2019届高三数学理科摸底试题

合集下载

衡水中学2019届高三第一次摸底考试数学(理)试卷 及答案

衡水中学2019届高三第一次摸底考试数学(理)试卷 及答案

衡水中学2019届全国高三第一次摸底联考理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D2.已知全集U=R,则A. B.C. D.【答案】C3.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图:2015年高考数据统计 2018年高考数据统计则下列结论正确的是A. 与2015年相比,2018年一本达线人数减少B. 与2015年相比,2018年二本达线人数增加了0.5倍C. 与2015年相比,2018年艺体达线人数相同D. 与2015年相比,2018年不上线的人数有所增加【答案】D4.已知等差数列的公差为2,前项和为,且,则的值为A. 11B. 12C. 13D. 14【答案】C5.已知是定义在上的奇函数,若时,,则时,A. B. C. D.【答案】B6.已知椭圆和直线,若过的左焦点和下顶点的直线与平行,则椭圆的离心率为A. B. C. D.【答案】A7.如图,在平行四边形中,对角线与交于点,且,则A. B.C. D.【答案】C8.某几何体的三视图如图所示,则此几何体( )A. 有四个两两全等的面B. 有两对相互全等的面C. 只有一对相互全等的面D. 所有面均不全等【答案】B9.赵爽是我国古代数学家、天文学家,大约在公元年,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形内部(含边界)随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )A. B. C. D.【答案】A 10.已知函数(为自然对数的底数),若关于的方程有两个不相等的实根,则的取值范围是 A.B.C.D.【答案】C11.已知双曲线的左、右焦点分别为,,过作圆的切线,交双曲线右支于点,若,则双曲线的渐近线方程为A. B.C.D.【答案】A 12.如图,在正方体中,点,分别为棱,的中点,点为上底面的中心,过,,三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连结和的任一点,设与平面所成角为,则的最大值为A. B.C. D.【答案】B二、填空题:本题共4小题,每小题5分,共20分。

河北衡水中学2019届全国高三第一次摸底联考理科数学

河北衡水中学2019届全国高三第一次摸底联考理科数学

绝密★启用前河北衡水中学2019届全国高三第一次摸底联考理科数学本试卷4页,23小题,满分150分。

考试时间120分钟。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上的相应位置。

2.全部答案在答题卡上完成,答在本试卷上无效。

3.回答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案用0.5mm 黑色笔记签字笔写在答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

一.选择题:本题共12小题,每小题5分,共60分.每小题给出的选项中,只有一项是符合题目要求的. 1.复数(34)z i i =--在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.已知全集U R =,2{|2}M x x x =-≥,则U M =ðA .{|20}x x -<<B .{|20}x x -≤≤C .{|20}x x x <->或D .{|20}x x x ≤-≥或3.某所高中2018年高考考生人数是2015年考生人数的1.5倍.为了更好的对比该校考生的升学情况,统计了该校2015年和2018年的高考各层次的达线率,得到如下柱状图则下列结论正确的是A .与2015年相比,2018年一本达线人数减少B .与2015年相比,2018年二本达线人数增加了0.5倍C .与2015年相比,2018年艺体达线人数不变D .与2015年相比,2018年未达线人数有所增加4.已知等差数列{}n a 的公差为2,前n 项和为n S ,且10100S =,则7a =A .11B .12C .13D .145.已知()f x 是定义在R 上的奇函数,若0x >时,()ln f x x x =,则0x <时,()f x =A .ln x xB .ln()x x -C .ln x x -D .ln()x x --6.已知椭圆C :22221(0)x y a b a b+=>>和直线l :143x y +=,若过椭圆C 的左焦点和下顶点的直线与直线l 平行,则椭圆C 的离心率为A .45B .35C .34 D .157.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =,则ED =A .1233AD AB -B .2133AD AB + C .2133AD AB - D .1233AD AB + 8.某几何体的三视图如图所示,则此几何体A .有四个两两全等的面B .有两个互相全等的面C .只有一对互相全等的面D .所有面都不全等9.赵爽是我国古代的数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成).类比“赵爽弦图”,可类似的构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成了一个大等边三角形.设22DF AF ==,若在大等边三角形中随即取一点,则此点来自小等边三角形的概率是A .413BC .926D 10.已知函数,0()ln ,0x e x f x x x ⎧-≤=⎨>⎩(e 为自然对数的底数),若关于x 的方程()0f x a +=有两个不等的实根,则a 的取值范围是A .1a >-B .11a -<<C .01a <≤D .1a <11.已知双曲线22221(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,过1F 作圆222x y a +=的切线,交双曲线的右支于点M ,若1245F MF ∠=︒,则双曲线的渐近线方程为A .y =B .y =C .y x =±D .2y x =±12.如图,在正方体1111ABCD A B C D -中,点,E F 分别是棱11,BB CC 的中点,点O 为上底面的中心,过,,E F O 三点的平面分别把正方体分为两部分,其中含有1A 的部分为几何体1V ,不含1A 的部分为几何体2V ,已知M 为几何体2V 中(内部与表面)的任意一点,设1A M 与平面1111A B C D 所成的角为α,则sin α的最大值为A .BC .5D .6 二.填空题:本题共4小题,每小题5分,共20分.13.已知实数,x y 满足约束条件102400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-的最小值为________.14.已知数列{}n a ,若数列1{3}n n a -的前n 项和11655n n T =⨯-,则5a =________. 15.由数字0,1组成的一串数字代码,其中恰好由7个1,3个0,则这样的不同数字代码共有______个.16.已知函数()sin()|2|(||)32f x x x ππϕϕ=-++-<的图像关于直线2x =对称,当[1,2]x ∈-时,()f x 的最大值为________. 三.解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题12分)如图,在ABC ∆中,P 是边BC 上一点,60APC ∠=︒,AB =4AP PB +=.(1)求BP 的长;(2)若AC =,求cos ACP ∠的值.18.(本小题12分)在ABC ∆中,D ,E 分别是AB ,AC 的中点,22AB BC CD ==,如图1.以DE 为轴将ADE ∆翻折,使点A 到达点P 的位置,如图2.(1)证明:平面BCP ⊥平面CEP ;(2)若平面DEP ⊥平面BCED ,求直线DP 与平面BCP 所成角的正弦值.19.(本小题12分)某高校为了对2018年录取的大一理工科新生有针对性地进行教学,从大一理工科新生中随机抽取40名,对他们2018年高考的数学分数进行分析,研究发现这40名新生的数学分数x 在[100,150)内,且其频率y 满足1020n y a =-(其中1010(1)n x n ≤<+,n N +∈) (1)求a 的值;(2)请画出这40名新生高考数学分数的频率的分布直方图,并估计这40名新生的高考数学分数的平均数(同一组中的数据用该组的中间值代替)(3)将此样本的频率估计为总体的太绿,随机调查4名该校的大一理工科新生,记调查的4名新生中“高考数学分数不低于130分”的人数为随机变量ξ,求ξ的数学期望.20.(本小题12分)已知抛物线E :22(0)x py p =>的焦点为F ,0(2,)A y 是E 上一点,且||2AF =.(1)求E 的方程;(2)设点B 是E 上异于点A 的一点,直线AB 与直线3y x =-交于点P ,过点P 作x 轴的垂线交E 于点M ,求证:直线BM 过定点.21.(本小题12分)已知函数()1()ax f x e x a R =--∈.(1)当1a =时,求证:()0f x ≥;(2)讨论函数()f x 的零点个数.请考生在22、23两题中任选一题作答,注意,只能做所选定的题目,如果多做则按所做的第一道题记分,作答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.[选修4—4:坐标系与参数方程](本小题10分)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos (0)a a ρθθ=+>;直线l的参数方程为222x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),直线l 与曲线C 分别交于,M N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若点P 的极坐标为(2,)π,||||PM PN +=,求a 的值.23.[选修4—5:不等式选讲](本小题10分)已知函数()|2|f x x =-.(1)求不等式(1)(3)f x xf x +<+的解集;(2)若函数2()log [(3)()2]g x f x f x a =++-的值域为R ,求实数a 的取值范围.。

