土的压缩性和地基沉降计算课件
合集下载
土力学土的压缩性和地基沉降计算课件

• 土的压缩性概述 • 土的压缩性原理 • 地基沉降计算方法 • 地基沉降案例分析 • 地基沉降控制措施
土压缩性的定义 01 02
土压缩性的重要性
01
02
地基沉降
地下工程
03 水利工程
土压缩性的影响因素
含水量
颗粒组成
孔隙比
压力
含水量越高,土的压缩 性越大。
颗粒越细,土的压缩性 越大。
孔隙比越大,土的压缩 性越大。
压力越大,土的压缩性 越大。
土的孔隙与孔隙水压力
土是由固体颗粒、水和空气组成的复杂体系,其中孔隙是土中未被固体颗粒占据的 空间,孔隙水压力是孔隙中的水受到的压力。
土的压缩性是指土在压力作用下体积减小的性质,这一过程伴随着孔隙水压力的变化。
孔隙水压力的变化会影响土的压缩性,例如在排水条件下,孔隙水压力减小,土的 压缩性增强。
详细描述
水库大坝的地基沉降分析需要考虑大坝的重量、地基土的物理性质、地下水位等 因素。通过精确的计算和分析,可以预测大坝的沉降量,并采取相应的措施进行 控制,确保大坝的安全和稳定运行。
地基处理方法
01
02
03
04
换填法
预压法
强夯法
桩基法
施工监控与检测
沉降观测
。
土压力监测
地下水位监测 质量检测
预防与应急措施
制定应急预案
储备应急物资
加强巡查 与专业机构合作
土的压缩性指标
土的压缩性可以通过压缩试验进行测定,常用的压缩性指标包括压缩系 数、压缩模量、泊松比等。
压缩系数是描述土压缩性随压力变化的关系曲线,该曲线呈非线性;压 缩模量是在一定压力范围内,土的应力与应变之比;泊松比是横向应变
土压缩性的定义 01 02
土压缩性的重要性
01
02
地基沉降
地下工程
03 水利工程
土压缩性的影响因素
含水量
颗粒组成
孔隙比
压力
含水量越高,土的压缩 性越大。
颗粒越细,土的压缩性 越大。
孔隙比越大,土的压缩 性越大。
压力越大,土的压缩性 越大。
土的孔隙与孔隙水压力
土是由固体颗粒、水和空气组成的复杂体系,其中孔隙是土中未被固体颗粒占据的 空间,孔隙水压力是孔隙中的水受到的压力。
土的压缩性是指土在压力作用下体积减小的性质,这一过程伴随着孔隙水压力的变化。
孔隙水压力的变化会影响土的压缩性,例如在排水条件下,孔隙水压力减小,土的 压缩性增强。
详细描述
水库大坝的地基沉降分析需要考虑大坝的重量、地基土的物理性质、地下水位等 因素。通过精确的计算和分析,可以预测大坝的沉降量,并采取相应的措施进行 控制,确保大坝的安全和稳定运行。
地基处理方法
01
02
03
04
换填法
预压法
强夯法
桩基法
施工监控与检测
沉降观测
。
土压力监测
地下水位监测 质量检测
预防与应急措施
制定应急预案
储备应急物资
加强巡查 与专业机构合作
土的压缩性指标
土的压缩性可以通过压缩试验进行测定,常用的压缩性指标包括压缩系 数、压缩模量、泊松比等。
压缩系数是描述土压缩性随压力变化的关系曲线,该曲线呈非线性;压 缩模量是在一定压力范围内,土的应力与应变之比;泊松比是横向应变
土力学 第4章 土的压缩性与地基沉降计算

变形测量 固结容器
百分表
加压上盖
透水石
环刀 压缩
容器
加
压
试样
护环
支架
设 备
《土力学》 第4章 土的压缩性与地基沉降计算
(2)利用受压前后土粒体积不变和土样截面面积不变两个
条件,可求土样压缩稳定后孔隙比ei
受压前
:VS
(1
e 0
)
H
0
A
受压后:VS (1 e1) H1A
Vs
H 0
A
《土力学》 第4章 土的压缩性与地基沉降计算
土的固结状态对土的压缩性的影响:
在压力p作用下的地基沉降值si: 正常固结土为s1; 超固结土为s2; 欠固结土为s3。
则有:s2<s1<s3
《土力学》 第4章 土的压缩性与地基沉降计算
pc卡萨格兰德法
① 在e–lgp坐标上绘出试样
的室内压缩曲线; ② 找出压缩曲线上曲率最
Cc
lg
e1 p2
e2 lg
p1
e1 e2 lg p2
p1
一般认为:
cc<0.2时, 为低压缩性土; cc=0.2~0.4时,属中压缩性土; cc>0.4时, 属高压缩性土。
