概率
概率的基本公式大全

概率的基本公式大全
人们普遍认为,概率是一种衡量事件发生率的统计工具,它能够
衡量我们不确定的结果,但是什么是概率的公式呢?最基本的概率公
式是概率的乘法(P)。
概率的乘法(P)是指两个不同事件A和B之间的概率,它可以
用以下公式表示:
P(A和B)= P(A)×P(B)
这个公式表明,如果要计算A和B发生的概率,只需要计算A和
B分别发生的概率,然后相乘即可。
边缘概率是一种对事件发生率没有明确关联性的概率计算方法,
它可以用以下公式概括:
P(A)= Σ(P(Ai)×P(B/Ai))
其中,Ai代表A的不同的子类,P(Ai)表示子类Ai发生的概率,P(B/Ai)表示B在Ai发生的情况下发生的概率。
贝叶斯公式是统计学中应用最广泛的一种概率计算公式,它最早
由英国数学家贝叶斯提出,它的表达形式如下:
P(A/B)= P(B/A)×P(A)/P(B)
这表表示,A发生的概率受到B事件发生的概率影响,即A发生
的概率与B发生的概率有关。
总之,概率计算是一个复杂的过程,上面介绍的概率公式只是其
中最基本的几种,但是它们对于解决复杂问题等有着很强的能力。
由
此可见,掌握概率计算的基础理论以及应用这些公式分析问题的能力,对我们的判断和掌握现代社会的未来发展至关重要。
概率公式大全

概率公式大全概率公式大全(上篇)概率公式在概率论中起着非常重要的作用,它们用于描述随机事件的发生概率以及事件之间的关系。
本文将介绍一些常见的概率公式,帮助读者更好地理解和应用概率论。
1. 基本概率公式1) 事件的概率公式:在概率论中,事件的概率通常用P(A)表示,其中A表示一个事件。
事件A的概率可以用下述公式计算:P(A) = N(A) / N(S)其中,N(A)表示事件A发生的次数,N(S)表示样本空间S 中的总次数。
2) 样本空间的概率公式:当样本空间S的每个样本点发生的概率相同且为1/N(S)时,我们可以使用下述公式计算事件A的概率:P(A) = N(A) / N(S)这个公式在实际问题中应用广泛,是基本的概率公式之一。
2. 条件概率公式1) 条件概率的定义:在事件B发生的条件下,事件A发生的概率称为A在B 条件下的条件概率,用P(A|B)表示。
条件概率的计算公式如下:P(A|B) = P(A ∩ B) / P(B)其中,P(A ∩ B)表示事件A与事件B同时发生的概率。
2) 乘法公式:乘法公式是条件概率的推广形式,用于计算两个事件同时发生的概率。
根据乘法公式,我们可以得到:P(A ∩ B) = P(A|B) * P(B)这个公式在计算复杂事件的概率时非常有用。
3. 全概率公式全概率公式用于计算一个事件发生的总概率,它假设事件发生的样本空间可以划分为若干个互斥事件。
全概率公式如下:P(A) = Σi P(A|Bi) * P(Bi)其中,Bi表示样本空间S的一个划分,P(A|Bi)表示在Bi条件下事件A发生的概率。
这个公式可以在一些复杂问题中计算事件发生的概率,非常实用。
4. 贝叶斯公式贝叶斯公式是条件概率公式的逆运算,用于通过已知的条件概率反推出相反的条件概率。
根据贝叶斯公式,可以得到:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A)和P(B)分别表示事件A和事件B的概率。
有关概率的公式

有关概率的公式概率是描述事件发生可能性的一种数学概念。
它可以帮助我们预测和分析事件发生的可能性,而概率公式则是用来计算概率的数学公式。
首先,我们需要了解一些基本的概率概念。
在概率论中,事件的概率通常用P(A)来表示,其中A是一个事件。
概率的取值范围在0到1之间,0表示不可能发生,1表示必然发生。
在计算概率时,我们尝试使用一些公式和规则来辅助计算。
下面是一些常用的概率公式:1.加法法则:P(A或B)=P(A)+P(B)-P(A且B)加法法则用于计算两个事件中至少一个事件发生的概率。
P(A或B)表示事件A或事件B发生的概率,P(A且B)表示事件A和事件B同时发生的概率。
2.乘法法则:P(A且B)=P(A)某P(B,A)乘法法则用于计算两个事件同时发生的概率。
P(A且B)表示事件A和事件B同时发生的概率,P(B,A)表示在事件A发生的条件下,事件B发生的概率。
3.条件概率:P(A,B)=P(A且B)/P(B)条件概率用于计算在已知事件B发生的条件下,事件A发生的概率。
P(A,B)表示在事件B发生的条件下,事件A发生的概率,P(A且B)表示事件A和事件B同时发生的概率。
4.独立事件:如果两个事件A和B是相互独立的,那么P(A且B)=P(A)某P(B)。
5.贝叶斯定理:P(A,B)=(P(B,A)某P(A))/P(B)贝叶斯定理用于计算在已知事件B发生的条件下,事件A发生的概率。
P(A,B)表示在事件B发生的条件下,事件A发生的概率,P(B,A)表示在事件A发生的条件下,事件B发生的概率,P(A)和P(B)分别表示事件A和事件B的概率。
6.全概率公式:P(B)=Σ(P(Ai)某P(B,Ai))全概率公式用于计算事件B的概率。
