数据挖掘与决策支持系统课程论文.doc

合集下载

《数据挖掘的算法》论文

《数据挖掘的算法》论文

写一篇《数据挖掘的算法》论文
数据挖掘是一种采用计算机技术来从大量数据中发掘有用信息的过程。

它的目的是为了从海量的数据中发现新的信息、规律,并将其应用于商业、管理、工程和社会等领域,从而进行决策和控制。

数据挖掘的算法是数据挖掘的核心,它们具有非常重要的意义。

现在,有三种常见的数据挖掘算法,即关联法、分类法和聚类法。

关联法是指利用统计技术,从大量数据中发现不同事物之间的关联性,从而进行复杂数据集的分析和探索。

它具有快速、精准、可靠等优点,可以帮助我们找出特定的数据属性之间的关联关系,帮助决策者做出正确的判断。

分类法是指基于特征值,将目标对象归类到特定的类别或群体中,常见的分类算法包括逻辑回归、决策树和支持向量机等。

它可以帮助我们快速地划分类别和数据,使我们了解特定类别数据的分布情况,以便进行更好的分析和挖掘。

聚类法是指根据目标对象的特征值,将其分为不同的聚类,从而获得聚类之间的相似性和差异性。

层次聚类分析、K-均值
聚类等是常见的聚类方法。

通过这种方式,我们可以有效地发现数据集中的隐藏规律和特征,它有助于我们掌握数据的空间构成和特征分布,从而为后续的操作提供备选方案或策略。

以上就是数据挖掘的三种算法的基本介绍。

它们在数据挖掘中
扮演着重要的角色,我们可以根据实际需要,利用合适的方法,从海量数据中获取有用的信息,为后续决策提供可靠的支持。

《数据挖掘技术》课程思政优秀案例

《数据挖掘技术》课程思政优秀案例

一、课程基本情况《数据挖掘技术》是大数据技术专业课程体系中的一门专业核心课程,面向大数据技术专业2001班、2002班和2003班,总学时102学时,开设于第4学期。

本门课程采用OBE 教学理念的方式,案例训练借助PBL 项目式教学方法,旨在培养学生数据挖掘理论分析与应用实践的综合能力,帮助学生建立“问题-原理-方法”三位一体的专业思维,为发展学生的主体精神和变革能力奠定基础,最终顺应大数据时代下社会市场对人才需求的改变。

课程体系与对应岗位见图1-1。

图1 课程体系建设图数据挖掘技术课程思政优秀案例二、“课程思政”教学整体设计(一)思政教育的总体教学设计数据挖掘技术课程的内容涵盖了数据处理基础和实现数据挖掘的关键算法,主要包括4 个模块:Python基础模块、数据预处理模块、数据挖掘算法模块和数据可视化模块。

融入思政内容后,课程教学秉承德智融合、立德树人的综合教育理念,凝练全局思维、发展思维、民族振兴、实践创新、工匠精神等多个“思政主题”,在知识传授、能力培养中引导学生树立正确的世界观、人生观和价值观,弘扬社会主义核心价值观,传播爱党、爱国、爱社会主义的正能量,培养实事求是、勇于实践、敢于创新的科学精神。

整体课程思政设计见表1。

(二)“课程思政”教学改革的创新点在《数据挖掘技术》开展“课程思政”的过程中,从课程建设的顶层设计出发,充分挖掘融入课程的思政元素,探寻课程知识与思政元素的契合点,确定教学内容,创新课程教学模式,在课程教学过程中实现育人功能。

图2 教学策略1.以项目为导向,挖掘课程中的思政元素将课程根据知识点模块的不同划分为不同的项目,结合实际应用进行项目选取,按照工作岗位流程设计阶段性教学情景,为学生的职业入门和专业技术的提升奠定坚实的基础。

《数据挖掘技术》课程涵盖了4大模块共8个项目。

项目在选取的时候根据课程的特色,从学生的学习特点出发,有游戏类的猜数字、猜单词,日常类的学生成绩管理、银行存取款等项目。

大数据分析与决策支持系统研究

大数据分析与决策支持系统研究

大数据分析与决策支持系统研究在信息技术高度发达的现代社会,大数据越来越成为企业决策的重要依据和支持系统。

大数据分析与决策支持系统的研究,涉及从庞杂的数据中提取有价值信息、建立模型和算法、进行数据分析和决策支持的全过程。

本文将通过对大数据分析与决策支持系统的研究进行深入探讨,探讨其理论基础和现实应用。

1. 大数据分析与决策支持系统的定义大数据分析与决策支持系统是利用数据挖掘、统计学、机器学习和模型建立等技术,对庞大的数据集进行分析,并提供决策支持的一种智能系统。