图5-6 由e-lgp曲线确定压缩系数cc
《土力学》
第4章 土的压缩性与ຫໍສະໝຸດ 基沉降计算(5)土的回弹与再压缩曲线
H1
A
1e 1e
0
1
受压前后Vs,A不变
H0 H1 H0 s1 1 e0 1 e1 1 e1
e1
e0
s1 H0
1
e0
式中 e0 为土的初始孔隙比,可由土的三个基本实验指标求得,即
土的压缩性及沉降计算课件

p1
压缩指数Cc与压缩系数 a 不同, 它在压力较大时 为常数, 不随压力变化而变化。
Cc值越大, 土的压缩性越高, 低压缩性土的Cc一 般小于0.2, 高压缩性土的Cc值一般大于0.4。
二、现场荷载试验 1.试验方法 现场载荷试验是在工
程现场 通过千斤顶逐级对置于
地基土 上的载荷板施加荷载,
观测记 录沉降随时间的发展以
二、计算公式
1.各薄层压缩量计算公式
设第i薄层土的竖应力从p1i增加到p2i, 其变
形稳定后的压缩量为△si, 薄层厚度为hi,
z
si hi
e1i e2i 1e1i
si
e1i e2i 1e1i
hi
由压缩模量的定义知:
Esi
p si
si
p Esi
hi
hi
si
zi
E si
hi
2.各薄层压缩量求和公式
应用图查出横坐标时间因子。
5.计算时间t。由地基土的性质指标和土层厚度,计算每一
的时间t。 6.计算时间t的沉降量
St UtS
7.绘制St与t的曲线。以计算的St为纵坐标, 时间t为横坐标, 在直角坐标系中, 绘制St-t关系曲线, 则可求任意时间t的沉降量。
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
si
e1i e2i 1e1i
hi
n
Sn Si
1
确定压缩层的计算深度 压缩层的计算深度一般要经过试算才能得到。规范规定: 如已确定的计算深度下有较软土层时,尚应继续计算,直到 软弱土层中1米厚的压缩量满足下式要求为止
Sn / 0.02S 5n
某水中基础如图所示,基底尺寸为6m×12m,作用于基底 的中心荷载Ⅳ: 17490kN(只考虑恒载作用,其中包括基础重 力及水的浮力),基础埋置深度h=3.5m,地基上层为透水的 亚砂土,其r=19.3lkN/m3,下层为硬塑粘土,r=18.6kN/ m3,求基础中心下各点(1—7点)的竖向自重应力和附加应力, 并画出应力分布图。
压缩指数Cc与压缩系数 a 不同, 它在压力较大时 为常数, 不随压力变化而变化。
Cc值越大, 土的压缩性越高, 低压缩性土的Cc一 般小于0.2, 高压缩性土的Cc值一般大于0.4。
二、现场荷载试验 1.试验方法 现场载荷试验是在工
程现场 通过千斤顶逐级对置于
地基土 上的载荷板施加荷载,
观测记 录沉降随时间的发展以
二、计算公式
1.各薄层压缩量计算公式
设第i薄层土的竖应力从p1i增加到p2i, 其变
形稳定后的压缩量为△si, 薄层厚度为hi,
z
si hi
e1i e2i 1e1i
si
e1i e2i 1e1i
hi
由压缩模量的定义知:
Esi
p si
si
p Esi
hi
hi
si
zi
E si
hi
2.各薄层压缩量求和公式
应用图查出横坐标时间因子。
5.计算时间t。由地基土的性质指标和土层厚度,计算每一
的时间t。 6.计算时间t的沉降量
St UtS
7.绘制St与t的曲线。以计算的St为纵坐标, 时间t为横坐标, 在直角坐标系中, 绘制St-t关系曲线, 则可求任意时间t的沉降量。
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
si
e1i e2i 1e1i
hi
n
Sn Si
1
确定压缩层的计算深度 压缩层的计算深度一般要经过试算才能得到。规范规定: 如已确定的计算深度下有较软土层时,尚应继续计算,直到 软弱土层中1米厚的压缩量满足下式要求为止
Sn / 0.02S 5n
