2013初一数学培优(76)
初一数学培优练习

初一数学培优练习例题求解【例1】已知a+b=0,a ≠b,则化简b a (a+1)+a b(b+1)得( ). (第15届江苏省竞赛题) A.2a B.2b C.+2 D.-2【例2】已知x=2,y=-4时,代数式ax 3+12by+5=1997,求当x=-4,y=-12时,代数式3ax-24by 3+4986的值.【例3】已知关于x 的二次多项式a(x 3-x 2+3x)+b(2x 2+x)+x 3-5,当x=2时的值为-17,•求当x=-2时,该多项式的值. (“希望杯”邀请赛培训题)【例4】(1)已知:5│(x+9y)(x,y 为整数),求证:5│(8x+7y).【例5】已知,05322=--a a 求109124234-+-a a a 的值。
【例6】已知式子:431744+---+-x x x 的值恒为一个常数,求x 的取值范围。
【例7】已知关于x 的二次多项式5)2()3(3223-++++-x x x b x x x a ,当x=2时的值为-17,求当x=-2时,该多项式的值。
【例8】三个有理数a 、b 、c ,其积是负数,其和是正数,当c c b b a a x ++=时,则代数式10289519+-x x 的值是多少?【例9】已知012=-+m m ,求1997223++m m 的值。
【例10】、x 为何值时,23++-x x 有最小值,并求出这个最小值。
【例11】已知0199101052)1(a x a x a x a x x ++++=+- ,则0910a a a +++ 的值是多少学力训练一、基础夯实:1.已知2a x b n-1与-3a2b2m是同类项,那么(2m-n)x=__________.(第12届江苏省竞赛题)2.已知代数式(2x2+ax-y+6)-(2bx2-3x+5y-1).(1)当a=_______,b=________时,此代数式的值与字母x的取值无关;(2)在(1)的条件下,多项式3(a2-2ab-b2)-(4a2+ab+b2)的值为__________.3.已知a=1999,则│3a3-2a2+4a-1│-│3a3-3a2+3a-2001│=_________.4.已知当x=-2时,代数式ax+bx+1的值为6,那么当x=2时,代数式ax3+bx+1•的值是_______.5.火车站和机场都为旅客提供打包服务,如果长、宽、高分别为x、y、z的箱子按如图的方式打包,则打包带的长至少为( ).A.4x+4y+10zB.x+2y+3zC.2x+4y+6zD.6x+8y+6z (2003年太原市中考题)6.同时都含有字母a、b、c,且系数为1的7次单项式共有( ).A.4个B.12个C.15个D.25个 (北京市竞赛题)7.已知-m+2n=5,那么5(m-2n)2+6n-3m-60的值为( )A.80B.10C.210D.408.把一个正方体的六个面分别标上字母A、B、C、D、E、F并展开如图所示,•已知:A=x2-4xy+3y2,C=3x2-2xy-y2,B=12(C-A),E=B-2C,•若正方体相对的两个面上的多项式的和都相等,求D、F.9.已知单项式0.25x b y c与单项式-0.125x m-1y2n-1的和为0.625ax n y m,求abc的值.二、能力拓展10.若a-b=2,b-c=-3,c-d=5,则(a-c)(b-d)÷(a-d)=________.11.当x=2时,代数式ax 3-bx+1的值等于-17,那么当x=-1时,代数式12ax-3bx 3-5•的值等于_________. (北京市“迎春杯”竞赛题)12.将1,2,3,……,100这100个自然数,任意分为50组,每组两个数,•现将每组的两个数中任一数值记作a,另一个记作b,代入代数式12(│a-b │+a+b)中进行计算,•求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是_______.13.计算1+2-3-4+5+6-7-8+9+10-11-12……+1993+1994-1995-1996+1997+1998-1999-2000,最后结果是( ).A.0B.-1C.1999D.-200014.已知a<-b 且a b>0,则│a │-│b │+│a+b │+│ab │等于( ). A.2a+2b+ab B.-ab ; C.-2a-2b+ab D.-2a+ab15.已知代数式25342()x ax bx cx x dx+++当x=1时,值为1,那么该代数式当x=-1时的值是( ). A.1 B.-1 C.0 D.2 (第11届“希望杯”邀请赛试题)16.x 、y 、z 均为整数,且11│7x+2y-5z,求证:11│3x-7y+12z.(北京市竞赛题)17、如果01223344555)12(a x a x a x a x a x a x +++++=-则543210a a a a a a -+-+-的值是多少。
初一培优数学试题及答案