假设事件A1,A2,...,An是样本空间的一个划分(即这些事件互不相交且并集等于样本空间),P(Ai)表示事件Ai的概率,P(B,Ai)表示在事件Ai发生的条件下,事件B发生的概率。
随机概率公式大全

随机概率公式大全
1、事件的绝对概率公式
P(A) = n(A) / n(S),其中P(A)表示事件A发生的概率,n(A)表示事件A发生的次数,n(S)表示样本空间S中的元素个数。
2、事件的相对概率公式
P(A) = f(A) / f(S),其中P(A)表示事件A发生的概率,f(A)表示事件A发生的频率,f(S)表示样本空间S中的频率总和。
3、事件的条件概率公式
P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
4、事件的加法法则
P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B 发生的概率,P(A)和P(B)分别表示事件A和事件B发生的概率,P(A ∩B)表示事件A和事件B同时发生的概率。
5、事件的乘法法则
P(A∩B) = P(A) * P(B|A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率。
6、事件的全概率公式
P(A) = ΣP(A|B) * P(B),其中P(A)表示事件A发生的概率,P(A|B)表示在事件B发生的条件下事件A发生的概率,P(B)表示事件B发生
的概率,Σ表示对所有可能的事件B求和。
7、事件的贝叶斯公式
P(B|A) = P(A|B) * P(B) / P(A),其中P(B|A)表示在事件A发生的条件下事件B发生的概率,P(A|B)表示在事件B发生的条件下事件A发生的概率,P(B)表示事件B发生的概率,P(A)表示事件A发生的概率。
什么是概率

什么是概率(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如英语单词、英语语法、英语听力、英语知识点、语文知识点、文言文、数学公式、数学知识点、作文大全、其他资料等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of classic sample essays, such as English words, English grammar, English listening, English knowledge points, Chinese knowledge points, classical Chinese, mathematical formulas, mathematics knowledge points, composition books, other materials, etc. Learn about the different formats and writing styles of sample essays, so stay tuned!什么是概率定义概率是用来衡量在一定条件下,某事件发生的可能性的大小的。
概率的基本概念与计算

概率的基本概念与计算概率是指某个事件发生的可能性或者可能发生的程度。
在数学上,概率通常用一个介于0和1之间的数字来表示,其中0代表不可能发生,1代表一定会发生。
这篇文章将介绍概率的基本概念和计算方法。
基本概念事件是指一个可能发生或者不发生的行动或事情。
例如,抛一枚硬币会出现正面或反面,这就是一个事件。
把一个骰子扔在桌子上,会出现1到6的其中一个数字,这也是一个事件。
在概率中,事件通常用大写字母来表示,例如A、B、C等等。
样本空间是指一个事件发生的所有可能结果的集合。
例如,抛一枚硬币可以出现正面或反面,所以样本空间可以写为{正面,反面}。
扔一个骰子可以出现1、2、3、4、5或6,所以样本空间可以写为{1,2,3,4,5,6}。
在概率中,样本空间通常用大括号来表示,例如{ }。
概率是指某个事件发生的可能性大小。
在概率中,概率的定义方式有很多,其中一个典型的方法是用事件A发生的次数n除以总事件数N,即P(A)=n/N。
换句话说,概率是指一个事件在所有事件中占据的比例。
在实践中,我们通常也可以通过试验来确定某个事件的概率。
计算方法加法规则加法规则是指当两个或多个事件没有同时发生的可能性相加时,概率可以直接相加。
例如,当抛一枚硬币或一颗色子时,出现正面或者出现数字1的概率可以直接相加,即P(正面或1)=P(正面)+P(1)。
乘法规则乘法规则是指两个或多个事件同时发生的可能性相乘时,概率可以直接相乘。
例如,当抛两枚硬币时,出现正面的概率是1/2,两枚硬币同时出现正面的概率是1/2*1/2=1/4。
在概率计算中,乘法规则通常用于计算复杂事件的概率。
条件概率条件概率是指在已知一个事件发生的前提下,另一个事件发生的概率。
例如,在已知一枚硬币正面的前提下,另一面为正面的概率是多少。