某水中基础如图所示,基底尺寸为6m×12m,作用于基底 的中心荷载Ⅳ: 17490kN(只考虑恒载作用,其中包括基础重 力及水的浮力),基础埋置深度h=3.5m,地基上层为透水的 亚砂土,其r=19.3lkN/m3,下层为硬塑粘土,r=18.6kN/ m3,求基础中心下各点(1—7点)的竖向自重应力和附加应力, 并画出应力分布图。
第4章-土的压缩性

e1
0.9
e2
0.8
0.7
e
p
高压缩性土 中压缩性土
0.6
p1 p2 e-p曲线
p(kPa )
低压缩性土
§4.2 土的压缩特性
三、土的压缩性指标
(三)压缩指数与回弹再压缩指数 e
1.0 0.9 0.8
1
Cc
在较高的压力范围内, e-lgp曲线近似地为一直线,可 用直线的坡度——压缩指数Cc 来表示土的压缩性高低,即
z
z
z
2 2 z 2 2 E 1 Es 1 z 1 1
无侧向变形条件下二者的理论关系式,用于由Es 求E ,Es恒小于E
§4.2 土的压缩特性
三、土的压缩性指标
土体在侧限条件下孔隙比减 少量与有效压应力增量的比 值(MPa-1)。
§4.4 地基沉降计算的e-p曲线法
一、分层总和法简介
h0
t0
附加应力: z=p 附加有效应力: z=0
0t
附加应力:σz=p 附加有效应力:σz>0
t
附加应力:σz=p 超静孔压: u =0
超静孔隙水压力: u=z=p 超静孔压: u <p
u+ Z'=p
u+ Z'=p
附加有效应力:σz=p
u+ Z'=p
§4.2 土的压缩特性
压缩系数av:
av
e1 e 2 p 2 p1
av mV = 体积压缩系数mv: 1 e1 土在侧限条件下的竖向应变 与应力之比。
e1 e2 Cc 压缩指数Cc: lg p2 lg p1 土体在侧限条件下孔隙比减 少量与有效压应力常用对数 值增量的比值。
土的变形性质及地基沉降计算PPT演示课件

第四章 土的变形(deformation) 性质及地基沉降(settlement)计算
1
§ 4.1 土的弹性变形性质
应力水平不高,将地基当成弹性半无限体,有:
垂直方向的应变z:
z
1 E0
z
v ( x
y )
若土层厚度为hc,则地基沉降(变形)S为:
S
hc 0
e1 e 0 p1 p0
e0
e de
p dp
e1
p0 100kPa p1 200kPa
p0
p1
p
标准压缩系数a1-2
0.1
0.5
低压缩性 中压缩性
高压缩性
a12 / MPa 1
6
说明: (1)在整个曲线上av不是常数,也就是说av与压力大 小有关。 (2)av是衡量土压缩性的一个重要指标,av大表示土 的压缩性大,av小表示土的压缩性小(即压缩曲线的 平缓程度)。 (3)根据试验所得压缩曲线,可以推求在一定压力作 用下,土样的下沉量。
14
§ 4.4 地基沉降(settlement)计算
一、沉降分析
瞬时沉降
荷载刚加上,在很短的时间内产生的沉降,一般采用弹 性理论计算(砂土等)
主固结沉降
(渗透固结沉降):饱和粘土地基在荷载作用下,孔隙 水被挤出而产生渗透固结的结果(含有机质较少的粘性 土)
次固结沉降
孔隙水停止挤出后,颗粒和结和水之间的剩余应力尚在 调整而引起的沉降(含有机质较多的粘性土)
4
记录: P1 P2 P3…… Pi …… Pn h1 h2 h3 ……hi ……hn
计算: e1 e2 e3 ……ei……en
ei
1
§ 4.1 土的弹性变形性质
应力水平不高,将地基当成弹性半无限体,有:
垂直方向的应变z:
z
1 E0
z
v ( x
y )
若土层厚度为hc,则地基沉降(变形)S为:
S
hc 0
e1 e 0 p1 p0
e0
e de
p dp
e1
p0 100kPa p1 200kPa
p0
p1
p
标准压缩系数a1-2
0.1
0.5
低压缩性 中压缩性
高压缩性
a12 / MPa 1
6
说明: (1)在整个曲线上av不是常数,也就是说av与压力大 小有关。 (2)av是衡量土压缩性的一个重要指标,av大表示土 的压缩性大,av小表示土的压缩性小(即压缩曲线的 平缓程度)。 (3)根据试验所得压缩曲线,可以推求在一定压力作 用下,土样的下沉量。