初一培优数学试题及答案一、选择题(每题3分,共30分)1. 已知一个数的平方是36,这个数可能是:A. 6B. -6C. 6或-6D. 以上都不对2. 计算下列算式的结果:(1) 3x + 4y = 14,当x = 2时,y的值是多少?A. 1B. 2C. 3D. 43. 一个等腰三角形的底边长为6cm,腰长为5cm,其周长为:A. 16cmB. 17cmC. 18cmD. 19cm4. 下列哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形5. 一个数的相反数是-5,这个数是:B. -5C. 0D. 无法确定6. 一个数的绝对值是4,这个数可能是:A. 4B. -4C. 4或-4D. 07. 计算下列算式的结果:(2) 5x - 3y = 2,当y = 1时,x的值是多少?A. 1B. 2C. 3D. 48. 下列哪个选项是正确的不等式?A. 3 > 2B. 2 < 3C. 3 = 2D. 2 > 39. 一个数的立方是-8,这个数是:A. 2B. -2C. 8D. -810. 一个数的平方根是2,这个数是:B. -4C. 2D. -2二、填空题(每题3分,共15分)11. 一个数的平方是25,这个数是______。
12. 一个数的立方是27,这个数是______。
13. 一个数的绝对值是5,这个数是______。
14. 一个数的相反数是3,这个数是______。
15. 一个数的平方根是3,这个数是______。
三、解答题(每题5分,共25分)16. 已知一个数的平方是49,求这个数的值。
17. 计算下列算式的结果:(3) 2x + 5y = 10,当x = 1时,y的值是多少?18. 一个等腰三角形的底边长为8cm,腰长为7cm,求其周长。
19. 一个数的相反数是-7,求这个数的值。
20. 一个数的立方根是3,求这个数的值。
四、证明题(每题5分,共10分)21. 证明:一个数的绝对值总是非负的。
培优训练七年级数学试卷(一)

2012-2013学年度第一学期培优训练七年级数学试卷(一)题 序 一 二 三 四 总 分 得 分一、选择题(每小题2分,共20分) 1. 下列图形中数轴的画法正确的是()2. 下列说法正确的有() A. 0是整数,也是正数B. 是正小数,不是正分数C. 自然数一定是正数D. 负分数一定是负有理数3. 若数轴上点A 表示数是-3,则与点A 相距4个单位长度的点表示的数是( ) A. 4±B. 1±C. -1或7D. -7或14. 下列几组数中,互为相反数的是()A. -(+3)和+(-3)B. -5和-(+5)C. +(-7)和-(-7)D. -(-2)和+(+2)5. |31|-的相反数是( ) A. -3B. 3C. 31D. 31-6. 有理数a 、b 在数轴上的位置如图所示,则b a -一定是( )A.正数B. 负数C. 0D. 不能确定7. 若a a =||,则a 是()A. 0B. 不等于0C. 正数D. 非负数8. 计算 )5(--的结果是( ) A. 5B. -5C. 51D. 51-9. 某班数学平均分为88分,88分以上如90分记作+2分,某同学的数学成绩为85分,则应记作()A. +85分B. +3分C. -3分D. -310. 观察下列有规律的数:21,61,121,201,301,421…根据其规律可知第9个数是( )A.561 B.721 C.901 D.1101 二、填空题(每小题3分,共30分)11. 若7||=x ,则=x ;若0||=x ,则=x 。
12. 化简:=+-|3| ; =-+-|)3(| ; =+--|)21(|13. 比较大小(填上“>”“<”或“=”) -3 722-||π |14.3|- |2|+- 3-14. a 是绝对值最小的数,b 是最大的负整数,则=+b a15. 某地一天早晨的气温是C 07-,中午上升了C 011,午夜又下降了C 09,则午夜的气温是.16. 大于 且小于的正整数是 。
七年级上册数学培优题及详解答案

挑战题1、已知a :b :c=2 :3 :4,且2a+3b-2c=10,求a, b,c的值。
2、麦迪在一次比赛中22投14中得28分,除了3个三分球全中外,他还投中了两分球和个罚球.3、小明、小亮、小强三个人在一起玩扑克牌,,他们各取了相同数量的扑克牌(牌数大于3),然后小亮从小明手中抽取了3张,又从小强手中抽取了2张;最后小亮说小明,“你有几张牌我就给你几张。
”小亮给小明牌之后他手中还有张牌。
4、.一个长方形的周长为26,如果长减少1,宽增加2,就可成为一个正方形,设长方形的长为,则可列方程为.5、生产某种型号的打火机.每只的成本为2元,毛利率为25%.工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%.则这种打火机每只的成本降低了.(精确到元.毛利率即利润率)6、元代朱世杰所著《算学启蒙》里有这样一道题:“良马日行两百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”,请你回答:良马___________天可以追上驽马.7、古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()8、一张试卷共25道题,做对一题得4分,做错或不做一题扣1分,小明做了全部试题,若要得70分以上,那么小明至少要做对的题数是()9、小亮的爸爸在一家合资企业工作,月工资5500元,按规定:其中2500元是免税的,其余部分要缴纳个人所得税,应纳税部分又要分为两部分,并按不同税率纳税,即不超过1500元的部分按3%的税率;超过1500元不超过4500元的部分则按5%的税率,你能算出小亮的爸爸每月要缴纳个人所得税多少元?10、民航规定:旅客可以免费携带a千克物品,若超过a千克,则要收取一定的费用,当携带物品的质量为b 千克(b>a)时,所交费用为Q=10b-200(单位:元).