去),故选D.考点:余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!2.(2016全国Ⅲ文)在ABC △中,π4B =, BC 边上的高等于13BC ,则sin A =( ) (A )310(B(C(D【答案】D【解析】设BC 边上的高线为AD ,则3,2BC AD DC AD ==,所以AC ==.由正弦定理,知sin sin AC BCB A =3sin 2AD A =,解得sin 10A =,故选D . 考点:正弦定理.【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.3.(2016全国Ⅲ理)在ABC △中,π4B =,BC 边上的高等于13BC,则cos A =( )(A) (B) (C)- (D)- 【答案】C【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以AC =,222222cos AB AC BC A +-===-选C .考点:余弦定理.【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.4.(2016山东文)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =( )(A )3π4(B )π3 (C )π4 (D )π6【答案】C考点:余弦定理【名师点睛】本题主要考查余弦定理的应用、三角函数的同角公式及诱导公式,是高考常考知识内容.本题难度较小,解答此类问题,注重边角的相互转换是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.5.(2016天津理)在△ABC 中,若AB ,120C ∠= ,则AC = ( )(A )1(B )2(C )3(D )4【答案】A【解析】试题分析:由余弦定理得213931AC AC AC =++⇒=,选A. 考点:余弦定理【名师点睛】1.正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.二、填空1. (2016北京文)在△ABC 中,23A π∠= ,a =,则b c =_________.【答案】1考点:解三角形【名师点睛】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.2.(2016江苏) 在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 ▲ . 【答案】8.考点:三角恒等变换,切的性质应用【名师点睛】消元与降次是高中数学主旋律,利用三角形中隐含的边角关系作为消元依据是本题突破口,斜三角形ABC 中恒有tan tan tan tan tan tan A B C A B C =++,这类同于正余弦定理,是一个关于切的等量关系,平时多总结积累常见的三角恒等变形,提高转化问题能力,培养消元意识3.(2016全国Ⅱ文、理)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________. 【答案】2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin[()]sin()sin cos cos sin 65B AC A B A C A C π=-+=+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==. 考点: 正弦定理,三角函数和差公式.【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.【答案】73【解析】试题分析:由已知3,5,7a b c ===,∴2221cos 22a b c C ab +-==-, ∴3sin C =,∴732sin c R C == 考点:1.正弦定理;2.余弦定理.【名师点睛】此类题目是解三角形问题中的典型题目.解答本题,往往要利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到解题目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题较易,主要考查考生的基本运算求解能力等.三、解答题1. (2016北京理)在∆ABC 中,2222+=+a c b ac . (1)求B ∠ 的大小;(2)求2cos cos A C + 的最大值. 【答案】(1)4π;(2)1.考点:1.三角恒等变形;2.余弦定理.【名师点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.2. (2016江苏)在ABC △中,AC =6,4πcos .54B C ==, (1)求AB 的长; (2)求πcos(6A -)的值. 【答案】(1)【解析】试题分析:(1)利用同角三角函数关系求3sin 5B ,=再利用正弦定理求6sin 23sin 5AC CAB B⋅=== (2)利用诱导公式及两角和余弦公式分别求sin sin()cos()10A B C A B C =+==-+=,最后根据两角差余弦公式求cos(A )6π-=,注意开方时正负取舍. 试题解析:解(1)因为4cos ,0,5B B π=<<所以3sin,5B ===由正弦定理知sin sin AC ABB C=,所以6sin 23sin 5AC C AB B ⋅===考点:同角三角函数关系,正余弦定理,两角和与差公式【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证.3.(2016全国Ⅰ理)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c = (I )求C ;(II )若c ABC =∆,求ABC 的周长.【答案】(I )C 3π=(II )5【解析】试题分析:(I )先利用正弦定理进行边角代换化简得得1cosC 2=,故C 3π=;(II )根据1sin C 2ab =C 3π=得6ab =.再利用余弦定理得 ()225a b +=.再根据c =C ∆AB 的周长为5.