2018-2019深圳市小学毕业数学总复习小升初模拟训练试卷12-14(共3套)附详细试题答案

合集下载

2018-2019深圳市小学毕业数学总复习小升初模拟训练试卷3-5(共3套)附详细试题答案

2018-2019深圳市小学毕业数学总复习小升初模拟训练试卷3-5(共3套)附详细试题答案

小升初数学综合模拟试卷3一、填空题:1.用简便方法计算下列各题:(2)1997×19961996-1996×19971997=______;(3)100+99-98-97+…+4+3-2-1=______.2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.5.在乘积1×2×3×…×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.答案一、填空题:1.(1)(24)(2)(0)原式=1997×(19960000+1996)-1996×(19970000+1997)=1997×19960000+1997×1996-1996×19970000-1996×1997=0(3)(100)原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2×50=1002.(1、0、9、8)由于被减数的千位是A,而减数与差的千位是0,所以A=1,“ABCD”至少是“ABC”的10倍,所以“CDC”至少是ABC的9倍.于是C=9.再从个位数字看出D=8,十位数字B=0.3.(28)(65-9)÷2=284.(50、150)40O÷8=50,8÷2-1=33×50=1505.(24)由2×5=10,所以要计算末尾的零只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所以含5的因数个数等于末尾零的个数.6.(36,55)由图观察发现:第一层能看到:1块,第二层能看到:2×2-1=3块,第三层:3×2-1=5块.上面六层共能看到方砖:1+3+5+7+9+11=36块.而上面六层共有:1+4+9+16+25+36=91块,所以看不到的方砖有91-36=55块.7.(25)8.(5)考虑已失分情况。

2018年深圳市小学毕业小升初模拟数学试题(共6套)附详细答案附答案

2018年深圳市小学毕业小升初模拟数学试题(共6套)附详细答案附答案

小升初数学试卷58一、填空题:(每题2分,共20分)1、6公顷80平方米=________平方米,42毫升=________立方厘米=________立方分米,80分=________时.2、奥运会每4年举办一次.北京奥运会是第29届,那么第24届是在________年举办的.3、在横线里填写出分母都小于12的异分母最简分数.=________+________=________+________.4、一个圆柱形的水桶,里面盛有18升水,正好盛满,如果把一块与水桶等底等高的圆锥形实心木块完全浸入水中,这时桶内还有________升水.5、如果a= b,那么a与b成________比例,如果= ,那么x与y成________比例.6、花店里有两种玫瑰花,3元可以买4枝红玫瑰,4元可以买3枝黄玫瑰,红玫瑰与黄玫瑰的单价的最简整数比是________.7、一个四位数4AA1能被3整除,A=________.8、如图,两个这样的三角形可以拼成一个大三角形,拼成后的三角形的三个内角的度数比是________或者________.9、如图,把一张三角形的纸如图折叠,面积减少.已知阴影部分的面积是50平方厘米,则这张三角形纸的面积是________平方厘米.10、有一串数,,,,,,,,,,,,,,,,…,这串数从左开始数第________个分数是.二、选择题:(每题2分,共16分)11、甲、乙两堆煤同样重,甲堆运走,乙堆运走吨,甲、乙两堆剩下的煤的重量相比较()A、甲堆重B、乙堆重C、一样重D、无法判断12、下面能较为准确地估算12.98×7.09的积的算式是()A、12×7B、13×7C、12×8D、13×813、已知a能整除19,那么a()A、只能是19B、是1或19C、是19的倍数D、一定是3814、甲数除以乙数的商是5,余数是3,若甲、乙两数同时扩大10倍,那么余数()A、不变B、是30C、是0.3D、是30015、小圆半径与大圆直径之比为1:4,小圆面积与大圆面积比为()A、1:2B、1:4C、1:8D、1:1616、下面的方框架中,()具有不易变形的特性.A、B、C、D、17、在下面形状的硬纸片中,把它按照虚线折叠,能折成一个正方体的是()A、B、C、D、18、一个长9厘米、宽6厘米、高3厘米的长方体,切割成3个体积相等的长方体,表面积最大可增加()A、36平方厘米B、72平方厘米C、108平方厘米D、216平方厘米三、计算题:(共24分)19、计算下列各题,能简算的要简算:(1)69.58﹣17.5+13.42﹣2.5(2)×(×19﹣)(3)+ + +(4)[1﹣(﹣)]÷ .20、求未知数x的值:(1):x=15%:0.18(2)x﹣x﹣5=18.四、动手操作题:21、如图(1),一个长方形纸条从正方形的左边开始以每秒2厘米的速度沿水平方向向右行驶,如图(2)是运动过程中长方形纸条和正方形重叠部分的面积与运动时间的关系图.(1)运动4秒后,重叠部分的面积是多少平方厘米?(2)正方形的边长是多少厘米?(3)在图(2)的空格内填入正确的时间.五、应用题:(第1题~第4题每题6分,第5题8分,共32分)22、泰州地区进入高温以来,空调销售火爆,下面是两商场的促销信息:文峰大世界:满500元送80元.五星电器:打八五折销售.“新科”空调两商场的挂牌价均为每台2000元;“格力”空调两商场的挂牌价均为每台2470元.问题:如果你去买空调,在通过计算比较一下,买哪种品牌的空调到哪家商场比较合算?23、两辆汽车同时从A地出发,沿一条公路开往B地.甲车比乙车每小时多行5千米,甲车比乙车早小时到达途中的C地,当乙车到达C地时,甲车正好到达B地.已知C地到B地的公路长30千米.求A、B 两地之间相距多少千米?24、盒子里有两种不同颜色的棋子,黑子颗数的等于白子颗数的.已知黑子颗数比白子颗数多42颗,两种棋子各有多少颗?25、一个长方体的木块,它的所有棱长之和为108厘米,它的长、宽、高之比为4:3:2.现在要将这个长方体削成一个体积最大的圆柱体,这个圆柱体体积是多少立方厘米?26、甲、乙、丙三人合作完成一项工程,共得报酬1800元,三人完成这项工程的情况是:甲、乙合作8天完成工程的,接着乙、丙又合作2天,完成余下的,然后三人合作5天完成了这项工程,按劳付酬,各应得报酬多少元?答案解析部分一、<b >填空题:(每题2</b><b >分,共20</b><b>分)</b>1、【答案】60080;42;0.042;1【考点】时、分、秒及其关系、单位换算与计算,面积单位间的进率及单位换算,体积、容积进率及单位换算【解析】【解答】解:(1)6公顷80平方米=60080平方米;(2)42毫升=42立方厘米=0.042立方分米(3)80分=时.故答案为:60080,42,0.042,.【分析】(1)把6公顷乘进率10000化成80000平方米再与80平方米相加.(2)立方厘米与毫升是等量关系二者互化数值不变;低级单位立方厘米化高级单位立方分米除以进率1000.(3)低级单位分化高级单位时除以进率60.2、【答案】1988【考点】日期和时间的推算【解析】【解答】解:29﹣24=5(届),4×5=20(年),2008﹣20=1988(年).答:第24届汉城奥运会是在1988年举办的.故答案为:1988.【分析】要求第24届奥运会是在那年举办,要先求出24届与29届相差几届,根据每4年举办一次,相差几届,就是几个4年,然后用2008减去相差的时间,即得到24届的举办时间.3、【答案】;;;【考点】最简分数【解析】【解答】解:故答案为:、、、.【分析】根据要求,把写成分母都小于12的异分母最简分数,把分子11写成9+2,变成,然后约分即可,再把11写成8+3,变成进行约分.4、【答案】12【考点】关于圆锥的应用题【解析】【解答】解:18×(1﹣)=18×=12(升)答:这时桶内还有12升水.【分析】把一块与水桶等底等高的圆锥形实心木块完全浸入水中,说明圆锥占据的体积是里面水的体积的,那桶内的水是原来的(1﹣),根据分数乘法的意义,列式解答即可.5、【答案】正;反【考点】正比例和反比例的意义【解析】【解答】解:因为a=b,所以a:b= (一定)是比值一定;所以a与b成正比例;因为=,所以xy=15×8=120(一定)所以x与y成反比例.故答案为:正,反.【分析】判断两个相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,由此逐一分析即可解答.6、【答案】9:16【考点】求比值和化简比【解析】【解答】解:红玫瑰:3÷4=0.75(元)黄玫瑰:4÷3=(元)0.75:=(0.75×12):(×12)=9:16;答:甲、乙两种铅笔的单价的最简整数比是9:16.故答案为:9:16.【分析】根据“总价÷数量=单价”,分别求出红玫瑰与黄玫瑰的单价,再作比化简即可.7、【答案】2或5或8【考点】2、3、5的倍数特征【解析】【解答】解:当和为9时:4+A+A+1=9,A=2,当和为12时:4+A+A+1=12,A=3.5,当和为15时:4+A+A+1=15,A=5,当和为18时:4+A+A+1=18,A=6.5,当和为21时:4+A+A+1=121,A=8.故答案为:2或5或8.【分析】能被3整除,说明各个数位上的数相加的和能被3整除,4+A+A+1的和一定是3的倍数,因为A 是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9.若A=9,那么4+A+A+1=23,23<24,那么它们的数字和可能是6,9,12,15,18,21,当和为6时,A=0.5不行;当和等于9时,A=2,可以;当和为12时,A=3.5不行;当和为15时,A=5可以;当和为18时,A=6.5不行;当和为21时,A 等于8可以.8、【答案】1:1:1;1:1:4【考点】图形的拼组【解析】【解答】解:(1)当以长直角边为公共边时,如图它的三个角的度数的比是:(30°+30°):60°:60°=60°:60°:60°=1:1:1;(2)当以短直角边时,如图它的三个角的度数的比是30°:30°:(60°+60°)=30°:30°:120°=1:1:4.故答案位:1:1:1或者1:1:4.【分析】两个这样的三角形拼成一个大三角形的方法有两种,一种是以长直角边为公共边,另一种是以短直角边为公共边,然后根据各个角的度数,算出它们之间的比,据此解答.9、【答案】200【考点】简单图形的折叠问题【解析】【解答】解:因为折叠后面积减少,所以阴影部分的面积占三角形纸的面积的:1﹣﹣=,所以角形纸的面积:50÷=200(平方厘米).答:张三角形纸的面积是200平方厘米.故答案为:200.【分析】根据面积减少,先求出阴影部分面占三角形纸的面积的份数,即1﹣﹣=,然后用阴影部分面积除以所占的份数计算即可得解.10、【答案】111【考点】数列中的规律【解析】【解答】解:分母是11的分数一共有;2×11﹣1=21(个);从分母是1的分数到分母是11的分数一共:1+3+5+7+ (21)=(1+21)×11÷2,=22×11÷2,=121(个);还有10个分母是11的分数;121﹣10=111;是第111个数.故答案为:111.【分析】分母是1的分数有1个,分子是1;分母是2的分数有3个,分子是1,2,1;分母是3的分数有5个,分子是1,2,3,2,1;分母是4的分数有7个;分子是1,2,3,4,3,2,1.分数的个数分别是1,3,5,7…,当分母是n时有2n﹣1个分数;由此求出从分母是1的分数到分母是11的分数一共有多少个;分子是自然数,先从1增加,到和分母相同时再减少到1;所以还有10个分母是11的分数,由此求解.二、<b >选择题:(每题2</b><b >分,共16</b><b>分)</b>11、【答案】D【考点】分数的意义、读写及分类【解析】【解答】解:由于不知道这两堆煤的具体重量,所以无法确定哪个剩下的多.故选:D.【分析】由于不知道这两堆煤的具体重量,所以无法确定哪个剩下的多:如果两堆煤同重1吨,第一堆用去它的,即用了1×= 吨,即两堆煤用的同样多,则剩下的也一样多;如果两堆煤重量多于1吨,第二堆用的就多于吨,则第一堆剩下的多;如果两堆煤重量少于1吨,第二堆的就少于堆,则第二堆剩下的多;据此即可解答.12、【答案】B【考点】数的估算【解析】【解答】解:因为12.98×7.09≈13×7,所以较为准确地估算12.98×7.09的积的算式是B.故选:B.【分析】根据小数乘法的估算方法:把相乘的因数看成最接近它的整数来算.12.98最接近13,7.09最接近7,所以较为准确地估算12.98×7.09的积的算式是B.13、【答案】B【考点】整除的性质及应用【解析】【解答】解:因为a能整除19,所以19÷a的值是一个整数,因为19=1×19,所以a是1或19.故选:B.【分析】若a÷b=c,a、b、c均是整数,且b≠0,则a能被b、c整除,或者说b、c能整除a.因为a能整除19,所以19÷a的值是一个整数,所以a是1或19.14、【答案】B【考点】商的变化规律【解析】【解答】解:甲数除以乙数商是5,余数是3,如果甲数和乙数同时扩大10倍,那么商不变,仍然是5,余数与被除数和除数一样,也扩大了10倍,应是30.例如;23÷4=5…3,则230÷40=5…30.故选:B.【分析】根据商不变的性质“被除数和除数同时扩大或缩小相同的倍数(0除外),商不变”,可确定商仍然是5;但是余数变了,余数与被除数和除数一样,也扩大了10倍,由此确定余数是30.15、【答案】B【考点】比的意义,圆、圆环的面积【解析】【解答】解:设小圆半径为x,则大圆直径为4x,由题意得:小圆面积:πx2大圆面积:π(4x÷2)2=4πx2所以小圆面积与大圆面积比:πx2:4πx2=1:4故选:B.【分析】设小圆半径为x,则大圆直径为4x,利用圆的面积=πr2,分别计算得出大圆与小圆的面积即可求得它们的比.16、【答案】A【考点】三角形的特性【解析】【解答】解:因为三角形具有不易变形的特点,平行四边形具有容易变形的特点,图中只有A中有三角形,所以选择A.故选:A.【分析】根据三角形和平行四边形的知识,知道三角形具有不易变形的特点,平行四边形具有容易变形的特点,图中只有A中有三角形,据此判断.17、【答案】B【考点】正方体的展开图【解析】【解答】解:根据正方体展开图的特征,选项A、C、D不能折成正方体;选项B能折成一个正方体.故选:B.【分析】根据正方体展开图的11种特征,选项A、C、D都不是正方体展开图,不能折成正方体;只有选项B属于正方体展开图的“1﹣4﹣1”型,能折成一个正方体.18、【答案】D【考点】简单的立方体切拼问题【解析】【解答】解:9×6×4=216(平方厘米),答:表面积最大可增加216平方厘米.故选:D.【分析】根据长方体切割小长方体的特点可得:要使切割后表面积增加的最大,可以平行于原长方体的最大面,即9×6面,进行切割,这样表面积就会增加4个原长方体的最大面;据此解答.三、<b >计算题:(共24</b><b >分)</b>19、【答案】(1)解:69.58﹣17.5+13.42﹣2.5=(69.58+13.42)﹣(17.5+2.5)=83﹣20=63;(2)解:×(×19﹣)= × ×(19﹣1)= × ×18=9(3)解:+ + += ×(﹣+ ﹣+ ﹣+ ﹣)= ×(﹣)= ×= ;(4)解:[1﹣(﹣)]÷=[1﹣]÷= ÷=1【考点】运算定律与简便运算,分数的四则混合运算【解析】【分析】(1)利用加法交换律与减法的性质简算;(2)利用乘法分配律简算;(3)把分数拆分简算;(4)先算小括号里面的减法,再算中括号里面的减法,最后算除法.20、【答案】(1)解::x=15%:0.1815%x=0.18×15%x=0.2715%x÷15%=0.27÷15%x=1.8;(2)解:x﹣x﹣5=18x﹣5=18x﹣5+5=18+5x=23x×3=23×3x=69【考点】方程的解和解方程,解比例【解析】【分析】(1)先根据比例的基本性质:两内项的积等于两外项的积,把方程转化为15%x=0.18×,再依据等式的性质,方程两边同除以15%求解;(2)先化简方程得x﹣5=18,再依据等式的性质,方程两边同加上5再同乘上3求解.四、<b >动手操作题:</b>21、【答案】(1)解:长方形的长是:2×4=8(厘米),宽是2厘米,重叠的面积是:8×2=16(平方厘米);答:运行4秒后,重叠面积是16平方厘米。