(1)小明携带了35千克物品,质量大于a千克,他应交多少费用?(2)小王交了100元费用,他携带了多少千克物品?(3)若收费标准以超重部分的质量m(千克)计算,在保证所交费用Q不变的情况下,试用m表示Q.11、某中学组织七年级学生秋游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格.公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”甲、乙两同学想了一下,都说知道了价格.你知道45座和60座的客车每辆每天的租金各是多少元?(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在一旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗?”如果是你,你该如何设计租车方案,并说明理由.12、某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案.方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为选择哪种方案获利最多?为什么?13、某人承做一批零件,原计划每天做40个,可按期完成任务,由于改进工艺,工作效率提高了20%,结果不但提前了16天完成,而且超额完成了32件,求原来预定几天完成?原计划共做多少零件?14、小华家是我市第一批9万户统一换装“峰谷分时”电表的家庭之一,他们家将率先享受苏州市生活用电“峰谷分时电价”的新政策,用电价将按不同时段实行不同的价格,具体为:8点至21点为“峰时”,电价为每千瓦时0.55元;21点至次日8点为“谷时”,电价为每千瓦时0.30元,而我市原来实行的电价为每千瓦时0.52元。
初一数学培优经典试题及答案

初一数学培优经典试题及答案试题一:有理数的加减法题目:计算下列有理数的和:\[ 3 + (-2) + 4 + (-1) \]答案:首先,我们可以将正数和负数分别相加:\[ 3 + 4 = 7 \]\[ -2 + (-1) = -3 \]然后,将两个结果相加:\[ 7 + (-3) = 4 \]所以,最终结果是4。
试题二:绝对值的计算题目:求下列数的绝对值:\[ |-5|, |-(-3)|, |0| \]答案:绝对值表示一个数距离0的距离,不考虑正负号。
因此:\[ |-5| = 5 \]\[ |-(-3)| = |3| = 3 \]\[ |0| = 0 \]所以,这三个数的绝对值分别是5, 3, 和0。
试题三:一元一次方程的解法题目:解下列方程:\[ 2x - 3 = 7 \]答案:首先,将方程中的常数项移到等号的另一边:\[ 2x = 7 + 3 \]\[ 2x = 10 \]然后,将等式两边同时除以2,得到x的值:\[ x = \frac{10}{2} \]\[ x = 5 \]所以,方程的解是x = 5。
试题四:代数式的值题目:当a=3,b=-2时,求代数式\( ab + a - b \)的值。
答案:将给定的a和b的值代入代数式中:\[ ab + a - b = 3 \times (-2) + 3 - (-2) \]\[ = -6 + 3 + 2 \]\[ = -1 \]所以,代数式的值是-1。
试题五:几何图形的周长和面积题目:一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。
答案:长方形的周长是长和宽的两倍之和:\[ 周长 = 2 \times (长 + 宽) \]\[ 周长 = 2 \times (10 + 5) \]\[ 周长 = 2 \times 15 \]\[ 周长 = 30 \] 厘米长方形的面积是长乘以宽:\[ 面积 = 长 \times 宽 \]\[ 面积 = 10 \times 5 \]\[ 面积 = 50 \] 平方厘米结束语:以上是初一数学培优的经典试题及答案,希望同学们能够通过这些题目加深对数学概念的理解和应用。
2013新版北师大七年级上数学期末练习培优提高(一)

第2题图a b 七年级上册数学期末练习培优提高(一)姓名: 一、选择题:1.一个数为10,另一个数比10的相反数小2,则这两个数的和为( ) A.18 B.-2 C.-18 D.22. 已知,a b 两数在数轴上的位置如图所示,则化简代数式12a b a b +--++的结果是( )A.1 B.23b + C.23a - D.-13. 如图是由一些相同的小正方体构成的立体图形从三个不同方向看得到的图形,这些相同的小正方体的个数是()A.4 B.5 C.6 D.7 4. 如图是一无盖的正方体盒子,下列展开图不能叠合成无盖正方体的是( )5.如图,11,,34AC AB BD AB AE CD ===,则CE 与AB 之比为( )A.1∶6 ;B.1:8 ;C.1:12 ;D.1:166.已知线段AB ,画出它的中点C ,再画出BC 的中点D ,再画出AD 的中点E 及AE 的中点F ,那么AF 等于AB 的( )A.41B.83C.81 D.163 7.如果是方程31的解,那么关于的方程的解是( )A.-10B.0C.34D.48.下列各对数中,数值相等的是( ) A.与 ;B.与 ; C.与; D.与9.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )A.80元 B.85元 C.90元 D.95元 10. 