在这种情况下,条件概率可以直接用乘法法则来计算,即P(B|A)=P(AB)/P(A),其中P(B|A)表示在事件A发生的前提下,事件B 发生的概率,P(AB)表示事件A和事件B同时发生的概率。
概率 名词解释

概率名词解释概率,又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念。
概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。
人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。
如果一个试验满足两条:(1)试验只有非常有限个基本结果;(2)试验的每个基本结果出现的可能性是一样的。
这样的试验就是古典试验。
对于古典试验中的事件a,它的概率定义为:p(a)=m/n,其中n表示该试验中所有可能出现的基本结果的总数目。
m表示事件a 包含的试验基本结果数。
这种定义概率的方法称为概率的古典定义。
1、顺利呈圆形概率分布,关键就是你能够无法秉持至顺利已经开始呈现出的那一刻。
2、奇迹出现的概率,永远取决于努力。
3、我们时常真的这些事出现的概率太小,而真正出现时,才晓得其实他不是无稽之谈锡尔弗其言。
其实只要信任,也不是什么大不了的事。
4、假如进化的历史重来一遍,人的出现概率是零。
5、能够和你现在拖著手的那个人,你们碰面的概率简直就是近乎奇迹,期望你们无论怎样都不要放宽彼此的手。
6、太复杂的设计实际上是降低了成功的概率。
7、据传人一生可以碰到三千万人,两个人重归于好的概率没0.。
于是我晓得,碰到你就是我的缘分,爱上你就是我的情分,守护者你就是我的本分。
快乐你永不变小。
8、唯一的不同是哪个问题我们最紧张,我们就会把它的概率给抛到九霄云外去。
9、我真的能够重新认识你,类似于某个极低概率的奇迹。
10、若一种动物对新奇的事物没有心存戒备,其生存概率就会很低。
11、你们碰面的概率简直就是近乎奇迹。
12、我们的生命,端坐于概率垒就的金字塔的顶端。
面对大自然的鬼斧神工,我们还有权利和资格说我不重要吗。
13、电压暂降概率评估的结果可以用作推论电力系统网络结构与否合理。
14、利用经典大偏差的方法,在一定的条件下,得到了相应概率的对数渐近式及测度族的大偏差原理。
概率基本概念

概率基本概念概率是指某个事件发生的可能性大小,通常用0到1之间的数值表示。
在概率论中,我们会遇到一些基本概念,如样本空间、事件、随机变量、概率分布等。
下面我们将对这些概念进行详细的介绍。
一、样本空间样本空间是指一个随机试验中所有可能结果的集合。
例如,掷一枚硬币的结果可以是正面或反面,因此它的样本空间为{正面,反面}。
又如掷一颗骰子的结果可以是1、2、3、4、5或6,因此它的样本空间为{1,2,3,4,5,6}。
二、事件事件是指样本空间中的一个子集。
例如,在掷一枚硬币时,“出现正面”和“出现反面”就是两个事件。
我们通常用大写字母A、B等表示事件。
三、概率概率是指某个事件发生的可能性大小,通常用0到1之间的数值表示。
例如,在掷一枚硬币时,“出现正面”的概率为0.5,“出现反面”的概率也为0.5。
四、随机变量随机变量是指一个试验结果所对应的数值。
例如,在掷一颗骰子时,每个结果都可以对应一个数值,即1、2、3、4、5或6。
我们通常用大写字母X、Y等表示随机变量。
五、概率分布概率分布是指随机变量所有可能取值的概率分布情况。
例如,在掷一颗骰子时,每个数字出现的概率都是相等的,即1/6。
因此,它的概率分布为{1/6,1/6,1/6,1/6,1/6,1/6}。
六、条件概率条件概率是指在已知某个事件发生的情况下,另一个事件发生的可能性大小。
例如,在掷一枚硬币时,“出现正面”的条件下,“出现反面”的概率为0.因此,条件概率可以用P(B|A)表示,“在A发生的情况下B发生的概率”。
七、独立事件独立事件是指两个事件之间没有任何关联性。
例如,在掷一枚硬币时,“出现正面”和“出现反面”就是两个独立事件。
如果两个事件A和B是独立事件,则它们满足P(A∩B)=P(A)×P(B)。
八、期望期望是指随机变量所有可能取值乘以其相应概率的和。
例如,在掷一枚硬币时,“出现正面”的期望为0.5×1+0.5×0=0.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省黄岗市2012届《优化探究》高三数学二轮复习专题检测:概率I 卷一、选择题1.将骰子抛2次,其中向上的数之和是5的概率是 ( )A .91 B .41 C .361 D .9【答案】A2. 在三行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点)。
开始时,骰子如图1所示摆放,朝上的点数是2,最后翻动到如图2所示位置。