【精品】2018-2019学年广东省深圳市小升初数学试卷(逐题解析版)

【精品】2018-2019学年广东省深圳市小升初数学试卷(逐题解析版)
第 5 页(共 21 页)
= 5400÷ 108%
= 5000(元) 答:该商品的进货价是 5000 元.
故答案为: 5000.
【点评】 解答此题的关键是分清两个单位“ 1”的区别,求单位“ 1”的百分之几用乘法
计算;已知单位“ 1”的百分之几是多少,求单位“ 1”用除法计算.
4.( 2 分)比与除法、分数比较,比的前项相当于除法的
元.
15.( 2 分)“春运”期间,从 A 城开往 B 城的长途客运汽车票价从 20 元提高到 25 元,提

%,“春运”后,价格恢复原价,又降价
%.
二、判断题. (对的画“√” ,错的画“ ? ”,每小题 2 分,共 12 分.)
16.( 2 分)正方形、等腰梯形、三角形和圆都是轴对称图形.
17.( 2 分)把 2.4:1.2 化简比,结果是 2.
A .6: 5
B .6: 11
C. 5: 11
24.( 2 分) 200 克药水中,含药 20 克,药与水的比是(

A .1: 9
B .1: 10
C. 1: 11
25.( 2 分)在 4: 5 中,比的前项除以 8,要使比值不变,比的后项应(

A .加上 8
B .乘 8
C.除以 8
26.( 2 分)一段路,甲 3 时走完,乙 4 时走完,甲、乙两人速度的最简整数比是(
8% ,则该笔记本电脑
4.( 2 分)比与除法、分数比较,比的前项相当于除法的
当于除法的
,分数的
,比值 相当于除法的
,分数的 ,分数的
,后项相 .
5.(2 分)已知小圆的半径是 2 厘米,大圆的半径是 3 厘米,小圆和大圆周长的比是