14
§ 4.4 地基沉降(settlement)计算
一、沉降分析
瞬时沉降
荷载刚加上,在很短的时间内产生的沉降,一般采用弹 性理论计算(砂土等)
主固结沉降
(渗透固结沉降):饱和粘土地基在荷载作用下,孔隙 水被挤出而产生渗透固结的结果(含有机质较少的粘性 土)
次固结沉降
孔隙水停止挤出后,颗粒和结和水之间的剩余应力尚在 调整而引起的沉降(含有机质较多的粘性土)
4
记录: P1 P2 P3…… Pi …… Pn h1 h2 h3 ……hi ……hn
计算: e1 e2 e3 ……ei……en
ei
Chapt3-6-土的压缩性和地基沉降计算-地基的最终沉降量-分层总和法

例题…2
【解】(1)由L/B=10/5=2<10可知,属于空间问题,且为中心荷载,所
以基底压力/接触压力为
p
P
10000 200kPa
LB 10 5
基底净压力/附加压力为 p0 p d 200 20 1.5 170kPa
(2)因为是均质土,且地下水位在基底下列2.5m处,取分层厚度2.5m
p0 p d 94kPa
5.计算基础中点下地基中附加应力
用角点法计算,过基底中点将荷载面四等分,计算边长l=b=2m, σz=4Kcp0,Kc由表拟定
z(m) z/b Kc σz(kPa) σc(kPa) σz /σc
0
0 0.2500 94.0 16
zn (m)
1.2 0.6 0.2229 83.8 35.2
1.绘制基础中心点下地基中自重应力和附加应力分布曲 线
2.拟定地基沉降计算深度 3.拟定沉降计算深度范围内旳分层界面 4.计算各分层沉降量 5.计算基础最终沉降量
• 绘制基础中心点下地基中自 重应力和附加应力分布曲线 d
拟定基础沉降计算深度
一般取附加应力与自重应力
旳比值为20%处,即σz=0.2σc
计算成果偏大 两者在一定程度上相互抵消误差,但精确误差难以估计
2.分层总和法中附加应力计算应考虑土体在自重作用下旳 固结程度,未完全固结旳土应考虑因为固结引起旳沉降量
相邻荷载对沉降量有较大旳影响,在附加应力计算中应考 虑相邻荷载旳作用
3.当建筑物基础埋置较深时,应考虑开挖基坑时地基土旳 回弹,建筑物施工时又产生地基土再压缩旳情况
形,可采用侧限条件下旳压缩性指标 旳沉降代表基础
2.单一压缩土层旳沉降计算
旳平均沉降
土的压缩性与地基沉降计算

式中:Cd:次固结系数, e-logt曲线上后段的斜率。 t:所求次固结沉降的时间; tt:主固节达100%时的时间; e0i:第i层土在主固结为100%时的孔隙比
地基瞬时沉降Sd的计算
饱和粘性土的瞬时沉降,可近似按弹性力学公式 计算:
Sd=·(1- 2)·P·B/E
地基的最终沉降量
概述 1)定义:地基的最终沉降量是指地基土层在附
甲:被影响建筑物 乙:影响建筑物 第1步:用角点法计算P0范围(2 abed)的荷载在O点下
任意深度引起的附加应力σz
划分网格:I区: oabc II区: odec
(σz )O= 2 (cI- CII) P0 第2步:用分层法或规范法计算σz
在甲地基中查生的沉降即为所求。
地基沉降与时间的关系
前面讲述的是地基的最终沉降量计算,有时对于饱和软粘土地 基尚需研究地基的沉降过程或在某一个时间点的沉降大小。所 以要研究地基沉降与时间的关系。
详细过程请参照黑板.
2、推荐公式
3、参数释义
σi :基底中心O点以下深度Z i 范围的平均附加应力,kpa σi-1:基底中心O点以下深度Z i-1 范围的平均附加应力,kpa i :基底中心O点以下深度Z i 范围的平均附加应力系数 i-1 :基底中心O点以下深度Z i-1 范围的平均附加应力系数 Z i :自基础底面至第i层土底面的垂直距离,m,cm. Zi-1 :自基础底面至第i-1层土底面的垂直距离,m,cm. Esi:第i层土的侧限压缩模量,Mpa S’:未作修正时按理论计算的地基沉降量大小.m,cm. n:地基压缩层范围内按天然土层界面划分的土层数 S:修正后地基的最终沉降量. s:沉降计算经验系数,由Es 、 P0查表5.3,可以内插.