高三数学一模理科试题(附答案)

高三数学一模理科试题(附答案)

2019届高三数学一模理科试题(附答案)2019届高三数学一模理科试题(附答案)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则A. B. C. D.2.已知是虚数单位,则在复平面中复数对应的点在A.第一象限B.第二象限C.第三象限D.第四象限3.设随机变量服从正态分布,若,则A. B. C. D.4.设,则是的A.充分不必要条件B. 必要不充分条件C.充分必要条件D.既不充分也不必要条件5.已知两个不同的平面和两个不重合的直线m、n,有下列四个命题:①若;②若;③若;④若.其中正确命题的个数是A.0B.1C.2D.36.要得到函数的图象,只需将函数的图象A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度7. 已知双曲线的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是A. B. C. D.8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加,当甲乙同时参加时,他们两人的发言不能相邻,那么不同的发言顺序的种数为A.360B.520C.600D.7209.设函数若,则关于的方程的解的个数为A.4B.3C.2D.110.已知向量的夹角为时取得最小值,当时,夹角的取值范围为A. B. C. D.第II卷(非选择题共100分)二、填空题:本大题共5个小题,每小题5分,共25分..11.若对任意的恒成立,则实数k的取值范围为_________.12.如图给出的是计算的值的程序框图,其中判断框内应填入的是_______.13.已知圆C过点,且圆心在轴的负半轴上,直线被该圆所截得的弦长为,则圆C的标准方程为________________.]14.定义:,在区域内任取一点的概率为__________.15.已知恒成立,则实数m的取值范围是_______.三、解答题:本大题共6个小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)在△ABC中,角A,B,C所对的边分别为,且..(I)求的值;(II)若面积的最大值.17.(本小题满分12分)如图,在七面体ABCDMN中,四边形ABCD是边长为2的正方形,平面ABCD,平面ABCD,且(I)在棱AB上找一点Q,使QP//平面AMD,并给出证明;(II)求平面BNC与平面MNC所成锐二面角的余弦值18.(本小题满分12分)某高校自主招生选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某同学能正确回答第一、二、三轮的问题的概率分别为,且各轮问题能否正确回答互不影响。

2019高三摸底考试理科数学

2019高三摸底考试理科数学


2
x)(
x

R)
的图像向右平移
4
个单位长度,所得图像对
应的函数
A.在 ( π ,0) 上递增 B.在 ( π ,0) 上递减 C.在 (0, π) 上递增
2
2
6
x 1≥ 0,
8.若
x,y
满足约束条件
x x