通过大数据分析和决策支持系统,可以从海量数据中发掘有价值的信息,为企业提供决策的科学依据。

2. 大数据分析与决策支持系统的流程大数据分析与决策支持系统的流程主要包括数据收集与存储、数据预处理、数据分析与挖掘、模型建立和决策支持。

(1)数据收集与存储:大数据分析与决策支持系统需要大量的数据作为分析的基础。

数据可以来自于企业内部的各类业务数据和外部的市场数据、社交媒体数据等。

数据的收集和存储是大数据分析与决策支持系统中的第一步,需要保证数据的准确性和完整性。

(2)数据预处理:由于大数据中包含了大量的噪声和冗余信息,需要进行数据预处理来清洗和转换数据。

数据预处理通常包括数据清洗、数据转换、数据集成和数据规约等工作,目的是提高数据的质量和可用性。

(3)数据分析与挖掘:在数据预处理之后,可以利用数据挖掘算法和统计模型进行数据分析和挖掘。

数据分析的目的是发现数据背后的隐藏规律和关联关系,提取有价值的信息。

数据挖掘算法可以帮助发现规律,并构建数据模型。

(4)模型建立:在数据分析的基础上,可以建立适合具体问题的模型。

模型建立通常涉及到机器学习、统计学和数学建模等技术,通过对数据的建模和训练来预测未来的趋势和结果。

(5)决策支持:最后一步是为企业的决策提供支持。

通过对数据的分析和建模,可以为企业提供决策的参考意见和推荐方案。

决策支持系统可以通过可视化等方式将分析结果和决策方案呈现给用户,并帮助用户做出合理的决策。

数据挖掘课程论文---关联分析

数据挖掘课程论文---关联分析

学生超市购买商品的关联性分析前言“啤酒与尿布”是超市商品布局的一个经典案例,它是说在美国的沃尔玛超市中,将啤酒和尿布这两个看起来毫不相关的物品摆放在相邻的位置。

其原因就是沃尔玛通过大量的数据分析,发现有非常多的年轻爸爸在购买尿布的时候会顺手购买一些啤酒,因此沃尔玛将这两样完全没有联系的商品放在了一起。

这是关联分析在商业中一个非常成功的案例。

关联分析在超市中的应用,不仅仅局限在上述的沃尔玛的对超市商品布局的改善,特别针对于我校学生超市的特点,应用关联分析能够了解学生的购物特点及习惯,从而改善超市环境,提高收益。