2019年深圳市小升初数学模拟试题(共4套)详细答案12

2019年深圳市小升初数学模拟试题(共4套)详细答案12

2019 年深圳市小升初数学模拟试题(共 4 套 )详尽答案12答案:小升初数学试卷一、专心思虑,真填写1、我国香港特行政区的面是十一零四百万平方米,写作________平方米,改写成用“ ”作位的数是 ________平方米.2、________: 20=0.6=________=________%=________折.3、m=n+1( m、 n 非零 0 自然数),m 和 n 的最大公因数是________, m 和 n 的最小公倍数是 ________.4、假如小明向南走80 米,作+80米,那么小从同一地址向北走50 米,作________米,他两人相距________米.5、在一个比率中,两个外的是8,一个内是,另一个内是________.6、把段比率改写成数比率尺是________,从上量得A、 B 两地的距离是 5.5 厘米, A、 B 两地的距离是________千米.7、一根柱形的木材 4 米,把它成 3 段,表面增添了12 平方分米,根木材的体是________立方分米.假如成 3 段用了 3 分,那么把它成 6 段要用 ________分.8、一个方形的周是72 厘米,和的比是2: 1,个方形的面是________平方厘米.9、仔察如表中两种量x 和 y 的化状况.用一个含x、y 的式子表示它之的关系是________, x 和 y 是成 ________比率关系的量.x 6 12 18 24⋯y 30 15 10 7.5⋯10、中,平行四形的面是分红 3 个三角形,中甲、乙、丙三个三角形的面比是________.二、仔斟酌,真辨析11、某今年比昨年量增添了25%,昨年就比今年量减少了20%________(判断).12、 2100 年整年有365 天 ________.13、要反应某厂今年前五个月增减化状况,合适条形(判断).14、把 3 均匀分15、某种券的中率4 个小朋友,每人分得________.(判断)1%, 100 不必定能中________(判断).三、频频比,谨慎16、的直径必定,的周和周率()A、成正比率B、成反比率C、不可比率17、一个角是60°,画在1: 3 的上,画()A、 20°B、60°C、 180 °D、没法确立18、爸爸骑摩托车送小雅去看电影,看完电影后,小雅步行回家,下边()图表示了小雅的状况.A、B、C、D、19、下边各比,能与0.4:构成比率的是()A、 3:4B、4: 3C、:D、0.2: 0.320、同时掷 2 枚硬币, 2 枚硬币都是正面向上的可能性是()A、B、C、D、四、认真审题,仔细计算21、直接写出计算结果.6.7+4.3=________0.3 2=________123%× 5%=________=________8÷ 0.02=________3a× 4a=________=________=________22、算下边各,能便的用便方法算.560 ÷ 16÷ 56÷ 611×()×7[() ] ×.23、求下边未知数x 的50%x 0.2x=15;x=12;6: 30=x: 0.5.24、如的直角三角形中的空白部分是正方形,正方形的一个点将个直角三角形的斜分红二部分,求暗影部分的面.(位:厘米)五、察思虑,手操作25、依据要求答:(1)如中方形的 A 点在( ________ , ________ )(2)①将本来的方形 C点旋 90°,画出旋后的形.②将本来的方形按 1:2 小,并将小后的形画在方格内.26、探究律.正方体个数 1 2 3 4 5 6 ⋯N ⋯正方形个数 6 10 14 18⋯ 62⋯六、灵巧运用,解决27、果园里有桃500 棵,杏比桃的 2 倍少 250 棵,杏有多少棵?28、修路修一条 600 米的路,第一天修了全的 20%,次日再修多少米就正好修完好的一半?29、甲乙两同从相距120 千米的A、B 两地相开出,小相遇,甲每小行100千米,乙每小行多少千米?30、一个形小麦堆,把堆小麦装柱形粮屯正好装,粮屯的底面直径是 4 米,高3米,个形小麦堆的体是多少立方米?31、某校六年有甲、乙两个班,甲班学生人数是乙班的.假如从乙班 3 人到甲班,甲班人数是乙班的.甲、乙两班本来各有学生多少人?答案分析部分一、专心思虑,认真填写1、【答案】 1104000000 ; 11.04【考点】整数的读法和写法,整数的改写和近似数【分析】【解答】解:( 1)十一亿零四百万:在十亿位上写1,在亿位数上写1,在百万位数上写 4,剩下的数位上都写0,故写作: 1104000000 ;( 2) 1104000000=11.04 亿.故答案为: 1104000000 , 11.04.【剖析】( 1)整数的写法:整数的写法是从高位写起,一级一级地往下写,哪个数位上有几个单位就在那个数位上写几,一个单位也没有时用“0来”占位;( 2)把一个数改写成用“亿”作单位的数,从个位数到亿位,在亿位的右下角点上小数点,末端的零去掉,再添上一个“亿”字.2、【答案】 12;25; 60;六【考点】比与分数、除法的关系【分析】【解答】解: 12: 20=0.6==60%=六折.故答案为: 12, 25, 60,六.【剖析】把 0.6 化成分数并化简是,依据分数的基天性质分子、分母都乘 5 就是;根据比与分数的关系=3: 5,再依据比的基天性质比的前、后项都乘 4 就是 12: 20;把 0.6的小数点向右挪动两位添上百分号就是60%;依据折扣的意义 60%就是六折.3、【答案】 1; mn【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【分析】【解答】解:假如m=n+1( m、 n 为非零 0 自然数), m 和 n 互质,所以 m 和 n 的最大公因数是1,最小公倍数是 mn.故答案为: 1, mn.【剖析】假如 a+1=b( a 和 b 都是不为0 的自然数),则说明这两个数是相邻的自然数,如 5、6,那么这两个数互质,那么 a 和 b 的最大公因数是1,最小公倍数是它们的积;据此解答.4、【答案】﹣50; 130【考点】负数的意义及其应用【分析】【解答】解:假如小明向南走80 米,记作 +80 米,那么小华从同一地址向北走50米,记作﹣ 50 米,这时他们两人相距80+50=130 米;故答案为:﹣ 50, 130.【剖析】本题主要用正负数来表示具存心义相反的两种量:向南走记为正,则向北走就记为负,直接得出结论即可.5、【答案】 18【考点】比率的意义和基天性质【分析】【解答】解: 8÷ =18;答:另一个内项是18.故答案为: 18.【剖析】由“在一个比率里,两个外项的积是8”,依据比率的性质“两外项的积等于两内项的积”,可知两个内项的积也是8;再依据“此中一个内项是”,从而用两内项的积8 除以一个内项即得另一个内项的数值.6、【答案】 1: 5000000 ; 275【考点】比率尺,图上距离与实质距离的换算(比率尺的应用)【分析】【解答】解:( 1)由线段比率尺知道图上的 1 厘米表示的实质距离是50 千米,数值比率尺是: 1 厘米: 50 千米,=1 厘米: 5000000 厘米,=1: 5000000 ,( 2)因为,图上的 1 厘米表示的实质距离是50 千米,所以, A、 B 两地的实质距离是: 5.5 ×50=275(千米).故答案为: 1: 5000000 , 275.【剖析】( 1)依据数值比率尺的意义作答,即图上距离与实质距离的比;(2)从线段比率尺知道图上的 1 厘米表示的实质距离是50 千米,由此得出A、 B 两地的实质距离.7、【答案】 12;7.5【考点】简单的立方体切拼问题,圆柱的侧面积、表面积和体积【分析】【解答】解:( 1) 12÷(2×2)×4,=12 ÷ 4×4,=12(立方分米);( 2)3÷( 3﹣ 1)×( 6﹣ 1),=3÷ 2×5,=1.5 ×5,=7.5(分钟);答:这根木材的体积是12 立方分米.假如锯成 3 段用了 3 分钟,那么把它锯成 6 段要用 7.5分钟.故答案为: 12; 7.5.【剖析】(1 )锯成 3 段,就增添了12 平方分米,也就是增添了2×2=4个圆柱的底面积,由此能够求得这个圆柱的底面积解决问题;( 2)锯成 3 段,实质锯了3﹣ 1=2 次,由此能够求得锯一次用时:3÷2=1.5分钟,则锯成 6 段需要锯6﹣ 1=5 次,由此即可解决问题.8、【答案】 288【考点】长方形的周长,长方形、正方形的面积【分析】【解答】解: 2+1=3(份)长是: 72÷2×=36 ×=24(厘米)宽是: 72÷2×=36 ×=12(厘米)面积: 24×12=288(平方厘米)答:这个长方形的面积是288 平方厘米.故答案为: 288.【剖析】第一依据长方形的周长公式:c=( a+b)×2,求出长与宽的和,已知长与宽的比是2:1,依据按比率分派的方法分别求出长、宽,而后依据长方形的面积公式:s=ab,把数据代入公式进行解答.9、【答案】 xy=180;反【考点】辨别成正比率的量与成反比率的量【分析】【解答】解:因为:6×30=12×15=18×10=24×7.5=180,是乘积必定,用含x、 y 的式子表示它们之间的关系是xy=180,x 和 y 是成反比率;故答案为: xy=180,反.