2y ≤ 2, 则 y 4 ≤ 0.
z

y 1 x
D.在 (0, π) 上递减 6
(t 为参数, t
p 0) ,以坐标原点
为极点,x 轴的正半轴为极轴建立极坐标系,曲线 C2 的极坐标方程为 4sin . (1)求 C1 的普通方程和极坐标方程; (2)若 C1 与 C2 相交于 A、B 两点,且 | AB | 2 3 ,求 p 的值.
23.[ 选修 4 5 :不等式选讲 ] (10 分) 设函数 f (x) | ax 1| . (1)当 a 1 时,解不等式 f (x) 2x 2 ; (2)当 a 1 时,设 g(x) f (x) | x 1| ,若 g(x) 的最小值为 1 ,求实数 a 的值. 2
(二)选考题:共 10 分.请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第
1 题计分.作答时请用 2B 铅笔在答题卡上将所选题号的方框涂黑.
22.[ 选修 4 4 :坐标系与参数方程 ] (10 分)
在直角坐标系
xOy
中,曲线
C1
的参数方程为

x y

2 2
pt p
轮面试,只有第一轮笔试通过才有资格进入第二轮面试,面试通过就可以在高考录取中获得 该校的优惠加分,两轮考试相互独立.根据以往多次的模拟测试,甲、乙、丙三名学生能通 过笔试的概率分别为 0.4,0.8,0.5,能通过面试的概率分别为 0.8,0.4,0.64.根据这些数据 我们可以预测:

河北省唐山市2019届高三9月摸底考试数学(理)试题(解析版)

河北省唐山市2019届高三9月摸底考试数学(理)试题(解析版)