现要求翻动次数最少,则最后骰子朝上的点数为2的概率( )A .112B .16 C .13D .14【答案】C3.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A .110B .18C .16D .15【答案】D4. 把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,向量m =(a,b),n =(1,-2),则向量m 与向量n 垂直的概率是(A .16B .112C .19 D .118【答案】B5.下列说法不正确的是 ( )A .不可能事件的概率是0,必然事件的概率是1B .某人射击10次,击中靶心8次,则他击中靶心的频率是0,8C .“直线y =k(x+1)过点(-1,0)”是必然事件D .先后抛掷两枚大小一样的硬币,两枚都出现反面的概率是31【答案】D6. 如图,M 是半径为R 的圆周上一个定点,在圆周上等可能的任取一点N ,连结MN ,则弦MN 的概率是A .5B .4C .3D .2【答案】D7. 抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是( ) A .9991 B .10001 C .1000999D .21【答案】D8.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是( )A .16B .13C .12D .23【答案】B9.下列事件中,随机事件的个数为 ( ) (1)物体在重力作用下会自由下落. (2)方程x 2+2x+3=0有两个不相等的实根.(3)某传呼台每天的某一时段内收到的传呼,要求次数不超过10次. (4)下周日会下雨.A .1B .2C .3D .4【答案】A10.设集合{12}{123}A B ==,,,,,分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点()P a b ,,记“点()P a b ,落在直线x y n +=上”为事件(25)n C n n ∈N ≤≤,,若事件n C 的概率最大,则n 的所有可能值为( ) A .3 B .4C .2和5D .3和4【答案】D11.某人睡午觉醒来, 发觉表停了,他打开收音机想听电台整点报时,则他等待的时间小于10分钟的概率是( ) A .16B .112C .160D .172【答案】A12.下列事件中,随机事件的个数为 ( ) (1)物体在重力作用下会自由下落. (2)方程x 2+2x+3=0有两个不相等的实根.(3)某传呼台每天的某一时段内收到的传呼,要求次数不超过10次. (4)下周日会下雨.A .1B .2C .3D .4【答案】A13. 一颗正方体骰子,共六个面的点数分别是1.2.3.4.5.6,将这颗骰子排掷三次观察向上的点数,则三次点次和为16的概率是( )A .6B .18C .36D .72【答案】C14.已知,11,11≤≤-≤≤-b a 则关于x 的方程022=++b ax x 有实根的概率是( )A .41 B .21 C .81 D .101 【答案】AII 卷二、填空题15.几何概率的两个特征:(1)________________________________________________________。
(2)________________________________________________________。
【答案】(1)每次试验的结果有无限多个,且全体结果可用一个有度量的区域来表示。
(2)每次试验的各种结果是等可能的。
16.已知随机变量X ~2(0)N σ,且(20)P X -≤≤0.4=则(2)P X >= . 【答案】0.117.分别从写有数字1,2,3,4的四张卡片中随机取出两张,则取出的两张卡片上的数字之和为奇数的概率是 . 【答案】2318.三张卡片上分别写上字母E,E,B,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为 . 【答案】1319.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________. 【答案】0.12820.边长为2a 的正方形及其内切圆,随机向正方形内丢一粒豆子,则豆子落在圆及正方形夹的部分的概率是___________________。
【答案】2(4)a π-三、解答题21.盒中有10只晶体管,其中2只是次品,每次随机地抽取1只,作不放回抽样,连抽两次,试分别求下列事件的概率:(1)2只都是正品; (2)2只都是次品;(3)1只正品,1只次品; (4)第二次取出的是次品。