我校学生超市的特点:1.规模较小。

通常情况下,位于学校的超市其规模通常较小,由于这个特点,使得学生超市的布局改善的空间非常小。

2.商品相对较为单一。

作为学生超市,其服务对象基本都是学生,针对学生的特点,学生超市的商品通常以日用品为主,主要包括衣食住行中的食和住,此外有比较多的学习用品。

我校学生在学生超市消费的特点:1.购物以食物、生活用品和学习用品为主。

2.购物时间比较集中。

围绕着上课,学生在学生超市购物的时间主要集中在上午上课前、中午放学后、下午放学后以及晚自习后。

3.在超市停留时间较短。

通常情况下,我校学生在超市购物停留时间较短,更多的都是有目的性的购物。

正因为以上学生超市和学生购物的特点,我们在做关联分析的时候将商品主要集中在了食物、日用品和学习用品上。

数据来源于我校学生实验超市,采集了2012年9月21日——9月30日的数据。

数据整理我们所得到的数据主要存在的问题包括重复记录、存在退货等,因此主要使用EXCEL对存在重复记录和退货的情况处理。

删除重复记录,使得每一项小票(代表一个ID)说购买的某种商品的记录都是1次,从而避免数据重复对分析结果的干扰。

而对于退货的商品,这去除该项记录。

经过这两项的整理,最后共得到有效的商品消费记录为45006项。

关联分析数据分析主要使用的是SAS中的Enterprise Mining模块。

数据挖掘毕业论文

数据挖掘毕业论文

数据挖掘毕业论文数据挖掘毕业论文随着信息时代的到来,数据的产生和积累呈现出爆炸式增长的趋势。

如何从这些海量数据中提取有价值的信息,成为了当今科学研究和商业应用领域亟待解决的问题。

数据挖掘作为一门交叉学科,旨在通过运用统计学、机器学习、人工智能等技术,从大规模数据集中发现隐藏的模式、规律和知识,以支持决策和预测。

在我的毕业论文中,我选择了数据挖掘作为研究的主题。

我将从以下几个方面展开论述。

首先,我将介绍数据挖掘的基本概念和方法。

数据挖掘包括数据预处理、特征选择、模型构建和模型评估等步骤。

其中,数据预处理是数据挖掘的关键环节,它包括数据清洗、数据集成、数据变换和数据规约等过程。

特征选择是从原始数据中选择最具代表性的特征,以提高模型的准确性和可解释性。

模型构建是指选择合适的算法和模型来进行数据挖掘任务,如分类、聚类、关联规则挖掘等。

模型评估是对构建的模型进行性能评估和优化,以确保模型的有效性和可靠性。

其次,我将介绍数据挖掘在实际应用中的案例研究。

数据挖掘在各个领域都有广泛的应用,如金融、医疗、电商等。

以金融领域为例,数据挖掘可以用于信用评估、风险管理、欺诈检测等方面。

通过对大量的金融数据进行挖掘,可以发现客户的消费习惯、信用记录等信息,从而为银行和金融机构提供更准确的决策支持。

在医疗领域,数据挖掘可以用于疾病诊断、药物研发等方面。

通过对患者的病历、症状等数据进行挖掘,可以提高医生的诊断准确性,为患者提供更好的治疗方案。

接着,我将探讨数据挖掘的挑战和未来发展方向。

随着数据量的不断增大和数据类型的多样化,数据挖掘面临着许多挑战,如数据质量不高、算法效率低下等。

为了应对这些挑战,研究者们提出了许多解决方案,如集成多个算法、优化算法效率等。

此外,随着人工智能的快速发展,数据挖掘与机器学习、深度学习等领域的结合将成为未来的发展方向。

通过将数据挖掘与其他技术相结合,可以进一步提高模型的准确性和预测能力。

最后,我将总结我的研究成果和对数据挖掘的思考。

数据挖掘论文(最新范文6篇)

数据挖掘论文(最新范文6篇)

数据挖掘论文(最新范文6篇)数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际数据中,提取隐含在其中的、人们所不知道的、但又是潜在有用信息和知识的过程。

希望你在阅读了以下数据挖掘论文后对这个内容有更深入的了解。

数据挖掘论文一题目:基于数据挖掘的企业营销管理应用实证摘要:随着市场竞争的日益激烈,以及信息化、移动化和智能化时代的来临,越来越多的企业开始注重借助现代数据挖掘技术,提高企业的营销效果,降低营销成本,并提升企业在市场中的竞争力。

从数据挖掘与企业营销管理的关系入手,得出数据挖掘应用给现代企业营销管理带来的优势,然后构建精确营销平台,将其应用到电信业的营销管理中,以期为数据挖掘技术在现代企业营销中的具体应用提供参考。

关键词:数据挖掘;市场细分;竞争优势随着电子商务的不断发展,使得企业通过网络即可与来自全世界的企业进行商务活动。

而企业的大量交易,也给企业积累了很多业务数据,并以此使得企业的数据信息库越来越大。

而在这些数据中,清晰地记录了企业每年的运作及效益情况。

而要想让这些数据为企业未来的战略和决策服务,就需要充分加强对这些数据的规律、暴露出的问题的分析。

因此,数据挖掘技术进入了人们的视野,并成为人们关注的重点。

通过数据挖掘工具,可以对大量的数据进行分析,并提取其中有用的信息,为企业的决策提供参考,进而提升决策的正确率,达到提升竞争力的目的。

一、数据挖掘与企业营销管理的关系在生产销售中,生产者和消费者一般存在着单一的购买销售关系,而企业营销管理就是运用各种方法将上述单一关系转变为多重关系。

这样就在生产者和消费者之间加入营销者这一角色,三种角色之间也就必然会产生多种联系,这些关系往往牵涉众多,十分复杂。

要想处理好这些关系,就需要企业营销管理人员进行分析论证,找出可以联系的关键桥梁,也就是本文所介绍的"数据挖掘";.数据挖掘是企业营销管理中常用的一种方法,也越来越得到人们的认可。