【剖析】判断两个有关系的量之间成什么比率,就看这两个量是对应的比值必定,仍是对应的乘积必定;假如是比值必定,就成正比率;假如是乘积必定,则成反比率.10、【答案】 5: 2: 3【考点】三角形面积与底的正比关系【分析】【解答】解:因为甲、乙、丙三个三角形的高相等,即平行四边形的高,设为h,又因为甲的底是平行四边形的边,即乙和丙的底的和:2+3=5,所以甲的面积 =5h÷2= h,乙的面积 =2h÷2=h,丙的面积=3h÷2= h,所以:甲:乙:丙= h: h:h=5: 2:3.答;甲、乙、丙三个三角形的面积比是5: 2: 3.故答案填 5 :2: 3.【剖析】由图知:平行四边形的面积是分红 3 个三角形,图中三个三角形的高都相等,都是平行四边形的高,设为h ,甲的底是平行四边形的边,即乙和丙的底的和,依据三角形的面积公式是:底×高÷2,能分别表示出甲、乙、丙 3 个三角形的面积,从而算出它们面积的比.二、认真斟酌,认真辨析11、【答案】正确【考点】百分数的实质应用【分析】【解答】解: 25%÷( 1+25%)=25%÷ 125%=20%,答:昨年就比今年产量减少了20%.故答案:正确.【剖析】依据“今年比昨年量增添了25%”把昨年的量看作位“1,”即今年是昨年的(1+25%);要求昨年量比今年减少百分之几,用昨年量比今年少的量除以今年的量即可.12、【答案】正确【考点】年、月、日及其关系、位算与算,平年、年的判断方法【分析】【解答】解: 2100÷400=5⋯2,不可以整除,所以 2100 年不是年是平年,整年有365 天.故答案:正确.【剖析】年的判断方法是:一般年份的除以4,整百年份、整千整百年份除以400,假如能整除,一年是年. 2100 是整百年份,要除以 400 来判断.平年整年有365 天,年整年有 366 天.13、【答案】【考点】的【分析】【解答】解:依据的特色可知:要反应某厂今年前五个月增减化状况,合适折.故答案:.【剖析】条形能很简单看出数目的多少;折不简单看出数目的多少,并且能反应数目的增减化状况;扇形能反应部分与整体的关系;由此依据状况即可.14、【答案】【考点】分数的意、写及分【分析】【解答】解:3÷4= (),答:把 3 均匀分 4 个小朋友,每人分得;故答案:.【剖析】把 3 均匀分 4 个小朋友,求每人分得的数,均匀分的是详细的数目 3 ,求的是详细的数目;用除法算.15、【答案】正确【考点】事件生的可能性求解【分析】【解答】解:由剖析知:某种券的中率1%, 100 不必定能中;√故答案:正确.【剖析】一种彩票的中率是1%,属于不确立事件,可能中,也可能不中,了100彩票只好明比 1 的中的可能性大.三、频频比,谨慎16、【答案】 C【考点】辨成正比率的量与成反比率的量【分析】【解答】解:因的周C=πd,在本题中圆的直径必定,圆周率也是必定的,所以周长也是必定的,即三个量都是必定的,不存在变量问题,所以圆的周长和圆周率不可比率;应选: C.【剖析】判断圆的周长和圆周率之间成什么比率,就看这两个量是对应的比值必定,仍是对应的乘积必定;假如是比值必定,就成正比率;假如是乘积必定,则成反比率.17、【答案】 B【考点】角的观点及其分类,图形的放大与减小【分析】【解答】解:依据剖析可得:一个角是 60°,画在 1: 3 的图上,还应该画60°.应选: B.【剖析】依据角的大小与两边张口的大小有关,张口越大,角越大;张口越小,角越小,和两边的长短没关,更和图形的放大与减小没关,据此即可作出选择.18、【答案】 C【考点】从统计图表中获守信息【分析】【解答】解:爸爸骑摩托车送小雅去看电影,看完电影后,小雅步行回家,图C 表示了小雅的状况;应选: C.【剖析】依据“爸爸骑摩托车送小雅去看电影,看完电影后,小雅步行回家”,可知骑摩托车的速度快,坡度大,地点有变化;步行回家的速度慢,坡度小,地点也有变化;看电影的位置不变.据此进行选择.19、【答案】 D【考点】比率的意义和基天性质【分析】【解答】解: 0.4:=0.4: 0.6,=2: 3,0.2:0.3=2: 3;故应选: D.【剖析】求出0.4:的比再进行选择即可.20、【答案】 C【考点】简单事件发生的可能性求解【分析】【解答】解:随意投掷两枚硬币,出现的结果有:正正,正反,反正,反反,所以随意投掷两枚硬币,两枚都是正面向上的可能性:1÷ 4=应选: C.【剖析】随意投掷两枚硬币,出现的结果有:正正,正反,反正,反反,而后依据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可.四、认真审题,仔细计算21、【答案】 11①0.09 ②18③0.0015 ④400⑤⑥ ⑦12a 2【考点】分数的四则混淆运算,小数四则混淆运算【分析】【剖析】依据小数、分数四则运算的法例及混淆运算的运算次序计算即可.22、【答案】解:①560÷16÷5=560 ÷( 16×5)=560 ÷ 80=7;② 6 ÷ ﹣÷ 6=7﹣=;③ 11×()× 7=11× × 7+× 7× 11=14+11=25;④[﹣()]×=[﹣] ×=×=.【考点】运算定律与简易运算【分析】【剖析】依据除法的性质简算;23、【答案】解:①50%x ﹣ 0.2x=150.3x=150.3x ÷ 0.3=15 ÷ 0.3x=50;②x÷=12x=12 ×x=8x=32;③6: 30=x: 0.530x=6 × 0.530x ÷ 30=3 ÷ 30x=0.1.【考点】方程的解和解方程【分析】【剖析】( 1)先化简方程,再依据等式的性质,两边同时除以0.3 求解;( 2)依据330x=6 0.5再依据等式的性质,方程两边同时除以30 求解.24、【答案】解:如图:2019年深圳市小升初数学模拟试题(共4套)详细答案12三角形AFE绕点E 逆时针旋转90°,与三角形EDC构成一个直角三角形,两直角边分别是6厘米、8 厘米,其面积是:×6×8=24(平方厘米);答:暗影部分的面积是24 平方厘米.【考点】组合图形的面积【分析】【剖析】如图,因为BDEF是正方形,所以EF=ED,∠ DEF=90°,三角形AFE 绕点 E 逆时针旋转 90°,与三角形 EDC构成一个直角三角形,直角边分别是 6 厘米、 8 厘米,由此即可求出暗影部分的面积.五、察看思虑,着手操作25、【答案】(1) 2; 5(2)①以下图红色部分:②以下图绿色部分:【考点】作旋转必定角度后的图形,图形的放大与减小,数对与地点【分析】【解答】解: (1)如图中长方形的 A 点在( 2, 5)处.2019年深圳市小升初数学模拟试题(共4套)详细答案12【剖析】( 1)依据用数表示点的地点的方法,第一个数字表示列数,第二个数字表示行数,即可用数表示出点 A 的地点.( 2)依据旋的特色,方形点 C 旋90°后,点C 的地点不,其他各部分均此点按相同方向旋相同的度数即可画出旋后的形.(3)依据形放大与小的意,把个方形的各小到本来的,即可获得按1:2 小后的形.26、【答案】解:依据剖析:第五个正方体:6+( 5 1)×4=22第六个正方体:6+(6 1)×4=26有62 个正方形: 6+(N 1)×4=624N=62 2N=15第 N 个正方体: 6+( N 1)×4如:探究律.正方体个数123456⋯15N正方形个数61014182226⋯626+( N 1)【考点】数与形合的律【分析】【剖析】通剖析可知:每增添一个正方体,正方形的个数增添 4 个, 10=6+4,14=6+2 ×4,18=6+3 ×4,所以 N 个正方体的正方形的个数是6+( N 1)×4,据此解答即可.六、灵巧运用,解决27、【答案】解: 500×2 250=1000250=750(棵)答:杏有750 棵【考点】整数的乘法及用【分析】【剖析】第一依据求一个数的几倍是多少,用乘法求出桃棵数的 2 倍,再依据求比一个数少几用减法解答.28、【答案】解: 600×( 50%﹣20%)=600 × 30%=180(米)答:次日再修180 米就正好修完好长的一半【考点】百分数的实质应用【分析】【剖析】把全长看作单位“1,”则次日再修 50%﹣20%时正好修完好长的一半,已知全长 600 米,运用乘法即可求出次日再修多少米.29、【答案】解:( 120﹣ 100×)÷=( 120﹣)÷=×=80(千米)答:乙车每小时行80 千米【考点】简单的行程问题【分析】【剖析】先依据行程=速度×时间,求出甲车小时行驶的行程,再求出乙车行驶的行程,最后依据速度=行程÷时间即可解答.30、【答案】解: 3.14 ×( 4÷2)2× 3=3.14 × 12=37.68(立方米),答:这个圆锥形小麦堆的体积是137.68 立方米【考点】对于圆锥的应用题【分析】【剖析】依据题干,本题就是求底面直径为 4 米,高为 3 米的圆柱的体积,利用圆柱的体积 =底面积×高,代入数据计算即可.31、【答案】解:﹣==;3=108(人),108 ×=45(人),108﹣45=63(人);答:甲班原有人数45 人,乙班原有人数63 人.【考点】分数除法应用题【分析】【剖析】设甲、乙两班学生数的和为单位“1,”本来:甲班人数就是所有人数的,调整后:甲班就是就是所有人数,从乙班调到甲班 3 人就是甲班增添的人数,它对应的分数就是,用除法求出单位“1.”再求单位“1的”就是甲班的人数,从而求出乙班的人数.小升初数学综合模拟试卷一、填空。