【答案】记“连抽两次2只都是正品”为A ,“连抽两次2只都是次品”为B , “连抽两次1只正品,1只次品”为C ,“连抽两次第二次取出的是次品”为D则 8728()10945p A ⨯==⨯ 211()10945p B ⨯==⨯ 822816()10945p C ⨯+⨯==⨯ 291()1095p D ⨯==⨯22.某城市有连接8个小区A 、B 、C 、D 、E 、F 、G 、H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图,某人从道路网中随机地选择一条最短路径,由小区A 前往H .(1)列出此人从小区A 到H 的所有最短路径(自A 至H 依次用所经过的小区的字母表示); (2)求他经过市中心O 的概率.【答案】(1)此人从小区A 前往H 的所有最短路径为:A →B →C →E →H ,A →B →O →E →H ,A →B →O →G →H ,A →D →O →E →H ,A →D →O →G →H ,A →D →F →G →H 共6条.(2)记“此人经过市中心O ”为事件M ,则M 包含的基本事件为:A →B →O →E →H ,A →B →O →G →H ,A →D →O →E →H ,A →D →O →G →H 共4个,∴P (M )=46=23,即他经过市中心O 的概率为23.23.某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为45,第二、第三种产品受欢迎的概率分别为p ,q (p >q ),且不同种产品是否受欢迎相互独立。
记ξ为公司向市场投放三种新型产品受欢迎的数量,其分布列为(I)求该公司至少有一种产品受欢迎的概率; (II)求p ,q 的值;(III)求数学期望E ξ.【答案】设事件i A 表示“该公司第i 种产品受欢迎”,i =1,2,3,由题意知14()5P A =,2()P A p =,3()P A q = (I )由于事件“该公司至少有一种产品受欢迎”与事件“0ξ=”是对立的,所以该公司至少有一种产品受欢迎的概率是2431(0)14545P ξ-==-=, (II )由题意知12312(0)()(1)(1)545P P A A A p q ξ===--=,123(3)()P P A A A ξ==48545pq ==,整理得29pq =且1p q +=,由p q >,可得21,33p q ==. (III )由题意知123123123(1)()()()a P P A A A P A A A P A A A ξ===++41113(1)(1)(1)(1)55545p q p q p q =--+-+-=, 22(2)1(0)(1)(3)45b P P P P ξξξξ===-=-=-==因此270(0)1(1)2(2)3(3)15E P P P P ξξξξξ=⨯=+⨯=+⨯=+⨯== 24. 某篮球运动员在同一条件下进行投篮练习,结果如下表所示:(1)计算表中进球的频率并填入表中;(2)这位运动员投篮一次,进球概率约是多少? 【答案】(1)进球的频率分别为75.086=,8.0108=,8.01512=,85.02017=,83.03025=,8.04032=,76.05038=; (2)由于进球频率都在8.0左右摆动,故这位运动员投篮一次,进球的概率约是8.025.甲、乙两人参加普法知识竞赛,共设有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题,计算:(1)甲抽到选择题,乙抽到判断题的概率是多少? (2)甲、乙二人中至少有一人抽到选择题的概率是多少?【答案】(1)甲抽到选择题,乙抽到判断题的概率11642104()15C C P A A ⋅==; (2)甲、乙二人中至少有一人抽到选择题的概率211116644621013()15A C C C C P B A +⋅+⋅==26.甲.乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23,(1)记甲击中目标的次数为X ,求X 的概率分布及数学期望()E X ;(2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率.()0123 1.58888E X =⨯+⨯+⨯+⨯=或()3 1.52E X =⨯=(2)乙至多击中目标2次的概率为3332191()327C -=(3)设甲恰好比乙多击中目标2次为事件A ,甲恰击中目标2次且乙恰击中目标0次为事件1B ,甲恰击中目标3次且乙恰击中目标1次为事件2B ,则12A B B =+,1B .2B 为互斥事件,1231121()()()8278924P A P B P B =+=+=27.某单位组织群众性登山健身活动,招募了N 名师生志愿者,将所有志愿者现按年龄情况分为15—20,20—25,25—30,30—35,35—40,40—45等六个层次,其频率分布直方图如图所示:已知30—35之间的志愿者共8人,(1) 求N 和20—30之间的志愿者人数1N(2) 已知20—25和30—35之间各有2名英语教师,现从这两个层次各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人选中都至多有1名英语教师的概率是多少?(3) 组织者从35—45之间的志愿者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中男教师的数量为X ,求X 的概率分布列和均值。