唐山市2018-2019学年度高三年级摸底考试理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】A【解析】【分析】利用一元二次不等式的解法化简集合,由集合交集的定义可得结果.【详解】由一元二次不等式的解法可得集合,因为,所以,故选A.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.2.设,则()A. B. 2 C. D. 1【答案】D【解析】【分析】由复数代数形式的乘除运算法则化简,再由复数模的公式求解即可.【详解】,则,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.等差数列的前项和为,若,则()A. 13B. 26C. 39D. 52【答案】B【解析】【分析】利用等差数列的下标性质可得,结合等差数列的求和公式可得结果.【详解】,,故选B.【点睛】本题主要考查等差数列性质的应用,等差数列求和公式的应用,意在考查综合应用所学知识解决问题的能力,属于简单题.4.随机变量服从正态分布,若,,则()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】直接根据正态曲线的对称性求解即可.【详解】,,,即,,故选B.【点睛】本题主要考查正态分布与正态曲线的性质,属于中档题. 正态曲线的常见性质有:(1)正态曲线关于对称,且越大图象越靠近右边,越小图象越靠近左边;(2)边越小图象越“痩长”,边越大图象越“矮胖”;(3)正态分布区间上的概率,关于对称,5.=A. B. C. D.【答案】D【解析】【分析】根据三角恒等变换的公式化简,即可求解.【详解】由题意,可知,故选D.【点睛】本题主要考查了三角函数的化简求值问题,其中解答中熟记三角函数恒等变换的公式,合理作出运算是解答的关键,着重考查了推理与运算能力.6.已知某几何体的三视图如图所示俯视图中曲线为四分之一圆弧,则该几何体的表面积为A. B. C. D. 4【答案】D【解析】【分析】由已知中的三视图可得该几何体是一个以俯视图为底面的柱体,代入柱体的表面公式,即可得到答案.【详解】由已知中的三视图可得该几何体是一个以俯视图为底面的柱体,底面面积为,底面周长为,柱体的高为1,所以该柱体的表面积为.【点睛】本题考查了几何体的三视图及组合体的表面积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应表面积与体积公式求解.7.设函数,则()A. 是奇函数,且在上是增函数B. 是偶函数,且在上是增函数C. 是奇函数,且在上是减函数D. 是偶函数,且在上是减函数【答案】A【解析】【分析】利用奇偶性的定义判断函数的奇偶性,利用单调性的定义判断单调性,结合选项可得结果.【详解】,是奇函数;任取,则,,,,在上递增,故选A.【点睛】本题主要考查函数奇偶性的判断以及函数单调性的判断,属于中档题.判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法,(正为偶函数,负为减函数);(2)和差法,(和为零奇函数,差为零偶函数);(3)作商法,(为偶函数,为奇函数).8.已知是两个单位向量,时,的最小值为,则()A. 1B.C. 1或D. 2【答案】C【解析】【分析】由已知,当有最小值,可得,从而可得,进而可得结果. 【详解】,,即当有最小值,此时,而,,即为,,即为1,故选C.【点睛】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).9.已知程序框图如图所示,则该程序框图的功能是()A. 求的值B. 求的值C. 求的值D. 求的值【答案】A【解析】【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出结果. 【详解】输入,;;;,,退出循环,输出,故选A.【点睛】本题考查的是程序框图.对于算法与流程图的考查,一般会侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.10.已知椭圆和双曲线有相同的焦点,且离心率之积为1,为两曲线的一个交点,则的形状为()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定【答案】B【解析】【分析】由双曲线的焦点坐标以及双曲线的离心率求出椭圆的方程,利用双曲线与椭圆的定义求出,利用勾股定理可得结论【详解】的焦点坐标为,离心率为,,椭圆,,,得,,为直角三角形,故选B.【点睛】本题综合考查双曲线与椭圆的方程、双曲线与椭圆的离心率、双曲线与椭圆定义的应用,意在考查综合利用所学知识解决问题的能力,属于难题.11.已知函数,,则的所有零点之和等于()A. B. C. D.【答案】C【解析】【分析】两角和的正弦公式以及二倍角公式化简,函数的两点就是方程或的根,求出方程的根,即可得结果.【详解】,或,在上的所有零点为,,,故选C.【点睛】函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.12.已知三棱锥的四个顶点都在半径为3的球面上,,则该三棱锥体积的最大值是()A. B. C. D. 32【答案】B【解析】【分析】设,则,外接圆直径为,体积最大值为,利用基本不等式,结合换元法,根据导数可得结果.【详解】设,则,外接圆直径为,如图,体积最大值为,设,则,,令,得,在上递增,在上递减,,即该三棱锥体积的最大值是,故选B.【点睛】本题主要考球的截面的性质棱锥的体积公式以及导数的应用,属于难题.球内接多面体问题是将多面体和旋转体相结合的题型,既能考查旋转体的对称形又能考查多面体的各种位置关系,做题过程中主要注意以下两点:①多面体每个面都分别在一个圆面上,圆心是多边形外接圆圆心;②注意运用性质.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知满足,则的最大值为__________.【答案】2【解析】【分析】由题意,画出约束条件所表示的平面区域,目标函数,化为,结合图象可知,直线过点A 时,目标函数取得最大值,即可求解.【详解】由题意,画出约束条件所表示的平面区域,如图所示,目标函数,化为,结合图象可知,直线过点A时,目标函数取得最大值,由,解得,所以目标函数的最大值为.【点睛】本题主要考查了利用简单的线性规划求最小值问题,其中对于线性规划问题可分为三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用,着重考查了考生的推理与运算能力,以及数形结合思想的应用.14.在的展开式中,的系数为5,则实数的值为__________.【答案】【解析】【分析】先求出二项式展开式的通项公式,再令的幂指数等于4 ,求得的值,即可求得展幵式中的系数,再根琚的系数为5,求得的值.【详解】的展开式的通项公式为,令,求得,故展开式中的系致为,则实数,故答案为.【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.15.已知直线与圆相交于两点,则的最小值为__________.【答案】【解析】【分析】先求得直线过定点,判断在圆内,利用圆的几何性质可得结果.【详解】,化为,直线过定点,在圆内,当是中点时,最小,由得,圆心,半径,,故答案为.【点睛】本题主要考查椭圆的标准方程与简单性质以及直线过定点问题,判断直线过定点主要形式有:(1)斜截式,,直线过定点;(2)点斜式直线过定点.16.的垂心在其内部,,,则的取值范围是__________.【答案】【解析】【分析】作,,,设,利用直角三角形的性质,将表示为,利用辅助角公式,结合正弦函数的单调性可得结果.【详解】如图所示,,,,,,设,,,,,因为所以,,,故答案为.【点睛】求范围问题往往先将所求问题转化为函数问题,然后根据:配方法、换元法、不等式法、三角函数法、图象法、函数单调性法求解,求与三角函数有关的最值常用方法有以下几种:①化成的形式利用配方法求最值;②形如的可化为的形式利用三角函数有界性求最值;③型,可化为求最值 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列的前项和,.