【最新精编】2018-2019年小升初数学毕业升学考试试卷(共10套试卷)

【最新精编】2018-2019年小升初数学毕业升学考试试卷(共10套试卷)

2018-2019年小升初六年级期末毕业数学试题(共十套试卷)一、看清题目,巧思妙算。

(共30分) 1、直接写得数(每小题1分,共10分)85+0.25= 1787-998= 1÷20%= 6÷0.05=12.5×32×2.5= 5-=+9792 9.7-0.03= 54×25==+-+31213121=⨯÷737112、求未知数X (每小题2分,共8分) 1.8χ-0.7=2.9 7385=-χχ80%χ-18×32=4χ4.6=0.12:1.53、计算下列各题,能简算的要简算(每小题3分,共12分)。

1853-(2.35+8.6) 3.5×10.181×[)×(9105321÷] (43+611-2413)×12二、认真思考,谨慎填空(每空1分,共23分)1、 2时40分=( )时 3.8公顷=( )公顷( )平方米2、在86%,76,0.88,98四个数中,最大的数是( ),最小的数是( )。

3、一幢大楼地面以上有19层,地面以下有2层,地面以上第6层记作+6层,地面以下第2层记作( )层。

4、浩浩每天放学回家要花1小时完成语文、数学、英语三科作业。

如果每科作业花的时间都一样,完成每科作业需( )分钟,每科作业占总时间的( )。

5、将圆规两脚之间的距离定为( )厘米时,可以画出直径为6厘米的圆,这个圆的面积是( )平方厘米。

6、把右边的长方形以它的长为轴旋转一周,会得到一个( ),体积是( )立方厘米 。

7、按糖和水的比为1:19配制一种糖水,这种糖水的含糖率是( ) 现有糖50克,可配制这种糖水( )克。

8、有一种手表零件长5毫米。

在设计图纸上的长度是10厘米,这幅图纸的比例尺是( )。

9、右图是某粮食仓库储藏情况统计图。

已知仓库中大豆有4吨,那么其中玉米( )吨。

10、有40张5元和1元的人民币,面值共152元,5元的有( )张,1元的有( )张。

2018年深圳市小学毕业小升初模拟数学试题(共4套)附详细答案

2018年深圳市小学毕业小升初模拟数学试题(共4套)附详细答案

小升初数学试卷57一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。

4、明年二月有________天.5、丽丽比亮亮多a张画片,丽丽给亮亮________张,两人画片张数相等.6、一个直角三角形的两个锐角的度数比是3:2.这两个锐角分别是________度和________度.7、红、黄、蓝三种颜色的球各8个,放到一个袋子里,至少摸________个球,才可以保证有两个颜色相同的球,若任意摸一个球,摸到黄色球的可能性是________.8、一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是________cm,高________cm的圆柱体.9、一个面积是________平方米的半圆的周长是15.42米.10、保定市某天中午的温度是零上5℃;记作+5℃;到了晚上气温比中午下降了7℃,这天晚上的气温记作________.11、假设你的计算器的一个键“4”坏了,你怎样计算49×76,用算式表示计算过程________.12、琳琳2014年把500元存入银行,年利率2.25%,2016年到期时可以从银行取出________元.13、甲数=2×2×2×3,乙数=2×2×3,这两个数的最小公倍数是________.14、小明每天上午8时到校,11时30分放学,下午2时到校,4时30分放学,她在校的时间占1天的________.15、如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米.二、判断正误.16、两条永不相交的直线叫做平行线.________(判断对错)17、互为倒数的两个分数中,如果其中一个是真分数,那么另一个一定是假分数.________(判断对错)18、两个分数中,分数值大的那个分数单位也大.()19、平行四边形都可以画出对称轴________.20、一个不为0的数除以真分数,所得的商大于被除数.________三、认真选择.(将正确答案的序号填在括号内)21、两个数是互质数,那么它们的最大公因数是()A、较大数B、较小数C、1D、它们的乘积22、3.1与3. 相比()A、3.1 大B、3. 大C、一样大23、男生与女生的人数比是6:5,男生比女生多()A、B、C、24、给分数的分母乘以3,要使原分数大小不变,分子应加上()A、3B、7C、14D、2125、车轮的直径一定,所行驶的路程和车轮的转数()A、成正比例B、反比例C、不成比例四、仔细计算.(5+12+12+4=33分)26、直接写出得数=________ 7÷0.01=________﹣=________ 27、脱式计算(能简算的要简算)÷9+ ×12.69﹣4.12﹣5.880.6×3.3+ ×7.7﹣0.6(+ )×24× .28、解方程(比例)2x+3×0.9=24.73:(x+1)=4:7x+ x= .29、列式计算(1)一个数的是60的,求这个数?(2)乘的倒数,所得的积再减去3个,差是多少?五、操作题:(第2题的第(3)小题2分,其余的每题1分,共6分)30、利用﹣= ,﹣= ,﹣= ,﹣= ,这些规律,计算:1﹣+ ++ + =________.31、按要求答题:(1)三角形的一个顶点A的位置在________ .(2)三角形的另一个顶点B在顶点A正东方3厘米处,在图中标出B点的位置。

2018--2019学年度小升初数学模拟试卷及答案(3)

2018--2019学年度小升初数学模拟试卷及答案(3)