考点:正弦定理、余弦定理及三角形面积公式 【名师点睛】三角形中的三角变换常用到诱导公式,()()sin sin ,cos cos ,A B C A B C +=+=-()tan tan A B C+=-,就是常用的结论,另外利用正弦定理或余弦定理处理条件中含有边或角的等式,常考虑对其实施“边化角”或“角化边.”4.(2016山东理)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A BA B B A+=+(Ⅰ)证明:a +b =2c ; (Ⅱ)求cos C 的最小值. 【答案】(Ⅰ)见解析;(Ⅱ)12【解析】试题分析:(Ⅰ)根据两角和的正弦公式、正切公式、正弦定理即可证明;试题解析:()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B ⎛⎫+=+⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+, 即()2sin sin sin A B A B +=+. 因为A B C π++=,所以()()sin sin sin A B C C π+=-=. 从而sin sin =2sin A B C +. 由正弦定理得2a b c +=.()∏由()I 知2a b c +=,故 cos C 的最小值为12. 考点:1.和差倍半的三角函数;2. 正弦定理、余弦定理;3. 基本不等式.【名师点睛】此类题目是解三角形问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到证明目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题覆盖面较广,能较好的考查考生的基本运算求解能力及复杂式子的变形能力5 (2016四川文\理)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B Ca b c+=. (I )证明:sin sin sin A B C =; (II )若22265b c a bc +-=,求tan B . 【答案】(Ⅰ)证明详见解析;(Ⅱ)4.a b ca b ccos sin A k A +cos sin B k B =sin sin C k C,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π–C )=sin C , 所以sin A sin B =sin C . (Ⅱ)由已知,b 2+c 2–a 2=65bc ,根据余弦定理,有 cos A =2222b c a bc +-=35.所以sin A =45. 由(Ⅰ),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B ,故sin tan 4cos BB B==. 考点:正弦定理、余弦定理、商数关系、平方关系.【名师点睛】本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为180︒这个结论,否则难以得出结论.6、(2016四川文)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B Ca b c+=. (I )证明:sin sin sin A B C =; (II )若22265b c a bc +-=,求tan B . 【答案】(Ⅰ)证明详见解析;(Ⅱ)4.a b ca b ccos sin A k A +cos sin B k B =sin sin C k C,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π–C )=sin C , 所以sin A sin B =sin C .(Ⅱ)由已知,b 2+c 2–a 2=65bc ,根据余弦定理,有cos A =2222b c a bc +-=35.所以sin A =45. 由(Ⅰ),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B ,故sin tan 4cos BB B==. 考点:正弦定理、余弦定理、商数关系、平方关系.【名师点睛】本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为180︒这个结论,否则难以得出结论.7.(2016浙江文)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (Ⅰ)证明:A =2B ;(Ⅱ)若cos B =23,求cos C 的值. 【答案】(I )证明见解析;(II )22cos 27C =.因此,A π=(舍去)或2A B =, 所以,2A B =.(II )由2cos 3B =,得sin B =,21cos 22cos 19B B =-=-,故1cos 9A =-,sin 9A =,22cos cos()cos cos sin sin 27C A B A B A B =-+=-+=. 考点:三角函数及其变换、正弦和余弦定理.【思路点睛】(I )用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有A ,B 的式子,根据角的范围可证2A =B ;(II )先用同角三角函数的基本关系及二倍角公式可得cos2B ,进而可得cos A 和sin A ,再用两角和的余弦公式可得cosC .8.(2016浙江理)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知b +c =2a cos B. (I )证明:A =2B ;(II )若△ABC 的面积2=4a S ,求角A 的大小.【答案】(I )证明见解析;(II )2π或4π. 试题分析:(I )先由正弦定理可得sin sinC 2sin cos B+=A B ,进而由两角和的正弦公式可得()sin sin B =A-B ,再判断A-B 的取值范围,进而可证2A =B ;(II )先由三角形的面积公式可得21sin C 24a ab =,进而由二倍角公式可得sinC cos =B ,再利用三角形的内角和可得角A 的大小. 试题解析:(I )由正弦定理得sin sinC 2sin cos B+=A B ,故()2sin cos sin sin sin sin cos cos sin A B =B+A+B =B+A B+A B , 于是()sin sin B =A-B .