(1)求;(2)若,且数列的前项和为,求.【答案】(1);(2).【解析】【分析】(1)由已知可得,,所以2,两式相减化为为,可得数列是以1为首项,3为公比的等比数列,从而可得结果;(2)结合(2)可得,利用错位相减法可得结果.【详解】(1)由已知可得,2S n=3a n-1,①所以2S n-1=3a n-1-1(n≥2),②①-②得,2(S n-S n-1)=3a n-3a n-1,化简为a n=3a n-1(n≥2),即在①中,令n=1可得,a1=1,所以数列{a n}是以1为首项,3为公比的等比数列,从而有a n=3n-1.(2)b n=(n-1)·3n-1,T n=0·30+1·31+2·32+…+(n-1)·3n-1,③则3T n=0·31+1·32+2·33+…+(n-1)·3n.④③-④得,-2T n=31+32+33+…+3n-1-(n-1)·3n,所以,【点睛】“错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.18.甲、乙两位工人分别用两种不同工艺生产同一种零件,已知尺寸在(单位:)内的零件为一等品,其余为二等品,测量甲乙当天生产零件尺寸的茎叶图如图所示:(1)从甲、乙两位工人当天所生产的零件中各随机抽取1个零件,求抽取的2个零件等级互不相同的概率;(2)从工人甲当天生产的零件中随机抽取3个零件,记这3个零件中一等品数量为,求的分布列和数学期望. 【答案】(1);(2).【解析】【分析】(1)由茎叶图可知,甲当天生产了10个零件,其中4个一等品,6个二等品;乙当天生产了10个零件,其中5个一等品,5个二等品,由古典概型概率公式可得结果;(2)从工人甲当天生产的零件中随机抽取3个零件,的可能取值为结合组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.【详解】(1)由茎叶图可知,甲当天生产了10个零件,其中4个一等品,6个二等品;乙当天生产了10个零件,其中5个一等品,5个二等品,所以,抽取的2个零件等级互不相同的概率(2)X可取0,1,2,3.X的分布列为∴随机变量X的期望【点睛】本题主要考查古典概型概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19.在直角三角形中,,为的中点,以为折痕将折起,使点到达点的位置,且.(1)求证:平面;(2)求与平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)由等腰三角形的性质可得,结合,可得平面,从而得,又,利用线面垂直的判断定理可得结果;(2)以为坐标原点,所在直线分别为轴,轴,轴,建立空间直角坐标系,求出的方向向量,利用向量垂直数量积为零求出平面的法向量,由空间向量夹角余弦公式可得结果.【详解】(1)∵直角三角形ABC中,AB=BC=2,D为AC的中点,∴BD⊥CD,又∵PB⊥CD,BD∩PB=B,∴CD⊥平面PBD,∴CD⊥PD,又∵AD⊥BD,∴PD⊥BD.又因为BD∩CD=D,∴PD⊥平面BCD.(2)以D为坐标原点,DA,DB,DP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系D-xyz,则,设平面PBC的法向量n=(x,y,z),由,得,取n=(1,-1,-1).∴直线P A与平面PBC所成角的正弦值为.【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.20.斜率为的直线与抛物线交于两点,为坐标原点.(1)当时,求;(2)若,且,求.【答案】(1)2;(2).【解析】【分析】(1)由已知可得,,两式相减化简可得直线的斜率;(2)先求得,,由,可得,解得,从而可得结果.【详解】(1)由已知可得,所以此时,直线l的斜率(2)因为OB⊥l,所以又因为所以,又由(1)可知,从而有,所以,因为|AB|=3|OB|,所以化简得,|k3+2k|=3,解得,k=±1,所以,【点睛】本题主要考查直线与圆锥曲线的位置关系的相关问题,意在考查学生理解力、分析判断能力以及综合利用所学知识解决问题能力和较强的运算求解能力,其常规思路是先把直线方程与圆锥曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 21.已知函数(且).(1)当时,曲线与相切,求的值;(2)若,求的取值范围.【答案】(1)1;(2).【解析】【分析】(1)求得,设切点为,曲线与相切,得,解得,所以切点为,进而可得结果;(2)利用导数研究函数的单调性可得当时,取得最小值,设,利用导数可得,即,进而可得满足题设的的取值范围.【详解】(1)当a=e时,所以设切点为(x0,f(x0)),曲线y=f(x)与y=m相切,得f'(x0)=0,解得x0=1,所以切点为(1,1).所以m=1.(2)依题意得,所以从而a≥e.因为,所以当0<x<ln a时,f'(x)<0,f(x)单调递减;当x>ln a时,f'(x)>0,f(x)单调递增,所以当x=ln a时,f(x)取得最小值设g(x)=eln x-x,x≥e,则所以g(x)在[e,+∞)单调递减,从而g(x)≤g(e)=0,所以e ln x≤x.又a≥e,所以e ln a≤a,从而当且仅当a=e时等号成立.因为ln a≥1,所以log a(ln a)≥0,即综上,满足题设的a的取值范围为[e,+∞).【点睛】本题主要考查利用导数求切线斜率及利用导数研究不等式恒成立问题,属于难题. 应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数;(2) 己知斜率求切点即解方程;(3) 巳知切线过某点(不是切点) 求切点, 设出切点利用求解.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.选修4-4:坐标系与参数方程22.在极坐标系中,曲线的方程为,以极点为原点,极轴为轴正半轴建立直角坐标系,直线(为参数,).(1)求曲线的直角坐标方程;(2)设直线与曲线相交于两点,求的取值范围.【答案】(1);(2).【解析】【分析】(1)利用两角和的正弦公式化简所给极坐标方程,利用互化公式可得曲线的直角坐标方程;(2)将直线l的参数方程代入并整理得,,根据直线参数方程的几何意义,结合韦达定理,由辅助角公式和三角函数的有界性可得结果.【详解】(1)由得,ρ2-2ρcosθ-2ρsinθ-4=0.所以x2+y2-2x-2y-4=0.曲线C的直角坐标方程为(x-1)2+(y-1)2=6.(2)将直线l的参数方程代入x2+y2-2x-2y-4=0并整理得,t2-2(sinα+cosα)t-4=0,t1+t2=2(sinα+cosα),t1t2=-4<0.因为0≤α< ,所以从而有所以||OA|-|OB||的取值范围是[0,2].【点睛】本题主要考查直线的参数方程,以及极坐标方程化为直角坐标方程,属于中档题.利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.选修4-5:不等式选讲23.[选修4-5:不等式选讲]已知.(1)求不等式的解集;(2)若时,不等式恒成立,求的取值范围.【答案】(1);(2)【解析】【分析】(1)由题意得|,可得,整理可得,利用一元二次不等式的解法可得结果不;(2),将写出分段函数形式,利用单调性可得时,取得最大值1,所以的取值范围是.【详解】(1)由题意得|x+1|>|2x-1|,所以|x+1|2>|2x-1|2,整理可得x2-2x<0,解得0<x<2,故原不等式的解集为{x|0<x<2}.(2)由已知可得,a≥f(x)-x恒成立,设g(x)=f(x)-x,则,由g(x)的单调性可知,x=时,g(x)取得最大值1,所以a的取值范围是[1,+∞).【点睛】绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想;④转化法,转化为一元二次不等式或对数、指数不等式.。