2018--2019学年度小升初数学模拟试卷及答案(3)班级姓名成绩1.(4分)198厘米= 分米= 米, 15日= 小时,650公顷= 平方千米.2.(2分)学校举行庆祝“六一”文艺表演,从晚上7时30分开始,经过1小时20分结束,结束时是时分.3.(1分)小红三次考试的平均成绩是92分,已知第一次和第二次的平均成绩是91,她的第三次成绩是分.(2分)用一根长28厘米的铁丝围成一个正方形,正方形的边长是,4.面积是.5.(2分)十亿五千九百四十万写作,四舍五入到“亿”位约是.6.(2分)10个0.1是,8.5里有个十分之一.7.(1分)近似数3.0的取值范围是.8.(1分)照样子填一填:下午2时15分.9.(2分)小明买2只鸡的钱可以买6条鱼,买3条鱼的钱可买l0本一样的书,买30本书的钱可以买只鸡.(1分)一件衣服单价100元,先降低10%,再提价10%,现在是元.10.11.(1分)一个分数约分之后是,原分数的分子与分母的和是72,则原分数是.12.(1分)一根2米长的圆柱体木材,锯成3段小圆柱后,它们的表面积总和比原来增加了12.56平方分米,原来这根木材的体积是立方分米.13.(1分)如图,把一个平行四边形分成四个三角形,其中三角形甲的面积是15平方厘米,三角形乙的面积占平行四边形面积的,平行四边形的面积是平方厘米.14.(1分)一个正方形的边长是4米,它的周长和面积相等..(判断对错)15.(1分)10.20读作:十点二十..(判断对错)16.(1分)一个数除以8,有余数,那么余数最大可能是7..(判断对错).17.(1分)用16个面积是1平方分米的正方形拼图,无论拼成什么样的图形,它的面积都是16平方分米..(判断对错)18.(1分)1000千克的棉花比一吨的铁轻..(判断对错)19.(1分)篮球场长是28米,宽是15米,半个球场的面积是()平方米.A.210B.240C.8620.(1分)下列年份中是闰年的是()A.2006B.2007C.2008D.200921.(1分)250×8的积的末尾有()个0.A.1B.2C.322.(1分)4包同样的饼干重1千克,2袋同样的盐也是重1千克,1包盐与()饼干同样重.A.4包B.5包C.3包D.2包23.(1分)钟面上,时针的转速与分针的转速之比是()A.1:60B.1:12C.12:1D.60:124.(10分)直接写出得数.1÷0.375= +1= ×24= += 3×﹣×3=360×0.02= 10÷= ﹣= 476×3≈ 412÷7≈25.(12分)能简算的要简算(1)(2)1.2﹣3.79+8.8(3)÷〔(+)×〕(4)7.8÷[32×(1﹣)+3.6].26.(9分)求未知数x的值(1)x﹣x=4.9(2)0.36×5﹣x=(3):0.8=x:48.27.(3分)看图列式计算:求如图椭圆形操场的周长和面积:28.(3分)看图填空(单位:厘米):圆的周长是,半圆的周长是,长方形的周长是.29.(2分)给如图涂上颜色表示0.3的部分.30.(3分)图中每一方格代表1平方厘米,请在图上分别画出3个不同的长方形,使它们的面积都是12平方厘米.31.(4分)只列式,不计算(1)男生有28人,女生人数是男生人数的,女生有多少人?(2)一件衣服售价400元,比原价降低了20%,原价是多少元?32.(5分)5箱蜜蜂一年可以酿375千克的蜂蜜.照这样计算,24箱蜜蜂2年可以酿多少千克的蜂蜜?33.(5分)张老师家新买的一套住房,平面图如图:(单位:米)(1)请你算一算这套住房一共有多少平方米?(2)对厨房之外的地面进行简单的装修,铺上边长是50厘米的正方形地板砖要288块(墙体占地面积忽略不计),如果换成边长是60厘米的正方形地板砖,需要地板砖多少块?34.(5分)一个底面半径是6厘米的圆柱形玻璃器皿里装有一部分水,水中浸没着一个高9厘米的圆锥形铅锤.当铅锤从水中取出后,水面下降了0.5厘米.这个圆锥形铅锤的底面积是多少平方厘米?35.(5分)一个长方体木块的长、宽、高分别是5厘米、4厘米、3厘米.如果用它锯成一个最大的正方体,体积要比原来减少百分之几?36.(3分)甲、乙、丙、丁四人共同购买一只价值4200元的游艇,甲支付的现金是其余三人所支付现金总数的,乙支付的现金比其他三人所支付的现金总数少50%,丙支付的现金占其他三人所支付的现金总数的,那么丁支付的现金是多少元?参考答案1.19.8;1.98;360;6.5.【解析】试题分析:(1)把198厘米换算成分米数,用198除以进率10得19.8分米;再把19.8分米换算成米数,用19.8除以进率10得1.98米;(2)把15日换算成小时数,用15乘进率24得360小时;(3)把650公顷换算成平方千米数,用650除以进率100得6.5平方千米.解:(1)198厘米=19.8分米=1.98米;(2)15日=360小时;(3)650公顷=6.5平方千米.故答案为:19.8,1.98,2,15,360,6.5.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率;把低级单位的名数换算成高级单位的名数,就除以单位间的进率.2.20时50分.【解析】试题分析:晚上7时30分用24时计时法是19时30分,用开始的时刻19:30加上经过的时间就是结束的时刻.解:晚上7时30分用24时计时法是19时30分19时30分+1小时20分=20时50分.答:结束时刻是20时50分.故答案为:20,50.点评:本题的时刻都在同一天之内,开始的时刻+经过的时间=结束的时刻.3.94【解析】试题分析:根据“平均成绩×测验次数=总成绩”分别求出前三次考试的成绩和及前两次考试的成绩和,进而根据“前三次考试的成绩和﹣前两次考试的成绩和=第三次考试的成绩”进行解答即可.解:92×3﹣91×2,=276﹣182,=94(分);答:第三次得94分;故答案为:94.点评:解答此题的关键:先根据平均成绩、测验次数和总成绩三者之间的关系求出三次考试的成绩和及前两次考试的成绩和,再相减.4.7厘米;49平方厘米.【解析】试题分析:根据正方形的周长公式:a=C÷4可求出正方形的边长,再根据正方形的面积公式:S=a2,即可求出正方形的面积.解:28÷4=7(厘米),7×7=49(平方厘米),答:这个正方形的边长是7厘米,面积是49平方厘米;故答案为:7厘米;49平方厘米.点评:此题主要考查正方形的周长和面积公式的灵活应用.5.1059400000,11亿.试题分析:这是一个十位数,最高位十亿位上是1,亿位和千万位上都是5,百位上是9,十万位上是4,其余位上都是0,写这个数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0;四舍五入到“亿”位就是省略“亿”后面的尾数就是四舍五入到亿位,就是把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字.解:十亿五千九百四十万写作:1059400000;1059400000≈11亿;故答案为:1059400000,11亿.点评:本题主要考查整数的写法、改写和求近似数,注意改写和求近似数时要带计数单位.6.1,85.【解析】试题分析:(1)每相邻两个计数单位间的进率是10,小数点后的计数单位从左到右依次是十分位,百分位,千分位….据此可解答.(2)求8.5里面有几个十分之一(0.1),用除法解答即可.解:(1)10个0.1是 1;(2)8.5÷0.1=85.故8.5里有 85个十分之一.故答案为:1,85.点评:(1)本题考查了学生对小数的计数单位及单位间进率知识的掌握情况.(2)解答此题用根据求一个数里面含有几个另一个数,用除法解答即可.7.2.95~3.04.【解析】试题分析:要考虑3.0是一个两位数的近似数,有两种情况:“四舍”得到的3.0最大是3.04,“五入”得到的3.0最小是2.95,由此解答问题即可.解:“五入”得到的3.0最小是2.95,因此这个数必须大于或等于2.95;“四舍”得到的3.0最大是3.04,因此这个数小于等于 3.04.所以取值范围为:大于或等于2.95,并且小于等于3.04;故取值范围为:2.95~3.04.点评:取一个数的近似数,有两种情况:“四舍”得到的近似数比原数小,“五入”得到的近似数比原数大,根据题的要求灵活掌握解答方法.8.上午8时30分.【解析】试题分析:把24时记时法换算成用普通计时法表示,上午的时刻不变,下午时刻减12,要在时间的前面加上午、下午等修饰词.解:照样子填一填:下午2时15分上午8时30分;故答案为:上午8时30分.点评:此题考查了把24时记时法换算成用普通计时法表示,上午的时刻不变,下午时刻减12,要在时间的前面加上午、下午等修饰词.9.3.试题分析:买2只鸡的钱可以买6条鱼,那么1只鸡就可以买3条鱼,也就可以买10本书,所以30本书就可以买3只鸡.解:6÷2=3(条);3条鱼=10本数=1只鸡,30÷10=3(只);答:买30本书的钱可以买3只鸡.故答案为:3.点评:本题把鱼作为中间量,从中找出1只鸡的价钱相当于多少本书,再根据除法的意义求解即可.10.99.【解析】试题分析:要据题意要把这件衣服的单价看作是单位“1”,先降低10%,就是原价的(1﹣10%),再提价10%,就是原价(1﹣10%)的(1+10%),然后再根据分数乘法的意义进行列式解答.解:100×(1﹣10%)×(1+10%),=100×0.9×1.1,=99(元).答:现在是99元.故答案为:99.点评:本题的关键是第一次降价,是把这件衣服的单价100看作单位“1”,再提价,是把降价后的价格100×(1﹣90%)看作单位“12”,然后再根据分数乘法的意义列式解答.11..【解析】试题分析:根据“一个分数约分之后是”,可求出分子与分母的总份数,再根据“原分数的分子与分母的和是72”,就是原分数的分子占和72的,分母占和72的,进而写出原分数即可.解:总份数:5+7=12(份),原分数的分子:72×=30,原分数的分母:72×=42或72﹣30=42,原来的分数是:;故答案为:.点评:此题属于按比例分配的应用题,解决关键是要找准被分配的总量是多少,然后搞清是按什么比例进行分配的,再用按比例分配的方法解答.12.62.8.【解析】试题分析:首先要明确的是:将这根木材锯成3段小圆柱后,增加了4个底面,增加的面积已知,于是就可以求出这根木材的底面积,从而利用圆柱的体积V=Sh,即可求出这根木材的体积.解:2米=20分米,12.56÷4=3.14(平方分米),3.14×20=62.8(立方分米);答:原来这根木材的体积是62.8立方分米.故答案为:62.8.点评:解答此题的关键是明白:将这根木材锯成3段小圆柱后,增加了4个底面,求出木材的底面积,即可利用圆柱的体积公式求解.13.150.【解析】试题分析:由图意和乘法分配律可知:甲的面积+乙的面积=平行四边形的面积×,由此可以求出甲的面积占平行四边形的面积的分率,又由于甲的面积是15平方厘米,进而可求出平行四边形的面积.解:由分析可得平行四边形的面积是:15÷(﹣),=15÷,=150(平方厘米).答:平行四边形的面积是150平方厘米.故答案为:150.点评:此题主要考查平行四边形的面积,三角形的面积.由等底的图形面积大小及乘法分配律的应用得到甲的面积+乙的面积=平行四边形的面积×是解题的关键.14.