瞬时沉降; 主固结沉降
地基瞬时沉降Sd的计算
饱和粘性土的瞬时沉降,可近似按弹性力学公式 计算:
Sd=·(1- 2)·P·B/E
地基的最终沉降量
概述 1)定义:地基的最终沉降量是指地基土层在附
甲:被影响建筑物 乙:影响建筑物 第1步:用角点法计算P0范围(2 abed)的荷载在O点下
任意深度引起的附加应力σz
划分网格:I区: oabc II区: odec
(σz )O= 2 (cI- CII) P0 第2步:用分层法或规范法计算σz
在甲地基中查生的沉降即为所求。
地基沉降与时间的关系
前面讲述的是地基的最终沉降量计算,有时对于饱和软粘土地 基尚需研究地基的沉降过程或在某一个时间点的沉降大小。所 以要研究地基沉降与时间的关系。
详细过程请参照黑板.
2、推荐公式
3、参数释义
σi :基底中心O点以下深度Z i 范围的平均附加应力,kpa σi-1:基底中心O点以下深度Z i-1 范围的平均附加应力,kpa i :基底中心O点以下深度Z i 范围的平均附加应力系数 i-1 :基底中心O点以下深度Z i-1 范围的平均附加应力系数 Z i :自基础底面至第i层土底面的垂直距离,m,cm. Zi-1 :自基础底面至第i-1层土底面的垂直距离,m,cm. Esi:第i层土的侧限压缩模量,Mpa S’:未作修正时按理论计算的地基沉降量大小.m,cm. n:地基压缩层范围内按天然土层界面划分的土层数 S:修正后地基的最终沉降量. s:沉降计算经验系数,由Es 、 P0查表5.3,可以内插.
瞬时沉降; 主固结沉降
土力学课件第四章土的压缩性和地基沉降计算

《土工试验方法标准》 土的类别 a1-2 (MPa-1)
e
'
100 200 300 400
高压缩性土 中压缩性土 低压缩性土
0.5
[0.1,0.5) <0.1
p (kPa)
土的压缩性及压缩性指标
(2)压缩指数 土的固结试验的结果也可以绘在半对数坐标上,即坐标横 轴p用对数 坐标,而纵轴e用普通坐标,由此得到的压缩 曲线称为e~lgp曲线。 在较高的压力范围内,e~lgp曲线 近似地为一直线,可用直线的斜率 ——压缩指数Cc来表 示土的压缩性高低,即
量互为倒数。
e1 1
e
孔隙
1 a mv Es 1 e1
p 1 e1 Es e /(1 e1 ) a
固体颗粒
土的压缩性及压缩性指标
§4.2.3 土的荷载试验及变形模量
1、现场荷载试验
教材117
土的压缩性及压缩性指标
土的压缩性及压缩性指标
2、土的侧压力系数及变形模量 土的侧压力系数,K0,是指侧限条件下土中侧向应力与竖向应 力之比。 x y K0 x K0 z z z K0与泊松比有如下关系:
土的压缩性及压缩性指标
侧限压缩试验 变形测量 侧限压缩仪(固结仪) 固结容器
固结容器:
环刀、护环、导环、透水 石、加压上盖和量表架等 加压设备:杠杆比例1:10 变形测量设备 加 压 设 备
支架
土的压缩性及压缩性指标
•只在竖直方向上进行压缩
•变形是由孔隙体积的减小引起的
A H0 A (H0 S ) 1 e0 1 e1 ei av S e0 e1 H0 1 e0
计算基底应力计算基底处附加应力kpa75kpa251675计算地基中的附加应力地基受压层厚度zn确定地基沉降计算分层计算各层土的压缩量计算地基中的附加应力地基受压层厚度zn确定地基沉降计算分层计算各层土的压缩量43地基沉降量计算柱基础中点最终沉降量16971442916596465mm自基底深度z土层厚度自重应力kpa附加应力kpa孔隙比附加应力平均值kpa分层土压缩变形量165100250097251212363100602229866009591931697251357751012501461577609572101442411671351020500811315109544649166019875103000044717390952445596表46分层总和法计算地基沉降量表46分层总和法计算地基沉降量43地基沉降量计算例题42墙下条形基础宽度为20m传至地面的荷载为100knm基础理置深度为12m地下水位在基底以下06m如下图所示地基土的室内压缩试验试验ep数据下表所示用分层总和法求基础中点的沉降量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据分层总和法基本原理可得成 层地基最终沉降量的基本公式