2019届高三数学摸底测试试题理(含解析)

2019届高三数学摸底测试试题理(含解析)

2019届高三数学摸底测试试题理(含解析)本试卷分为卷和卷两部分,卷1至4页,满分100分;卷5至6页,满分60分。

全卷满分160分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合, ,则()A. B. C. D.【答案】B【解析】分析:由不等式求出的范围,得出集合,再求出。

详解:由有,,所以,故,选B.点睛:本题主要考查了不等式的解集及集合间的交集运算,属于容易题。

2.复数 (为虚数单位)在复平面内表示的点的坐标为()A. B. C. D.【答案】A【解析】分析:求出复数的代数形式,再写出在复平面内表示的点的坐标。

详解:复数,所以复数在复平面内表示的点的坐标为,选A.点睛:本题主要考查了复数的四则运算,以及复数在复平面内所表示的点的坐标,属于容易题。

3.若实数满足约束条件,则的最大值为()A. -4B. 0C. 4D. 8【答案】D【解析】分析:由已知线性约束条件,作出可行域,利用目标函数的几何意义,采用数形结合求出目标函数的最大值。

详解:作出不等式组所对应的平面区域(阴影部分),令,则,表示经过原点的直线,由有,当此直线的纵截距有最大值时,有最大值,由图知,当直线经过A点时,纵截距有最大值,由有,即,此时,选D.点睛:本题主要考查了简单的线性规划,考查了数形结合的解题方法,属于中档题。

4.已知等差数列的前项和为,且,,则()A. B. 1 C. D. 2【答案】A【解析】分析:利用等差数列前项和公式及等差数列的性质,求出,从而求出的值。

详解:由有,,由等差数列的性质有,所以,又,所以,选A.点睛:本题主要考查了等差数列的前项和公式和等差数列的基本性质,属于基础题。

在等差数列中,若,且,则。

5.已知曲线(为参数).若直线与曲线相交于不同的两点,则的值为()A. B. C. 1 D.【答案】C【解析】分析:消参求出曲线C的普通方程:,再求出圆心到直线的距离,则弦长。