下列各代数式中,单项式有( )个ABC DE第5题图⑴ 1+8=?1+8+16=?⑵ ⑶ 1+8+16+24=?……-3ab +2c , 2m -, y x 232-, x 1, π, )(322b a --, -3.5, 2)23(y x -A 、 3B 、 4C 、 5D 、 711.时钟9点30分时,分针和时针之间形成的角的大小等于( ) A.75° B.90° C.105° D.120° 12.某商场为促销,按如下规定对顾客实行优惠: ①若一次购物不超过200元,则不予优惠;②若一次购物超过200元,但不超过500元,按标价给予九折优惠;③若一次购物超过500元,其中500元按第2条规定给予优惠,超过500元部分给予八折优惠.某人两次去购物,分别付款168元与423元,如果他把这两次购买的商品一次购买,则应付( )元.A.522.8B.510.4C.560.4D.472.8 13. 已知,如图,下列条件中,不能判断直线a ∥b 的是( )A 、 ∠1=∠3B 、∠2=∠3C 、∠4=∠5D 、∠2+∠4=180º14. 观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为 ( )A .2(21)n + B .2(21)n - C .2(2)n + D .2n15. 两年期定期储蓄的年利率为2.25%,按国家规定,所得利息要缴纳5%的利息税。
初一数学培优专题讲义

初一数学基础知识讲义第一讲和绝对值有关的问题一、知识结构框图:数二、绝对值的意义:(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。
也可以写成:()()() ||0a aa aa a⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。
三、典型例题例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( A )A.-3a B. 2c-a C.2a-2b D. b解:| a | + | a+b | + | c-a | - | b-c |=-a-(a+b)+(c-a)+b-c=-3a分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。
脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。
这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。
例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( C )A .是正数B .是负数C .是零D .不能确定符号解:由题意,x 、y 、z 在数轴上的位置如图所示:所以分析:数与代数这一领域中数形结合的重要载体是数轴。
这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。
虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。
例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。
北师大版初一期中考试培优生用

C、 b > a > b > a
a b B.若 a=b,则 3 3
2
C. 若 ax=bx,则 a=b
若 x=2,则 x =2x
6、一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为 或
1 2
单位长度,则这个数是(
) A、
1 2
或
1 2
B、
1 4
1 4
C、
1 2
或
1 4
D、
第 10 题 __。 图 13、一个三位数,十位数字为 a ,百位上的数字是十位上的 2 倍,个位数字比十位数字大 2,用代数式表示这个三位数是
12、若a、b互为相反数,c、d互为倒数,则2a+3cd+2b=___。如果a-3b =8,那么代数式5-a+3b的值是_ 14、 x 、 、 。 xy y 有几项,各项的系数分别是 m 3 2 n 15、若 3a b 与 4a b 的和仍是一个单项式,则 m+n=_________。 2 b 16、若 a 2 与 b 3 互为相反数,则 a a 3 b =_________。
题型:解答题难度:中档来源:湖北省期中题
答案(找作业答案--->>上魔方格)
解:(1)由已知有:a+b=0,bc=1,则 ac=-1
所以
=-1;
(2)因为 a>1,所以 b<-1,2a-3b>0,b+ 因为 m 的立方等于它本身,且 m<0 所以 m=-1,b-m=b+1<0
<0
所以 s=2a-3b+2b-2+b+
附加题:30、(本题12分)若a、b互为相反数,b、c互为倒数,并且m的立方等于它本身. (1),试求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 数系扩张--有理数(一)一、【问题引入与归纳】1、正负数,数轴,相反数,有理数等概念。
2、有理数的两种分类:3、有理数的本质定义,能表成m n(0,,n m n ≠互质)。
4、性质:① 顺序性(可比较大小);② 四则运算的封闭性(0不作除数);③ 稠密性:任意两个有理数间都存在无数个有理数。