错误【解析】试题分析:面积单位和周长单位是两种不同的计量单位,无法比较.解:边长4米的正方形面积和周长无法比较.故答案为:错误.点评:考查了正方形的周长和面积的比较,是基础题型,比较简单.15.错误.【解析】试题分析:根据小数的读法:整数部分按整数的读法来读,小数点读作点,小数部分要依次读出每个数字.解:10.20读作:十点二零故答案为:错误.点评:此题考查小数的读法,注意小数点后面数的读法.16.错误.【解析】试题分析:根据除法各部分间的关系可以知道余数必须比除数小,此题中一个数除以8说明8是除数,那么余数必须小于8,所以余数最大只能是7,由此可以进行判断.解:根据除法各部分间的关系可以知道余数必须比除数小,此题中一个数除以8说明8是除数,那么余数必须小于8,所以余数最大只能是7,而不是可能是7,所以此题说法错误.故答案为:错误.点评:在有余数的除法中,余数必须比除数小.17.正确.【解析】试题分析:在拼图中无论怎样拼,它们的面积不变,改变的只是它们的形状和周长,据此可判断.解:因在拼图中无论怎样拼,它们的面积不变,所以用16个面积是1平方分米的正方形拼图,无论拼成什么样的图形,它的面积都是16平方分米.故答案为:正确.点评:本题考查了学生拼组图形时,面积不变的知识.18.错误【解析】试题分析:1000千克=1吨,棉花和铁都是1000千克(或1吨),质量相同,一样重.解:1吨=1000千克棉花和铁都是1000千克(或1吨),一样重.故答案为:错误.点评:铁和棉花的名数相同,就是质量相同,由于铁和棉花的密度不同,相同质量的铁和棉花体积不同,不要被这一表象所迷惑.19.A.【解析】试题分析:根据长方形的面积公式S=ab,求出整个篮球场的面积,再除以2求出半个球场的面积.解:28×15÷2,=420÷2,=210(平方米),答:半个球场的面积是210平方米;故选:A.点评:本题主要是灵活利用长方形的面积公式S=ab解决问题.20.C.【解析】试题分析:用选项中的年份除以4,看是否有余数,有余数就是平年,没有余数就是闰年.解:2006÷4=501…2,2007÷4=501…3,2008÷4=502.2009÷4=502…1;2008能被4整除,2008年就是闰年,2006、2007、2009不能被4整除,就是平年.故选:C.点评:闰年的判断方法:普通年份看是否能被4整除,如果能,就是闰年,否则就是平年;整百的年份看是否能被400整除,如果能,就是闰年,否则就是平年21.C.【解析】试题分析:要求250×8的积的末尾有几个0,可以先计算出得数,进而确定积末尾的0的个数.解:因为250×8=2000;所以250×8,积的末尾有3个0.故选:C.点评:此题考查积末尾有0的乘法,看积的末尾有几个0,一定要先计算再确定,不能只看两个因数的末尾的0的个数,就加以判断.22.D.【解析】试题分析:根据4包同样的饼干重1千克,2袋同样的盐也是重1千克,可得2包盐与4包饼干同样重,所以1包盐与2包饼干同样重,据此解答即可.解:根据4包同样的饼干重1千克,2袋同样的盐也是重1千克,可得2包盐与4包饼干同样重,4÷2=2,所以1包盐与2包饼干同样重.故选:D.点评:此题主要考查简单的等量代换问题,解答此题的关键是判断出2包盐与4包饼干同样重.23.B.【解析】试题分析:分针转1圈是1小时,它走了60个小格,1小时时针走5小格,用时针走的格数比分针走的格数即可.解:5:60=1:12;故选B.点评:本题也可以这样想:时针1小时走1大格,分针1小时走12大格,它们的速度比就是1:12.24.;2;20 ;;0;7.2 ;25 ;;1440 ;60;【解析】试题分析:按照小数、分数四则运算的计算法则直接计算即可;最后两题,利用整数运算的估算方法计算.解:1÷0.375=+1=2×24=20 +=3×﹣×3=0360×0.02=7.2 10÷=25 ﹣=476×3≈1440 412÷7≈60点评:掌握四则运算的计算法则是正确计算的前提,注意估算取整的方法.25.16 ;6.21 ;;0.5;【解析】试题分析:(1)运用乘法交换律与结合律简算.(2)运用加法交换律与结合律简算.(3)先算小括号内的,再算中括号内的,最后算括号外的.(4)先算小括号内的,再算中括号内的乘法,然后算中括号内的加法,最后算括号外的除法.解:(1)=(×)×(8×1.25)=×10=16(2)1.2﹣3.79+8.8=(1.2+8.8)﹣3.79=10﹣3.79=6.21(3)÷[(+)×]=÷[×]=÷=×=(4)7.8÷[32×(1﹣)+3.6]=7.8÷[32×+3.6]=7.8÷[12+3.6]=7.8÷15.6=0.5点评:查了小数、分数的四则运算,注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.26.(1)x=10.5;(2)x=1.6;(3)x=10【解析】试题分析:(1)运用乘法分配律改写成(﹣)x=4.9,即x=4.9,根据等式的性质,两边同乘即可;(2)先求出0.36×5=1.8,原式变为1.8﹣x=,根据等式的性质,两边同加上x,得0.6+x=1.8,两边同减去0.6,再同乘即可;(3)先根据比例的性质改写成0.8x=×48,再根据等式的性质,两边同除以0.8即可.解:(1)x﹣x=4.9,(﹣)x=4.9,x=4.9,x×=4.9×,x=10.5;(2)0.36×5﹣x=,1.8﹣x=,1.8﹣x+x=+x,0.6+x=1.8,0.6+x﹣0.6=1.8﹣0.6,x=1.2,x×=1.2×,x=1.6;(3):0.8=x:48,0.8x=×48,0.8x÷0.8=8÷0.8,x=10.点评:此题考查了根据等式的性质解方程,即等式两边同加、同减、同乘或同除以一个数(0除外),等式的左右两边仍相等;注意等号上下要对齐.27.周长是400.96m,面积是9615.36m2.【解析】试题分析:(1)椭圆形操场的周长等于两个圆弧的长加上长方形的两条长,即半径是32米的圆的周长加上长方形的两条长.(2)椭圆形操场的面积等于长方形的面积加上两个半圆,即长方形的面积加上半径是32米的圆的面积.解:(1)椭圆形操场的周长为:2×3.14×32+100×2=200.96+200=400.96(m)(2)椭圆形操场的面积为:3.14×322+100×(32×2)=3215.36+6400=9615.36(m2)答:椭圆形操场的周长是400.96m,面积是9615.36m2.点评:此题主要考查了组合图形的周长和面积的求法,解答此题的关键是熟练掌握长方形、圆的周长和面积公式.28.9.42厘米,7.71厘米,21厘米.【解析】试题分析:根据:圆的周长=2πr,半圆的周长=πr+2r,分别求出圆的周长和半圆的周长;然后求出长方形的长和宽,根据:长方形的周长=(长+宽)×2,即可求出长方形的周长.解:圆的周长:2×3.14×1.5=9.42(厘米);半圆的周长:3.14×1.5+2×1.5=7.71(厘米);长方形的周长:(1.5×5+1.5×2)×2=10.5×2=21(厘米)答:圆的周长是9.42厘米,半圆的周长是7.71厘米,长方形的周长是21厘米;故答案为:9.42厘米,7.71厘米,21厘米.点评:明确圆的周长和长方形的周长的计算方法,是解答此题的关键;应明确:半圆的周长即圆周长一半加上一条直径的和.29.【解析】试题分析:根据小数的意义可知0.3,表示把一个整体平均分成10,表示其中三份的数.据此解答.解:点评:本题主要考查了学生对小数意义的掌握情况.30.【解析】试题分析:依据长方形的面积公式可得:长方形的长和宽分别为12厘米与1厘米的长方形和6厘米与2厘米的长方形和长和宽分别为4厘米与3厘米的长方形的面积是12平方厘米,依据长方形的长和宽即可画出符合要求的长方形.解:如图所示,即为所要求画的面积为12平方厘米的长方形:点评:解答此题的关键是,先依据长方形的面积,确定出长方形的长和宽,从而画出符合要求的图形.31.(1)20人(2)500元.【解析】试题分析:(1)求女生有多少人,就是求28的是多少,用28×解答.(2)把原价看作单位“1”,现价是原价的1﹣20=80%.现在的售价是400元,就是原价的80%是400元.求原价是多少,用除法即可.解:(1)28×=20(人)答:女生有20人.(2)400÷(1﹣20%)=400÷0.8=500(元)答:原价是500元.点评:本题考查分数的乘法和除法的意义及应用.32.3600千克【解析】试题分析:根据“照这样计算”是指每箱蜜蜂每年酿蜂蜜数量一定,先求每箱蜜蜂每年酿蜂蜜的数量乘24,求出24箱蜜蜂1年可以酿蜂蜜的重量,然后乘2即可.解:375÷5×24×2=75×24×2=3600(千克).答:24箱蜜蜂2年可以酿3600千克蜂蜜.点评:先求出每箱蜜蜂酿蜂蜜数量是解决此题的关键.33.78.28平方米;200块【解析】试题分析:(1)观察图形可知,这套住房的面积是长5+7=12米,宽3+3=6米的长方形答面积与直径是6﹣2=4米的半圆的面积之和,据此利用长方形和半圆的面积公式计算即可解答.(2)先计算出厨房之外的地面的总面积,然后求出后来正方形地板砖的面积,用厨房之外的地面的总面积除以后来正方形地板砖的面积,即可求出所需的块数.解:(5+7)×(3+3)+3.14×()2÷2=12×6+3.14×4÷2=72+6.28=78.28(平方米);答:这套房子的总面积是78.28平方米.(2)288×(50×50)÷(60×60)=288×2500÷3600=200(块)答:需要200块.点评:此题主要考查组合图形的面积的计算方法,明确包括哪几部分面积是解决本题的关键.34.18.84平方厘米【解析】试题分析:圆锥铅锤的体积等于圆柱容器水面下降的那部分水的体积,先根据圆柱的体积公式,求出容器中水下降的体积(即圆锥的体积),已知圆锥的高是6厘米,用体积×3,再除以高即可求出底面积.由此列式解答解:容器水下降的体积:3.14×62×0.5,=3.14×36×0.5,=56.52(立方厘米);圆锥的底面积是:56.52×3÷9=18.84(平方厘米),答:圆锥的底面积是18.84平方厘米.点评:此题解答关键是理解容器中水下降的那部分水的体积等于圆锥的体积,利用圆柱、圆锥的体积计算方法解决问题.35.55%.【解析】试题分析:抓住正方体的特征,这个最大的正方体的棱长就是这个长方体最短的棱长,利用长方体和正方体的体积公式即可解决问题.解:5×4×3=60,3×3×3=27,(60﹣27)÷60,=33÷60,=0.55,=55%,答:体积要比原来减少55%.点评:正确找出这个最大正方体的棱长是解决本题的关键.36.910元【解析】试题分析:甲支付的现金是其余三人所支付现金总数的,那么甲:其余=1:4,那么甲就付了全部的,同理可得乙占全部的,丙占全部的,那么丁就占全部的:1﹣﹣,用总钱数乘丁占的分数就是丁付的钱数.解:甲:其余三人=1:4,甲占总数的,乙:其余三人=(1﹣50%):1=1:2,那么乙占总数的,丙:其余三人=1:3,丙占总数的,丁应支付现金:4200×(1﹣﹣)=4200×,=910(元);答:丁付的现金是910元.点评:本题先通过甲、乙、丙与它们之外的三人之间的关系找出它们分别占总数的几分之几,总数减去这三人的就是丁的.。