数据挖掘结课论文_袁博

数据挖掘结课论文_袁博

数据挖掘课程论文题目:数据挖掘中 神经网络方法综述学 号:专 业: 工业工程名:目录一、引言 (3)(一)数据挖掘的定义 (3)(二)神经网络简述 (3)二、神经网络技术基础理论 (3)(一)神经元节点模型 (3)(二)神经网络的拓扑结构 (4)(三)神经网络学习算法 (4)(四)典型神经网络模型 (5)三、基于神经网络的数据挖掘过程 (6)(一)数据准备 (6)(二)规则提取 (7)(三)规则评估 (8)四、总结 (8)一、引言(一)数据挖掘的定义关于数据挖掘的定义不少,其中被广泛接受的定义是:数据挖掘是一个从不完整的、不明确的、大量的并且包含噪声,具有很大随机性的实际应用数据中,提取出隐含其中、事先未被人们获知、却潜在实用的知识或者模式的过程。

该定义包含了一下几个含义: (1)数据源必须为大量的、真正的并且包含噪声的;(2) 挖掘到的新知识必须为用户需求的、感兴趣的; (3)挖掘到的知识为易理解的、可接受的、有效并且可运用的; (4)挖掘出的知识并不要求合用于所有领域,可以仅支持某个特定的应用发现问题。

[1]这个定义准确的叙述了数据挖掘的作用,即对海量、杂乱无章的数据进行处理和分析,并发现隐藏在这些数据中的实用的知识,为决策提供支持。

(二)神经网络简述神经网络是摹拟人类的形象直觉思维,在生物神经网络研究的基础上,根据生物神经元和神经网络的特点,通过简化、归纳,提炼总结出来的一类并行处理网络,利用其非线性映射的思想和并行处理的方法,用神经网络本身的结构来表达输入和输出的关联知识。

[2]起初,神经网络在数据挖掘中的应用并未被看好,其主要原因是神经网络具有结构复杂、可解释性差、训练时间长等缺陷。

但其对噪声数据的高承受能力和低错误率的优点,以及各种网络训练算法的陆续提出与优化,特别是各种网络剪枝算法和规则提取算法的不断提出与完善,使得神经网络在数据挖掘中的应用越来越为泛博使用者所青睐。

二、神经网络技术基础理论(一) 神经元节点模型生物神经元,也成神经细胞,是构成神经系统的基本单元。

数据挖掘论文精选5篇论文

数据挖掘论文精选5篇论文

数据挖掘论⽂精选5篇论⽂数据挖掘论⽂精选5篇论⽂ 数据挖掘⼀: 题⽬:数据挖掘技术在神经根型颈椎病⽅剂研究中的优势及应⽤进展 关键词:数据挖掘技术; 神经根型颈椎病; ⽅剂; 综述; 1 数据挖掘技术简介 数据挖掘技术[1] (Knowledge Discovery in Datebase, KKD) , 是⼀种新兴的信息处理技术, 它融汇了⼈⼯智能、模式别、模糊数学、数据库、数理统计等多种技术⽅法, 专门⽤于海量数据的处理, 从⼤量的、不完全的、有噪声的、模糊的、随机的数据集中, 提取隐含在其中的、⼈们事先不知道的、但⼜是潜在的有⽤的信息和知识, 其⽬的是发现规律⽽不是验证假设。

数据挖掘技术主要适⽤于庞⼤的数据库的研究, 其特点在于:基于数据分析⽅法⾓度的分类, 其本质属于观察性研究, 数据来源于⽇常诊疗⼯作,应⽤的技术较传统研究更先进, 分析⼯具、理论模型与传统研究区别较⼤。

其操作步骤包括[2]:选择数据, 数据处理, 挖掘分析, 结果解释, 其中结果解释是数据挖掘技术研究的关键。

其⽅法包括分类、聚类、关联、序列、决策树、贝斯⽹络、因⼦、辨别等分析[3], 其结果通常表⽰为概念、规则、规律、模式、约束、可视化等形式图[4]。

当今数据挖掘技术的⽅向主要在于:特定数据挖掘, ⾼效挖掘算法, 提⾼结果的有效性、确定性和表达性, 结果的可视化, 多抽象层上的交互式数据挖掘, 多元数据挖掘及数据的安全性和保密性。