2019届高三数学第一次摸底考试卷 理(新版)新人教版

2019届高三数学第一次摸底考试卷 理(新版)新人教版

2019届高三第一次摸底考试理科数学试题第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1.设集合A ={y |y =2x,x ∈R},B ={x |x 2-1<0},则A ∪B =( ) A .(-1,1) B .(0,1) C .(-1,+∞) D.(0,+∞) 2.若复数z 满足z (i +1)=2i -1,则复数z 的虚部为( ) A .-1 B .0 C .i D .1 3.sin 210°cos 120°的值为( )A.14 B .-34 C .-32 D.344.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18=( ) A .36 B .35 C .34 D .335.已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x+b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-36. 在[][]4,6,2,4x y ∈∈内随机取出两个数,则这两个数满足30x y -->的概率为( ) A .14 B .18 C .110 D .1167. 若圆2212160x y x +-+=与直线y kx =交于不同的两点,则实数k 的取值范围为( )A .(B .(C .(22-D .(22- 8.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( ) A .3 B.932 C.332D .3 39.《九章算数》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .6+4 2 10. 运行如下程序框图,如果输入的[]0,5t ∈,则输出S 属于( )A .[)4,10-B .[]5,2-C .[]4,3-D .[]2,5-11.设向量a ,b 满足|a |=1,|a -b |=3,a ·(a -b )=0,则|2a +b |=( ) A .2 B .2 3 C .4 D .4 312.已知函数()2ln f x ax x x =--存在极值,若这些极值的和大于5ln 2+,则实数a 的取值范围为( )A .(),4-∞B .()4,+∞C .(),2-∞D .()2,+∞第Ⅱ卷本试卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分)13.若二项式2nx ⎫⎪⎭展开式中的第5项是常数,则自然数n 的值为________.14.已知x ,y 满足20,30,10.y x x y -⎧⎪+⎨⎪--⎩≤≥≤则x +y -6x -4的取值范围是________.15.下列说法中正确的是________.①命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0” ②“x =2”是“x 2-3x +2=0”的充分不必要条件③若命题p :∃x 0∈R,使得x 20-x 0+1≤0,则¬p :对∀x ∈R,都有x 2-x +1>0 ④若p ∨q 为真命题,则p ,q 均为真命题16.已知F 是抛物线y 2=4x 的焦点,A ,B 是抛物线上两点,若△AFB 是正三角形,则△AFB 的边长为________. 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X =70时,Y =460;X 每增加10,Y 增加5.已知近20年X 的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160. (1)完成如下的频率分布表: 近20年六月份降雨量频率分布表(2)电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.18.(本小题满分10分)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =-2-32t ,y =12t ,曲线C 2的极坐标方程为ρ=22(cos θ-π4),以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系. (1)求曲线C 2的直角坐标方程;(2)求曲线C 2上的动点M 到曲线C 1的距离的最大值.19.(本小题满分12分)已知数列{}n a 为公差不为0的等差数列,满足15a =,且2930,,a a a 成等比数列. (1)求{}n a 的通项公式; (2)若数列{}n b 满足()111n n n a n b b *+-=∈N ,且113b =,求数列{}n b 的前n 项和n T . 20. (本小题满分12分)已知在四棱锥C ABDE -中,DB ⊥平面ABC ,//AE DB ,ABC △是边长为2的等边三角形,1AE =,M 为AB 的中点.51015ADE MB(1)求证:CM EM ⊥;(2)若直线DM 与平面ABC 所成角的正切值为2,求二面角B CD E --的大小.21.(本小题满分12分)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点,上顶点分别为A ,B ,且|AB |=52|BF |.(1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l的方程及椭圆C 的方程.22.(本小题满分12分)设函数f (x )=3x 2+axex(a ∈R ). (1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程; (2)若f (x )在[3,+∞)上为减函数,求a 的取值范围.2019届高三第一次摸底考试理科数学参考答案1.C2.B3.A4.C5.B6.B7.C8.C9.C 10.A 11.B 12.B13.12 14.131,7⎡⎤⎢⎥⎣⎦15.①②③ 16.8+43或8-4 317.解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为(2)由已知可得Y =X2+425,故P (“发电量低于490万千瓦时或超过530万千瓦时”)=P (Y <490或Y >530)=P (X <130或X >210)=P (X =70)+P (X =110)+P (X =220) =120+320+220=310. 故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.18.解:(1)ρ=22cos ⎝ ⎛⎭⎪⎫θ-π4=2(cos θ+sin θ),即ρ2=2(ρcos θ+ρsin θ),可得x 2+y 2-2x -2y =0,故C 2的直角坐标方程为(x -1)2+(y -1)2=2.(2)C 1的普通方程为x +3y +2=0,由(1)知曲线C 2是以(1,1)为圆心,以2为半径的圆,且圆心到直线C 1的距离d =|1+3+2|12+(3)2=3+32, 所以动点M 到曲线C 1的距离的最大值为3+3+222.19.(1)设等差数列{}n a 的公差为d (0d ≠),由2930,,a a a 成等比数列可知()()()2111298a a d a d d +=++,又15a =,解得2d =,∴23n a n =+.………………4分(2)由()111n n n a n b b *+-=∈N ,得()11112,n n n a n n b b *---=≥∈N , 当2n ≥时,11221111111111n n n n n b b b b b b b b ---⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()121111126322n n a a a n n n n b --=++++=-++=+, …………………8分 对113b =上式也成立,∴()()12n n n n b *=+∈N ,∴()1111222n b n n n n ⎛⎫==- ⎪++⎝⎭, ∴()()21111111311351232422212412n n n T n n n n n n ⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=--= ⎪ ⎪ ⎪ ⎪⎢⎥+++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()()21352412n n n n n +⎫-=⎪+++⎭ ……………………… 12分20.(1)因为ABC △是等边三角形,M 为AB 的中点,所以CM AB ⊥. 又因为DB ⊥平面ABC ,DB CM ∴⊥,可得CM ⊥平面ABDE , 因为EM ⊂平面ABDE ,所以CM EM ⊥;(4分)(2)如图,以点M 为坐标原点,,MC MB 所在直线分别为,x y 轴,过M 且与直线BD 平行的直线为z 轴,建立空间直角坐标系.因为DB ⊥平面ABC ,所以DMB ∠为直线DM 与平面ABC 所成的角.(6分) 由题意得t a n 2BDDMB MB∠==,即2BD =,故()0,1,0B,)C ,()()0,1,2,0,1,1DE -,于是()3,1,0BC =-, ()0,0,2BD=, ()1,1CE =-, ()CD =,设平面BCD 与平面CDE 的法向量分别为()111,,x y z =m ,()222,,x y z =n ,则由00BC BD ⎧⋅=⎨⋅=⎩m m 得11x =,得1y =,所以(10分)B CD E --的大小为90︒.(12分) 51015zxyACDE MB(3,3x-2y x+2y=0x+y-4=0yx21.解:(1)由已知|AB |=52|BF |,即a 2+b 2=52a , 4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2,∴e =ca =32. (2)由(1)知a 2=4b 2,∴椭圆C :x 24b 2+y 2b2=1.设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0. 由⎨⎪⎧2x -y +2=0,x 2y 21消去y ,得x 2+4(2x +2)2-4b 2=0,x 1+x 2=-3217,x1x 2=16-4b217.∵OP ⊥OQ ,∴·=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0, 5x 1x 2+4(x 1+x 2)+4=0.从而5(16-4b 2)17-12817+4=0,解得b =1,满足b >21717.∴椭圆C 的方程为x 24+y 2=1.22.解:(1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x (e x )2=-3x 2+(6-a )x +ae x, 因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1),化简得3x -e y =0. (2)由(1)知f ′(x )=-3x 2+(6-a )x +aex. 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366.当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数; 当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数; 当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92,故a 的取值范围为9,2⎡⎫-+∞⎪⎢⎣⎭. 2019届高三第一次摸底考试理科数学 答题卡姓名:______________________________第I卷(请用2B铅笔填涂)1015精品试卷精 品 试 卷请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。

精选2019届高三数学上学期开学摸底联考试题理(含解析)

精选2019届高三数学上学期开学摸底联考试题理(含解析)

安徽省江南片2019届高三开学摸底联考理科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.)【答案】C【解析】【分析】分别解绝对值不等式与分式不等式求得集合A,B,∴,∴C.【点睛】集合与集合运算,一般先化简集合到最简形式,如果两个集合都是连续型数集,则常利用数轴求集合运算结果,如果是离散型集合运算常运用枚举法或韦恩图。

2.下列命题错误的是()A. 有实数根”的逆否命题为:“若方程无实B.D.【答案】D【解析】对于,“若方程无,因为的真假判断是有真则真,所以命题正确;时,,时,命题,为假命题,或均为假命题,命题错误,故选D.【方法点睛】本题主要考查充分条件与必要条件,“且命题”“或命题”的真假,属于中档题.判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.3.)A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件【答案】B【解析】【分析】.,则两条直线分别为两直线斜率的乘积为,故两条直线相互垂直;B.【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若则”是真命题,“若则”是假命题,则是的充分不必要条件;若“若则”是真命题,“若则”是真命题,则是的充分必要条件;若“若则”是假命题,“若则”是真命题,则是的必要不充分条件;若“若则”是假命题,“若则”是假命题,则是的既不充分也不必要条件.4.)B. 4C. -4D.【答案】A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届高三摸底考试数学试题(理科)
本卷分选择题非选择题两部分,共4页,满分150分.考试用时间120分钟. 注意事项:
1. 考生务必将自己的姓名、班级、学校用蓝、黑墨水钢笔签字笔写在答题卷上;
2. 选择题、填空题每小题得出答案后,请将答案填写在答题卷相应指定位置上。