又A ,()0,πB∈,故0π<A-B <,所以()πB =-A-B 或B =A-B ,因此πA =(舍去)或2A =B , 所以,2A =B .考点:1、正弦定理;2、两角和的正弦公式;3、三角形的面积公式;4、二倍角的正弦公式.【思路点睛】(I)用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有A,B的式子,A=B;(II)先由三角形的面积公式及二倍角公式可得含有B,C的式子,再根据角的范围可证2利用三角形的内角和可得角A的大小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016高考数学试题分类汇编一、集合1.(北京L )已知集合{}2A x x =<,{}1,0,1,2,3B =-,则AB =( )A.{}0,1B.{}0,1,2C.{}-1,0,1D.{}-1,0,1,22.(北京W )已知集合,则( )A. B. C. D.3.(全国1L )设集合{}2430A x x x =-+<,{}230B x x =->,则A B =( )A .3-3,-2⎛⎫ ⎪⎝⎭B.3-3,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎫⎪⎝⎭4.(全国1W )设集合{}1,3,5,7A =,{}25B x x =<<,则AB =( )A.{}1,3 B.{}3,5 C.{}5,7 D.{}1,75.(全国2L )已知集合{}1,2,3A =,()(){}120,B x x x x Z =+-<∈,则A B =( )A .{}1B .{}1,2C .{}0,1,2,3D .{}1,0,1,2,3-6.(全国2W )已知集合,则( ) A.B. C. D.7.(全国3L )设集合S={}{}|(x 2)(x 3)0,T |0=--≥=>S x x x ,则S I T=( )A.[2,3]B.(-∞ ,2]U [3,+∞)C.[3,+∞)D.(0,2]U [3,+∞) 8.(全国3W )设集合{}0,2,4,6,8,10A =,{}4,8B =,则A C B =( )A.{}4,8B.{}0,2,6C.{}0,2,6,10D.{}0,2,4,6,8,109.(山东L )设集合{}2,x A y y x R ==∈,{}210B x x =-<,则=( )A. B. C. D.10.(山东W )设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U AB ð=( ) A .{2,6} B .{3,6}C .{1,3,4,5}D .{1,2,4,6} 11.(四川L )Z 为整数集,则A ∩Z 中元素的个数是( )A.3B.4C.5D.612.(四川W )设集合A={x|1≤x ≤5},Z 为整数集,则集合A ∩Z 中元素的个数是( )A.6B.5C.4D.3 13.(天津L )已知集合{}1,2,3,4A =,{}32,B y y x x A ==-∈,则AB =( )A.{1}B.{4}C.{1,3}D.{1,4} 14.(天津W )已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则AB =( )A.}3,1{B.}2,1{C.}3,2{D.}3,2,1{15.(江苏)已知集合则{1,2,3,6},{|23},A B x x =-=-<< =A B ________________.16.(上海)设 ,13<-x 的解集为______________________。
二、函数1.(北京L )设函数()332x x f x x ⎧-=⎨-⎩()()x a x a ≤>。
(1)若a=0,则f(x)的最大值为____________________; (2)若f(x)无最大值,则实数a 的取值范围是_________________。
{|24},{|3>5}A x x B x x x =<<=<或A B ={|2<<5}x x {|<45}x x x >或{|2<<3}x x {|<25}x x x >或{123}A =,,,2{|9}B x x =<A B ={210123}--,,,,,{21012}--,,,,{123},,{12},A B (1,1)-(0,1)(1,)-+∞(0,)+∞2.(北京L18)(13分)设函数()a x f x xe bx -=+,曲线y=f(x)在点(2,f(2))处的切线方程为()14y e x =-+,(Ⅰ)求a,b 的值; (Ⅱ)求f(x)的单调区间。
3.(北京W )下列函数中,在区间上为减函数的是A.B. C. D.4.(北京W )函数的最大值为_________.5.(北京W20)(13分)设函数(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数有三个不同零点,求c 的取值范围; (Ⅲ)求证:是有三个不同零点的必要而不充分条件.6. (江苏)设()f x 是定义在R 上且周期为2的函数,在区间[ −1,1)上,()25+⎧⎪=⎨-⎪⎩x af x x ()()1001x x -≤<≤<, 其中∈a R 。
若59()()22f f -= ,则()5f a 的值是 .7.(江苏19)(16分)已知函数()(0,0,1,1)x xf x a b a b a b =+>>≠≠. (Ⅰ)设a=2,b=12. ①求方程()f x =2的根;②若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;(Ⅱ)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值. 8.(全国1)函数22xy x e =-在[–2,2]的图像大致为( )9.(全国1L21)(12分)已知函数2)1(2)(-+-=x a e x x f x )(有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是的两个零点,证明:122x x +<.10.(全国1W21)(12分)已知函数2)1(2)(-+-=x a e x x f x )(. (Ⅰ)讨论()f x 的单调性; (Ⅱ)若()f x 有两个零点,求a 的取值范围。