因其优势和独特性被运⽤于多个领域中, 且结果运⽤后取得显着成效, 因此越来越多的中医⽅剂研究者将其运⽤于⽅剂中药物的研究。

2 数据挖掘术在神经根型颈椎病治⽅研究中的优势 中医对于神经根型颈椎病的治疗准则为辨证论治, 从古⾄今神经根型颈椎病的中医证型有很多, 其治⽅是集中医之理、法、⽅、药为⼀体的数据集合, 具有以“⽅-药-证”为核⼼的多维结构。

⽅剂配伍本质上表现为⽅与⽅、⽅与药、药与药、药与剂量, 以及⽅药与证、病、症交叉错综的关联与对应[5], ⽽中医⽅剂讲究君⾂佐使的配伍, 药物有升降沉浮, 四⽓五味及归经之别, 对于神经根型颈椎病的治疗, 治⽅中药物的种类、炮制⽅法、⽤量、⽤法等都是千变万化的, ⽽这些海量、模糊、看似随机的药物背后隐藏着对临床有⽤的信息和规律, 但这些⼤数据是⽆法在可承受的时间范围内可⽤常规软件⼯具进⾏捕捉、管理和处理的, 是需要⼀个新处理模式才能具有更强的决策⼒、洞察⼒和流程优化能⼒, ⽽数据挖掘技术有可能从这些海量的的数据中发现新知识, 揭⽰背后隐藏的关系和规则, 并且对未知的情况进⾏预测[6]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据挖掘与决策支持系统课程论文--中原工学院信息商务学院论文题目:关联规则挖掘算法作者姓名:沈炜作者学号:200880434217专业名称:信息管理与信息系统完成时间:2010年12月13日摘要:云不同的关联规则表达数据集的不同规律性,并且它们通常预测不同的事情。

根据韩家炜等观点,关联规则定义为:假设I是项的集合。

给定一个交易数据库,其中每个事务(Transaction)t是I的非空子集,即,每一个交易都与一个唯一的标识符TID(Transaction ID)对应。

关联规则在D中的支持度(support)是D中事务同时包含X、Y的百分比,即概率;置信度(confidence)是包含X的事务中同时又包含Y的百分比,即条件概率。

关联规则是有趣的,如果满足最小支持度阈值和最小置信度阈值。

这些阈值是根据挖掘需要人为设定。

关键字:关联规则频级Apriori算法Abstract:The expression of different data sets associated with the different rules of regularity, and they usually predict different things. According to Han Wei and other point of view, association rule is defined as:Suppose I is a collection of items. Given a transaction database, where each transaction (Transaction) t is a nonempty set I, that is, each transaction with a unique identifier TID (Transaction ID) counterparts. Association rules in D, the degree of support (support) is the D in the transaction also includes X, Y percentage of the probability; confidence (confidence) that contains the X, Y transaction also includes the percentage, the conditional probability. Association rule is interesting, if the minimum support threshold and minimum confidence threshold. These thresholds are based on need for artificial excavation.Key Word:Association rules, Frequency level, Apriori algorithm目录绪论-------------------------------------3关联规则的挖掘过程-------------------------------------3 2.1:第一阶段------------------------------------------------3 2.2:第二阶段------------------------------------------------3 2.3:轻松共享数据--------------------------------------------3关联规则的分类-------------------------------------------3 3.1:第一阶段:-----------------------------------------------------------------------3 3.2:第一阶段:-----------------------------------------------------------------------3 3.3:第一阶段:-----------------------------------------------------------------------3关联规则挖掘的相关算法----------------------------------------------4 4. 1: Apriori性质:------------------------------------------------------------------4 4. 2: Apriori算法:------------------------------------------------------------------4总结展望----------------------------------------------------4 5.1:关联规则发掘技术在国内外的应用:-------------------------4 5.2:近年来关联规则发掘技术的一些研究:-----------------------5一.绪论世间万物的事情发生多多少少会有一些关联。