答在试题
卷上不得分;
3.考试结束,考生只需将答题卷交回.
一、选择题:本大题共8小题,每小题5分。

满分40分.在每小题给出的四个选项中。

只有一项是符合题目要求的
1. 已知全集U R =,集合{}2|1P x x =≤,那么U C P =( ) A.(),1-∞- B. ()1,+∞ C. ()1,1- D. ()
(),11,-∞-+∞
2. 设α∈⎩
⎨⎧

⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为( )
A .1,3
B .-1,1
C .-1,3
D .-1,1,3
3.
若12ω=-
,则等于21ωω++=( ) A .1 B .0 C
.3 D
.1- 4. 若平面向量与向量)1,2(=平行,且52||=,则=( )
A .)2,4(
B .)2,4(--
C .)3,6(-
D .)2,4(或)2,4(-- 5. 若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值( )
A .正数
B .负数
C .非负数
D .与m 有关
6. 如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为
1
2
.则该几何体的俯视图可以是( )
7. 设,x y 满足约束条件0
4312
x y x x y ≥⎧⎪
≥⎨⎪+≤⎩
,则221y x ++的最大值是( )
A. 5
B. 6
C. 8
D.
10
D .
8. 定义在R 上的周期函数f(x),周期T=2,直线x=2是它的图象的一条对称轴,且f(x)在 [-3,-2]上是减函数,如果A 、B 是锐角三角形的两个内角,则( ) A (sin )(cos )f A f B > B (cos )(sin )f B f A > C (sin )(sin )f A f B > D (cos )(cos )f B f A >
二、填空题:本大题共6小题,每小题5分.满分30分.
9. 函数
y =
的定义域是____________
10. 等比数列n a 中,44a =,则26a a ⋅等于____________
11. 曲线211y x =+在点1x =处的切线与y 轴交点的纵坐标是__________
12. 函数()f x 的定义域为A ,若12,x x A ∈且()()12f x f x =时总有12x x =,则称()f x 为单函数.例如,函数()()21f x x x R =+∈是单函数.下列命题中是真命题有____________.(写出所有真命题的编号)
①函数()()2f x x x R =∈是单函数; ②指数函数()()2x f x x R =∈是单函数;
③若()f x 为单函数,12,x x A ∈且12x x ≠,则()()12f x f x ≠; ④在定义域是单调函数的函数一定是单函数.
13. 在△ABC 中,若1a b ==,c ,则C ∠= .
14. 若关于x 的方程x -1
x +k =0在x ∈(0,1]时没有实数根,则k 的取值范围是________.
三、解答题:本大题共6小题,满分80分,解答必须写出文字说明、证明过程和演算步骤. 15. (本小题满分12分)
已知函数2()2sin cos f x x x x =-(1) 求函数的最小正周期及最小值; (2) 求函数()f x 的单调递增区间.
16. (本小题满分12分)
某批发市场对某种成衣的周销售量(单位:千件)进行统计,最近100周的统计结果如下表所示:
(1)根据上面统计结果,求周销售量分别为2千件,3千件和4千件的频率;
(2)已知每千件该种成衣的销售利润为2千元,ξ表示该种成衣两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.
17. (本小题满分14分)
如图,在直三棱柱111ABC A B C -中,AC BC ⊥,11,2AC BC CC ===,点D 、E 分别是1AA 、1CC 的中点.
(1)求证://AE 平面1BC D ; (2)证明:平面1BC D ⊥平面BCD ; (3)求CD 与平面1BC D 所成角的正切值.
18. (本小题满分14分)
某出版社新出版一本高考复习用书,该书的成本为5元/本,经销过程中每本书需付给代理商m 元(1≤m ≤3)的劳务费,经出版社研究决定,新书投放市场后定价为x 元/本(9≤x ≤11),预计一年的销售量为2
)20(x -万本.
(1)求该出版社一年的利润L (万元)与每本书的定价x 的函数关系式;
(2)当每本书的定价为多少元时,该出版社一年的利润L 最大,并求出L 的最大值)(m R .
A 1
B 1
D
A B
C
图5
19. (本小题满分14分)
已知椭圆22
221(0)x y a b a b
+=>>的一个焦点F 与抛物线24y x =的焦点重合,且截抛物线
45的直线l 过点F . (1)求该椭圆的方程;
(2)设椭圆的另一个焦点为1F ,问抛物线x y 42=上是否存在一点M ,使得M 与1F 关于
直线l 对称,若存在,求出点M 的坐标,若不存在,说明理由.
20. (本小题满分14分)
已知数列{}n a ,122a a ==,112(2)n n n a a a n +-=+≥ (1)求数列{}n a 的通项公式n a . (2)当2n ≥时,求证:
12111
...3n
a a a +++< (3)若函数()f x 满足:2*1(1),(1)()().()f a f n f n f n n N =+=+∈, 求证:
1
11
.()12n
k f k =<+∑。

相关文档
最新文档