2020/6/10
si n1sii n1E ps0i(zi izi1 i1)
地基沉降计算深度 zn应该满足的条件
n
sn 0.025 si i1
当确定沉降计算深度下有软弱土层时,尚应向下继续计
算,直至软弱土层中所取规定厚度的计算沉降量也满足上
层量s土等的于压△s缩i的变总形和量△si,基础的平均沉降
i第i层土的
压缩应变
2020/6/10
n
n
s si iHi
i1
i1
i土的压缩应变
i
e 1 ie2i 1e 1 i
a i(p 2ip 1 i) p i
1e 1 i
E si
e1i———由第i层的自重应力均值从土的压缩曲线上 得到的相应孔隙比 e2i———由第i层的自重应力均值与附加应力均值之 和从土的压缩曲线上得到的相应孔隙比
E ps 0i(zi
i zi1
) i1
i、i-1——基础底面至第i层土、第i-1层土底面范围内平
均附加应力系数
202z0i/、6/10zi-1——基础底面至第i层土、第i-1层土底面的距离(m)
• 三、地基沉降计算中的有关问题
1.分层总和法在计算中假定不符合实际情况 假定地基无侧向变形
计算结果偏小 计算采用基础中心点下土的附加应力和沉降
(p2i
p1i)
5.列表计算各层沉降量△si
z(m) l/b z/b
z
(m)
izi- i-1zi-1 Esi
(m) (kPa)
e2
△s
s
(mm) (mm)
0 1 0 0.2500 0
1.2
0.6 0.2423 0.2908 0.2908 5292 0.937 20.7
2.4
1.2 0.2149 0.5158 0.2250 5771 0.936 14.7
e2-0p20压/6/1缩0 曲线计算任一分层沉降量
地基沉降计算深度
σc线
σz线
si
e1i e2i 1e1i
hi
计算基础最终沉降量
n
s si i 1
• 二、《规范》法
由《建筑地基基础设计规范》(GB50007-2019)提出
分层总和法的另一种形式 沿用分层总和法的假设,并引入平均附加应力系数和地
基沉降计算经验系数
均质地基土,在侧限条件下,压缩模量Es不随深度而变,
从基底至深度z的压缩量为
szzd z 1 zd z A
0Es
Es 0 z
Es
深度z范围内的 附加应力面积
附加应力面积
z
z
A
0
z
dz
p0
Kdz
0
附加应力通 代入 式σz=K p0
引入平均附 加应力系数
z
0
Kdz
A
z
p0 z
形。
2020/6/10
△p
∞
s
∞ 土层竖向应力由p1增加到p2, 引起孔隙比从e1减小到e2,
竖向应力增量为△p
可压缩土层
H1
H0
sH1H2
由于
e1e2 1e1
H1
ae=e1 e2
所以
p p2 p1
3.单向压缩分层总和法
s1 ae1(p2p1)H 1 E p s H 1
分别计算基础中心点下地基中各个分
2.计算地基土的自重应力 自重应力从天然地面起算,z 的取值从基底面起算
3.4m d=1m
b=4m
z(m) 0 1.2 2.4 4.0 5.6 7.2
σc(kPa) 16 35.2 54.4 65.9 77.4 89.0
3.计算基底压力
GGAd 32k0N
2020/6/10
pFG11k0Pa A
4.计算基底附加压力
基础最终沉降(已知fk=94kPa)
2020/6/10
3.4m d=1 m
F=1440kN b=4m
e
0.96 0.94 0.92 0.90
50 100 200
300 σ
• 【解答】 A.分层总和法计算
F=1440kN
1.计算分层厚度
每层厚度hi <0.4b=1.6m,地 下水位以上分两层,各1.2m, 地下水位以下按1.6m分层
土体在侧限条件下孔隙比减少量与竖向压应力增量的比值
e
e0
e1 △e M1
e2
△p
斜a 率 e=e1e2 p p2p1
利用单位压力增量所引起 得孔隙比改变表征土的压
缩性高低
M2
a de
dp
p1e-p曲线p2
p 在压缩曲线中,实际采 用割线斜率表示土的压
《规范》用p1=100kPa、 p2=200kPa 缩性
• 一、分层总和法
1.基本假设
为了弥补假定