5、绝对值的意义与性质:① (0)||(0)a a a a a ≥⎧=⎨-≤⎩ ② 非负性 2(||0,0)a a ≥≥ ③ 非负数的性质: i )非负数的和仍为非负数。
ii )几个非负数的和为0,则他们都为0。
二、【典型例题解析】:1、若||||||0,a b ab ab a b ab+- 则的值等于多少? 2. 如果m 是大于1的有理数,那么m 一定小于它的( )A.相反数B.倒数C.绝对值D.平方3、已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。
4、如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于(A.2aB.2a -C.0D.2b5、已知2(3)|2|0a b -+-=,求b a 的值是( )A.2B.3C.9D.66、 有3个有理数a,b,c ,两两不等,那么,,a b b c c a b c c a a b------中有几个负数? 7、 设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,b a,b 的形式,求20062007a b +。
8、 三个有理数,,a b c 的积为负数,和为正数,且||||||||||||a b c ab bc ac X a b c ab bc ac=+++++则321ax bx cx +++的值是多少? 9、若,,a b c 为整数,且20072007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。
三、课堂备用练习题。
1、计算:1+2-3-4+5+6-7-8+…+2005+20062、计算:1×2+2×3+3×4+…+n(n+1)3、计算:5917336512913248163264+++++- 4、已知,a b 为非负整数,且满足||1a b ab -+=,求,a b 的所有可能值。
5、若三个有理数,,a b c 满足||||||1a b c a b c++=,求||abc abc 的值。
第二讲 数系扩张--有理数(二)一、【能力训练点】:1、绝对值的几何意义① |||0|a a =-表示数a 对应的点到原点的距离。
② ||a b -表示数a 、b 对应的两点间的距离。
2、利用绝对值的代数、几何意义化简绝对值。
二、【典型例题解析】:1、 (1)若20a -≤≤,化简|2||2|a a ++-(2)若0x ,化简|||2||3|||x x x x --- 2、设0a ,且||a x a ≤,试化简|1||2|x x +-- 3、a 、b 是有理数,下列各式对吗?若不对,应附加什么条件?(1)||||||;a b a b +=+ (2)||||||;ab a b =(3)||||;a b b a -=- (4)若||a b =则a b =(5)若||||a b ,则a b (6)若a b ,则||||a b4、若|5||2|7x x ++-=,求x 的取值范围。
5、不相等的有理数,,a b c 在数轴上的对应点分别为A 、B 、C ,如果||||||a b b c a c -+-=-,那么B 点在A 、C 的什么位置?6、设a b c d ,求||||||||x a x b x c x d -+-+-+-的最小值。
7、abcde 是一个五位数,a b c d e ,求||||||||a b b c c d d e -+-+-+-的最大值。
8、设1232006,,,,a a a a 都是有理数,令1232005()M a a a a =++++ 2342006()a a a a ++++ ,1232006()N a a a a =++++ 2342005()a a a a ++++ ,试比较M 、N 的大小。
三、【课堂备用练习题】:1、已知()|1||2||3||2002|f x x x x x =-+-+-++- 求()f x 的最小值。
2、若|1|a b ++与2(1)a b -+互为相反数,求321a b +-的值。
3、如果0abc ≠,求||||||a b c a b c++的值。
4、x 是什么样的有理数时,下列等式成立?(1)|(2)(4)||2||4|x x x x -+-=-+- (2)|(76)(35)|(76)(35)x x x x +-=+-5、化简下式:||||x x x -第三讲 数系扩张--有理数(三)一、【能力训练点】:1、运算的分级与运算顺序;2、有理数的加、减、乘、除及乘方运算的法则。
(1)加法法则:同号相加取同号,并把绝对值相加;异号相加取绝对值较大数的符号,并用较大绝对值减较小绝对值;一个数同零相加得原数。
(2)减法法则:减去一个数等于加上这个数的相反数。
(3)乘法法则:几个有理数相乘,奇负得负,偶负得正,并把绝对值相乘。
(4)除法法则:除以一个数,等于乘以这个数的倒数。
3、准确运用各种法则及运算顺序解题,养成良好思维习惯及解题习惯。