一件事情的发生,很可能是也会引起另外一件事情的发生。

或者说,这两件事情很多时候很大程度上会一起发生的。

这些都是我们在生活过程中经常遇到的。

那么人们通过发现这个关联的规则,可以由一件事情的发生来,来推测另外一件事情的发生,从而更好地了解和掌握事物的发展,动向等等。

这就是数据挖掘中,寻找关联规则的基本意义。

但是在实际中,挖掘出来的一些关联规则,并非都是有用的,甚至是有一定的误导性。

二.关联规则的挖掘过程关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(Frequent Itemsets),第二阶段再由这些高频项目组中产生关联规则(Association Rules)。

1.第一阶段关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(Large Itemsets)。

高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。

一项目组出现的频率称为支持度(Support),2.第二阶段关联规则挖掘的第二阶段是要产生关联规则(Association Rules)。

从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(Minimum Confidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。

三.关联规则的分类按照不同情况,关联规则可以进行分类如下:1.基于规则中处理变量的类别,关联规则可分为布尔型和数值型。

布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动态的分割,或者直接对原始的数据进行处理,当然数值型关联规则中也可以包含种类变量。

2.基于规则中数据抽象层次,分为单层关联规则和多层关联规则。

在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而在多层的关联规则中,对数据的多层性已经进行了充分的考虑。

3.基于规则中涉及到的数据维数,关联规则分为单维的和多维的。

在单维的关联规则中,我们只涉及到数据的一个维,如用户购买的物品;而在多维的关联规则中,要处理的数据将会涉及多个维。

换成另一句话,单维关联规则是处理单个属性中的一些关系;多维关联规则是处理各个属性之间的某些关系。

例如:啤酒=>尿布,这条规则只涉及到用户的购买的物品;性别=“女”=>职业=“秘书”,这条规则就涉及到两个字段的信息,是两个维上的一条关联规则。

四.关联规则挖掘的相关算法(Apriori算法)Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。

其核心是基于两阶段频集思想的递推算法。

该关联规则在分类上属于单维、单层、布尔关联规则。

该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。

然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。

然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。

一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。

为了生成所有频集,使用了递推的方法。

1 .Apriori性质Apriori性质:频繁项集的所有非空子集都必须也是频繁的。

如果项集I不满足最小支持度阈值s,则I不是频繁的,即P(I) < s。

如果项A添加到I,则结果项集(I ∪A)不可能比I更频繁出现。

因此,(I,A)也不是频繁的,即P(I ∪A) < s。

Apriori性质主要是用于搜索频繁项集的时候对候选式的筛选过程。

Apriori算法中利用Apriori性质,能够比较好地避免盲目的搜索,提高频繁项集的查找效率。

2.Apriori算法Apriori算法的频繁项集查找是一个逐层迭代的方法。

每层查找分成项集itemset的连接和剪枝两个步骤。

连接步骤是在为找k-项频繁项集L k,通过k-1项频繁项集L k - 1与自己连接产生候选k-项集的集合C k。

剪枝步骤是扫描事务数据集,去掉那些支持度小于指定最小支持度的事务项。

算法开始从最简单的1-项开始进行筛选,找出L1后,L1与L1自身连接产生C2,然后对C2的所有事务项进行筛选后,产生L2,由此,不断迭代下去,直到最后L k为空集。

3.Apriori算法的缺点可能产生大量的候选集,以及可能需要重复扫描数据库,是Apriori算法的两大缺点。

五.总结展望1.关联规则发掘技术在国内外的应用就目前而言,关联规则挖掘技术已经被广泛应用在西方金融行业企业中,它可以成功预测银行客户需求。

一旦获得了这些信息,银行就可以改善自身营销。

同时,一些知名的电子商务站点也从强大的关联规则挖掘中的受益。

一些电子购物网站使用关联规则中规则进行挖掘,然后设置用户有意要一起购买的捆绑包。

也有一些购物网站使用它们设置相应的交叉销售,也就是购买某种商品的顾客会看到相关的另外一种商品的广告。

但是目前在我国,“数据海量,信息缺乏”是商业银行在数据大集中之后普遍所面对的尴尬。

2.近年来关联规则发掘技术的一些研究由于许多应用问题往往比超市购买问题更复杂,大量研究从不同的角度对关联规则做了扩展,将更多的因素集成到关联规则挖掘方法之中,以此丰富关联规则的应用领域,拓宽支持管理决策的范围。

相关文档
最新文档