地基是均质、各向同性的半无限线性 变形体,可按弹性理论计算土中应力
在压力作用下,地基土不产生侧向变
所引起误差,取 基底中心点下的 附加应力进行计 算,以基底中点
形,可采用侧限条件下的压缩性指标 的沉降代表基础
2.单一压缩土层的沉降计算
的平均沉降
在一定均匀厚度土层上施加连续均布 荷载,竖向应力增加,孔隙比相应减 小,土层产生压缩变形,没有侧向变
因此附加应力 2020/6/面10 积表示为
A p0z
因此
s
p0
z Es
zi zi-1
zi-1
zi
地基沉降计算深度zn
1 b 56 第i层 34 第n层
p0
2
1
2
Ai
34
ip0
p0
1 5
Ai-16
2
i-1p0
△z
利用附加应力面积A的等代值计算地基任意深度范围内的
沉降量,因此第i层沉降量为
s i s i s i 1 A i E s A ii 1 E p s 0( iz i i z i 1i 1 )
按分层总和法求得基础最终沉降量为s=Σsi =54.7mm B.《规范》法计算
1. σc 、σz分布及p0计算值见分层总和法计算过程
2. 确定沉降计算深度
3. 确定各层Esi
zn=b(2.5-b)=7.8m
4. 根据计算尺寸,查表得 2020/到6/10平均附加应力系数
Esi
1e1i e1i e2i
式,若计算深度范围内存在基岩,zn可取至基岩表面为止
当无相邻荷载影响,基础宽度在1~30m范围内,基础中
点的地基沉降计算深度可以按简化公式计算
znb (2 .5 0 .4ln b )
为了提高计算精度,地基沉降量乘以一个沉降计算经验系
数s,可以查有关系数表得到
地基最终沉降 量修正公式
s
ss
s
n i1
p0pd9k4Pa
5.计算基础中点下地基中附加应力
用角点法计算,过基底中点将荷载面四等分,计算边长l=b=2m, σz=4Kcp0,Kc由表确定
z(m) z/b Kc σz(kPa) σc(kPa) σz /σc
0
0 0.2500 94.0 16
zn (m)
1.2 0.6 0.2229 83.8 35.2
2020/6/10
回弹在压缩影 响的变形量
sc
c
n i1
E Pc ci(zi
izi1 ) i1
式中:
sc——考虑回弹再压缩影响的地基变形
计算深度取至 基坑底面以下 5m,当基坑底 面在地下水位 以下时取10m
Eci——土的回弹再压缩模量,按相关试验确定
c——考虑回弹影响的沉降计算经验系数,取1.0
2.4 1.2 0.1516 57.0 54.4
4.0 2.0 0.0840 31.6 65.9
5.6 2.8 0.0502 18.9 77.4 0.24
7.2 3.6 0.0326 12.3 89.0 0.14 7.2
6.确定沉降计算深度zn
根据σz = 0.2σc的确定原则,由计算结果,取zn=7.2m
2020/6/10
三联固结仪
• 1.压缩仪示意图
加压活塞 刚性护环
荷载 透水石 环刀
土样
注意:土样在竖直压 力作用下,由于环刀 和刚性护环的限制, 只产生竖向压缩,不 产生侧向变形
2020/6/10
透水石
底座
• 2.e-p曲线 研究土在不同压力作用下,孔隙比变化规律
p
s
Vv=e0 Vs=1
H1
Vv=e Vs=1
7.最终沉降计算
根据e-σ曲线,计算各层的沉降量
2020/6/10
z(m)
σc
σz
h σc
σz σz+ σc
(kPa) (kPa) (mm) (kPa) (kPa) (kPa)
e1
e2
e1i- e2i 1+ e1i
si (mm)
0 16 94.0 1.2 35.2 83.8 1200 25.6 88.9 114.5 0.970 0.937 0.0618 20.2 2.4 54.4 57.0 1600 44.8 70.4 115.2 0.960 0.936 0.0122 14.6 4.0 65.9 31.6 1600 60.2 44.3 104.5 0.954 0.940 0.0072 11.5 5.6 77.4 18.9 1600 71.7 25.3 97.0 0.948 0.942 0.0031 5.0 7.2 89.0 12.3 1600 83.2 15.6 98.8 0.944 0.940 0.0021 3.4
e e0