二、【典型例题解析】:1、计算:3510.752(0.125)124478⎛⎫⎛⎫⎛⎫+-+++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2、计算:(1)、()()560.94.48.11+-++-+(2)、(-18.75)+(+6.25)+(-3.25)+18.25(3)、(-423)+111362324⎛⎫⎛⎫⎛⎫-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3、计算:①()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②111142243⎛⎫⎛⎫⎛⎫-+--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭4、 化简:计算:(1)711145438248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)35123.7540.1258623⎡⎤⎛⎫⎛⎫⎛⎫----+-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ (3)()()340115477⎡⎤⎛⎫⎛⎫+-----+--+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ (4)235713346⎛⎫⎛⎫⎛⎫-⨯+÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(5)-4.035×12+7.535×12-36×(79-57618+) 5、计算: (1)()()()3242311-+⨯---(2)()()219981110.5333⎡⎤---⨯⨯--⎣⎦ (3)22831210.52552142⎛⎫⎛⎫⎛⎫÷--⨯--÷⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6、计算:()3413312100.51644⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫+--⨯-÷---⎢⎥⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭7、计算:3323200213471113()[0.25()](5 1.254)[(0.45)(2)](1)81634242001-⨯+----÷++- :第四讲 数系扩张--有理数(四)一、【能力训练点】:1、运算的分级与运算顺序;2、有理数的加、减、乘、除及乘方运算的法则。
3、巧算的一般性技巧:① 凑整(凑0); ② 巧用分配律③ 去、添括号法则; ④ 裂项法4、综合运用有理数的知识解有关问题。
二、【典型例题解析】:1、计算:237970.716.6 2.20.7 3.31173118⨯-⨯-÷+⨯+÷ 2、1111111111(1)()(1)2319962341997231997----⨯++++----- 1111()2341996⨯++++ 3、计算:①2232(2)|3.14|| 3.14|(1)ππ-+-------②{}235324[3(2)(4)(1)]7-⨯-+⨯-⨯---÷--4、化简:111()(2)(3)(9)122389x y x y x y x y +++++++⨯⨯⨯ 并求当2,x =9y =时的值。
5、计算:2222222221314112131411n n S n ++++=++++---- 6、比较1234248162n n n S =+++++ 与2的大小。
7、计算:3323200213471113()[0.25()](5 1.254)[(0.45)(2)](1)81634242001-⨯+----÷++- 8、已知a 、b 是有理数,且a b ,含23a b c +=,23a c x +=,23c b y +=,请将,,,,a b c x y 按从小到大的顺序排列。
三、【备用练习题】:1、计算(1)1111142870130208++++ (2)222133599101+++⨯⨯⨯2、计算:11111120072006200520041232323-+-+-3、计算:1111(1)(1)(1)(1)2342006-⨯-⨯-⨯⨯-4、如果2(1)|2|0a b -++=,求代数式220062005()()2()b a a b ab a b -++++的值。
5、若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求2221(12)a b m m cd -+÷-+的值。
第五讲代数式(一)一、【能力训练点】:(1)列代数式;(2)代数式的意义;(3)代数式的求值(整体代入法)二、【典型例题解析】:1、用代数式表示:(1)比x y与的和的平方小x的数。
(2)比a b与的积的2倍大5的数。
(3)甲乙两数平方的和(差)。
(4)甲数与乙数的差的平方。
(5)甲、乙两数和的平方与甲乙两数平方和的商。
(6)甲、乙两数和的2倍与甲乙两数积的一半的差。
(7)比a的平方的2倍小1的数。
(8)任意一个偶数(奇数)(9)能被5整除的数。
(10)任意一个三位数。
2、代数式的求值:(1)已知25a ba b-=+,求代数式2(2)3()2a b a ba b a b-+++-的值。
(2)已知225x y++的值是7,求代数式2364x y++的值。
(3)已知2a b=;5c a=,求624a b ca b c+--+的值(0)c≠(4)已知113b a-=,求222a b aba b ab---+的值。
(5)已知:当1x=时,代数式31Px qx++的值为2007,求当1x=-时,代数式31Px qx++的值。