(1,1)-11y x =-cos y x =ln(1)y x =+2x y -=()(2)1xf x x x =≥-()32.f x x ax bx c =+++().y f x =()()0,0f 4a b ==()f x 230a b ->().fx11.(全国2L )已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为 )(1,1y x ,),(22y x ···,(m m y x ,),则=+∑=mi i i y x 1)((A )0 (B )m (C )2m (D )4m12.(全国2L21)(12分)(Ⅰ)讨论函数()22xx f x e x -=+ 的单调性,并证明当0x >时,()220x x e x -++>(Ⅱ)证明:当[0,1)a ∈时,函数()2x e ax ag x x--=()0x >有最小值.设g (x )的最小值为 ()h a ,求函数()h a 的值域.13.(全国2W )下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是( )(A )y=x (B )y=lgx (C )y=2x(D )14.(全国2W )已知函数f(x)(x ∈R )满足f(x)=f(2-x),若函数y=|x 2-2x-3| 与y=f(x) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则( )(A)0 (B)m (C) 2m (D) 4m 15.(全国2W20)(12分)已知函数.(Ⅰ)当时,求曲线在处的切线方程; (Ⅱ)若当时,,求的取值范围.16.(全国3L )已知f(x)为偶函数,当 时, ,则曲线y=f(x),在带你(1,-3)处的切线方程是_______________。
17.(全国3W )已知f(x)为偶函数,当0x ≤时,1()x f x e x --=-,则曲线y= f(x)在点(1,2)处的切线方程式________. 18.(全国3W21)(12分)设函数()ln 1f x x x =-+.(1)讨论()f x 的单调性;(2)证明当(1,)x ∈+∞时,11ln x x x-<<; (3)设1c >,证明当(0,1)x ∈时,1(1)xc x c +->.19.(山东)已知函数f(x)的定义域为R .当x<0时,;当时,;当时, .则f(6)=( )(A )−2 (B )−1 (C )0 (D )220.(山东)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T 性质.下列函数中具有T 性质的是( )(A )y=sinx (B )y=lnx (C )y=e x (D )y=x 321.(山东L20)(13分)已知. (1)讨论的单调性;(2)当时,证明对于任意的成立y =1=mi i x =∑()(1)ln (1)f x x x a x =+--4a =()y f x =()1,(1)f ()1,x ∈+∞()0f x >a 3()1f x x =-11x -≤≤()()f x f x -=-12x >11()()22f x f x +=-()221()ln ,x f x a x x a R x -=-+∈()f x 1a =()3()'2f x f x +>[]1,2x ∈22.(山东W )已知函数f(x)=2,,24,,x x m x mx m x m ⎧≤⎪⎨-+>⎪⎩其中m>0.若存在实数b ,使得关于x 的方程f(x)=b有三个不同的根,则m 的取值范围是_______.23.(山东W20)(13分)设f(x)=xlnx –ax 2+(2a –1)x ,a ∈R. (1)令g(x)=f'(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值.求实数a 的取值范围. 24.(上海)已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数 25.(上海)设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、 ()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的 是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题 26.(上海L22)(16分)已知a R ∈,函数21()log ()f x a x=+. (1)当5a =时,解不等式()0f x >;(4分)(2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a 的取值范围; (3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围. (6分)27.(上海W23)(18分)已知a ∈R ,函数()f x =21log ()a x+. (1)当 1a =时,解不等式()f x >1;(4分)(2)若关于x 的方程()f x +22log ()x =0的解集中恰有一个元素,求a 的值;(6分)(3)设a >0,若对任意t ∈1[,1]2,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a的取值范围. (8分)28.(四川)设直线l 1,l 2分别是函数f(x)=ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 (A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞) 29.(四川)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,()4x f x=,则()512f f ⎛⎫-+= ⎪⎝⎭.30.(四川L21)(14分)设函数f(x)=ax 2-a-lnx ,其中a ∈R.(1)讨论f(x)的单调性;(2)确定a 的所有可能取值,使得f(x)>x1-e 1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数 的底数)。