2019年广东省深圳市小升初数学期末统考试卷(含详细解析)

2019年广东省深圳市小升初数学期末统考试卷(含详细解析)

2019年广东省深圳市小升初数学试卷一、选择题.1.如果1133X ÷=,那么1(3X = ) A .13 B .16 C .19 D .1272.37x -错写成3(7)x -,结果比原来( )A .多43B .少3C .少14D .多143.一个两位数,十位上的数字是6,个位上的数字是a ,表示这个两位数的式子是( )A .60a +B .6a +C .610a +D .6a4.甲袋有a 千克大米,乙袋有b 千克大米,如果从甲袋拿出8千克放入乙袋,那么甲、乙两袋质量相等.列成等式是( )A .88a b +=-B .82a b -=⨯C .()28a b +÷=D .8a b -=5.甲、乙、丙、丁四人参加某次电脑技能比赛.甲、乙两人的平均成绩为a 分,他们两人的平均成绩比丙的成绩低9分,比丁的成绩高3分,那么他们四人的平均成绩为( )分.A .6a +B .4 1.5a +C .46a +D . 1.5a +6.电影院第一排有m 个座位,后面一排都比前一排多1个座位.第n 排有( )个座位.A .m n +B .1m n ++C .1m n +-D .mn7.22824x -÷=,这个方程的解是( )A .5x =B .9x =C .10x =D .20x =8.下面几句话中错误的一句是( )A .判断方程的解是否正确,只要把方程的解代入原方程,看方程左右两边是否相等B .等式的两边同时乘或除以一个数,所得结果仍是等式C .2a 不一定大于2a二、填空题.9.三数之和是120,甲数是乙数的2倍,丙数比乙数多20,丙数是 .10.已知4820x +=,那么28x += .11.爸爸说:“我的年龄比小明的4倍多3.”小明说:“我今年a 岁.”用含有字母的式子表示爸爸的年龄,写作 ;如果小明今年8岁,那么爸爸今年 岁.12.果园里有苹果树和梨树共45棵,其中梨树有a 棵,苹果树比梨树多 棵.13.在一场篮球比赛中,小红共投中a 个三分球,b 个两分球,发球还的5分,在这场比赛中,小红共得 分.14.1只青蛙1张嘴,2只眼睛4条腿,扑通扑通跳下水,2只青蛙2张嘴,4只眼睛8条腿,扑通扑通跳下水,⋯n 只青蛙 张嘴, 只眼睛 条腿,扑通扑通跳下水.15.小林买4支钢笔,每支a 元;又买了5本练习本,每本b 元.一共付出的钱数可用式子来表示;当0.5a =, 1.2b =时,一共应付出 元.16.已知5x =是方程312ax -=的解,那么方程425ay +=的解是 .17.在①3448x x +=②695n +③5360x +>④1239-=⑤30x x +-= 中,是方程的有 ,是等式的有 .三、解答题(共2小题,满分0分)18.计算.(能简便计算的要简便计算)100.490.77 1.1-+÷ 98.70.998.7⨯+8213[()]95104÷+⨯ 33127355-⨯-⨯. 19.解方程或比例.(1)13139288x -= (2)280.40.1x = (3)1730.92x -= (4)132213545x += (5)212.5236x -= (6)355148x ⨯-= 四、解决问题.20.甲乙两车同时从相距135千米的两地相对开出,1.5小时后相遇,甲的速度是每小时48千米,求乙车速度是每小时多少千米?(列方程解答)21.一桶油,第一次用去油的总千克数的30%,第二次用去10千克,两次共用去这桶油的25.这桶油有多少千克?用去两次后还剩多少千克? 22.红星机床厂上个月计划秤机床200台,实际比计划多生产40台,实际产量是计划的百分之几?23.学校买来315本科普读物,按3:4的比借给五、六年级的同学,那么五年级比六年级少借多少本?24.希望小学要买60个足球,现有甲、乙、丙三个商店可以选择,三个商店足球的价格都是25元,但各个商店的优惠办法不同.甲店:买10个足球免费赠送2个,不足10个不赠送.乙店:每个足球优惠5元.丙店:购物每满200元,返还现金30元.为了节省费用,希望小学应到哪个商店购买?为什么?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学综合模拟试卷12一、填空题:2.“趣味数学”表示四个不同的数字:则“趣味数学”为_______.正好是第二季度计划产量的75%,则第二季度计划产钢______吨.个数字的和是_______.积会减少______.6.两只同样大的量杯,甲杯装着半杯纯酒精,乙杯装半杯水.从甲杯倒出一些酒精到乙杯内.混合均匀后,再从乙杯倒同样的体积混合液到甲杯中,则这时甲杯中含水和乙杯中含酒精的体积,哪一个大?______7.加工一批零件,甲、乙二人合作需12天完成;现由甲先工作3天,则这批零件共有______个.8.一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示.它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米,瓶子倒放时,空余部分的高为2厘米,则瓶内酒精体积是______立方厘米.9.有一个算式,上边方格里都是整数,右边答案只写出了四舍五入后四位数是______.二、解答题:1.如图,阴影部分是正方形,则最大长方形的周长是______厘米.2.如图为两互相咬合的齿轮.大的是主动轮,小的是从动轮.大轮半径为105,小轮半径为90,现两轮标志线在同一直线上,问大轮至少转了多少圈后,两条标志线又在同一直线上?3.请你用1,2,3,4,5,6,7,8,9这九个数字,每个只能用一次,拼凑出五个自然数.让第二个是第一个的2倍,第3个是第一个的3倍,第四个是第一个的4倍,第五个是第一个的5倍.4.有一列数2,9,8,2,6,…从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字2.问这一列数第1997个数是几?答案一、填空题:1.(81.4)2.(3201)乘积前两位数字是1和0.“趣味数学”ד趣”的千位数字是9,就有“趣”=3,显然,“数”=0.而味“味”ד趣”不能有进位,2ד味”ד趣”向百万位进1,所以“味”=2,同理,“学”=1.3.(24000)÷75%=24000(吨).4.(8,447)由周期性可得,(1)100=16×6+4,所以小数点后第100个数字与小数点后第4个数字一样即为8;(2)小数点后前100个数字的和是:16×(1+4+2+8+5+7)+1+4+2+8=447.6.(一样大)甲、乙两杯中液体的体积,最后与开始一样多,所以有多大体积纯酒精从甲杯转到乙杯,就有多大体积的水从乙杯转入了甲杯,即甲杯中含水和乙杯中含酒精体积相同.7.(240个)8.(62.172,取π=3.14)液体体积不变,瓶内空余部分的体积也是不变的,因此可知液体体积是9.(1,2,3)10.(7744)到9999中找出121的倍数,共73个,即121×10,121×11,121×12,…,积,只能取16,25,36,49,64,81经验算所求四位数为7744=121×64.二、解答题:1.(30)由图可知正方形的边长等于长方形的宽边,这样长方形的周长应等于长方形的长边与正方形的边长之和的两倍.(9+6)×2=30(cm).2.(3圈)3.(9,18,27,36,45)第一个数一定是一位数,其余为两位数,为使它的2倍是两位数,这个数必须大于4;由于给出九数中只有四个偶数,所以第一个数只能是奇数;由于没有0,所以这个数不是5,又7×2=14,7×3=21有重复数字1,所以不能是7,由此这个一位数是9.4.(6)这列数为2,9,8,2,6,2,2,4,8,2,6,2,2,4,8,2…除去前两个数2,9外,后面8,2,6,2,2,4六数一个循环.(1997-2)÷6=332余3.小升初数学综合模拟试卷13一、填空题:2.已知A=2×3×3×3×3×5×5×7,在A的两位数的因数中,最大的是______.3.在图中所示的方格中适当地填上1、2、3、4、5、6、7、8,使它的和为153.此时所有“个位数字”之和与所有“十位数字”之和相差_______.4.A、B两只青蛙玩跳跃游戏,A每次跳10厘米,B每次跳15厘米,它们每秒都只跳1次,且一起从起点开始.在比赛途中,每隔12厘米有一陷阱,当它们中第一只掉进陷阱时,另一只距离最近的陷阱有______厘米.5.如图所示,按一定规律用火柴棍摆放图案:一层的图案用火柴棍2支,二层的图案用火柴棍7支,三层的图案用火柴棍15支,……,二十层的图案用火柴棍______支.6.图中ABCD是梯形,AECD是平行四边形,则阴影部分的面积是______平方厘米(图中单位:厘米).7.用43个边长1厘米的白色小正方体和21个边长1厘米的黑色小正方体堆成如图所示的大正方体,使黑色的面向外露的面积要尽量大.那么这个立方体的表面积上有______平方厘米是黑色的.8.甲、乙、丙三人射击,每人打5发子弹,中靶的位置在图中用点表示.计算成绩时发现三人得分相同.甲说:“我头两发共打了8环.”乙说:“我头两发共打了9环.”那么唯一的10环是______打的.9.有三堆棋子,每堆棋子一样多,并且都有黑白两色棋子.第一堆里黑棋子和第二堆里白棋子的数目相等,第三堆里的黑棋_______分之_______.10.若干名战士排成八列长方形队列,若增加120人或减少120人都能组成一个新的正方形队列.那么,原有战士_______名.二、解答题:1.计算:2.甲有桌子若干张,乙有椅子若干把,如果乙用全部椅子换回数量同样多的桌子,则乙需补给甲320元,如乙不补钱,就要少换回5张桌子.已知3张桌子比5把椅子的价钱少48元,那么乙原有椅子多少把?3.有30个贰分硬币和8个伍分硬币,用这些硬币不能构成1分到1元之间的币值有多少种?4.快、中、慢三辆车同时从A地沿同一公路开往B地,途中有一骑车人也同方向行进.这三辆车分别用7分、8分、14分追上骑车人.已知快车每分行800米,慢车每分行600米,求中速车的速度.答案一、填空题:1.102.902×32×5=903.10所有“个位数字”之和=23,所有“十位数字”之和=13,所以23-13=10.4.410与12的最小公倍数是60,15和12的最小公倍数也是60.当第一只掉进陷阱时,第二只跳到10×(60÷15)=40厘米处,此时距离最近的陷阱有40-12×3=4(厘米).第一层:1×2第二层:1×2+1+2×2第三层:1×2+1+2×2+2+3×2第二十层:1×2+1+2×2+2+3×2+…+19+20×2=(1+2+…+19)+1×2+2×2+…+20×2=190+21×20=6106.60阴影部分的面积等于以12为底以10为高的平行四边形面积的一半,即12×10÷2=60(平方厘米).7.50八个顶点用去8个黑色小立方体,还剩13个黑色小立方体放在棱上,所以大立方体上黑色的面积为3×8+2×(21-8)=24+26=50(平方厘米)8.丙.从图中可以看出,总环数为1×2+2×6+4×3+7×3+10×1=57(环),每人五发子弹打(57÷3=)19环.从图中还可看出2+6+3+3+1=15,即每人五发子弹均中靶.因为甲、乙头两发子弹总成绩已分别为8环、9环,所以后三发中不可能有10环,否则总成绩将大于19环.由此可知,10环是丙打的.根据条件可知,第一、二堆中,白色棋子与黑色棋子数目相同,所以第一、二堆中的白棋子也可分成同样的3份,因为三堆棋子数相同,所以每堆棋子数相当于3份.根据第三堆中黑棋子占2份,可知第三堆中白棋子占1份.因为增加120人可构成大正方形(设边长为a),减少120人可构成小正方形(设边长为b),所以大、小正方形的面积差为240.利用弦图求大、小正方形的边长(只求其中一个即可),如右图所示,可知每个小长方形的面积为(240÷4)=60.根据60=2×30=3×20=4×15=5×12=6×10,试验.①长=30,宽=2,则b=30-2=28.原有人数=28×28+120=904(人),经检验是8的倍数(原有8列纵队),满足条件.②长=20,宽=3,则b=20-3=17.原有人数为奇数,不能排成8列纵队,舍。

③长=15,宽=4,则b=15-4=11.原有人数为奇数,不能排成8列纵队,舍.④长=12,宽=5,则b=12-5=7.原有人数为奇数,不能排成8列纵队,舍.⑤长=10,宽=6,则b=10-6=4.原有人数=4×4+120=136(人).经检验是8的倍数.满足条件.所以原有战士904人或136人.二、解答题1.24752.20把.(1)每张桌子多少元?320÷5=64(元)(2)每把椅子多少元?(64×3+48)÷5=48(元)(3)乙原有椅子多少把?320÷(64-48)=20(把)3.4种.共有人民币:2×30+5×8=100(分)=1(元).按如下方法分组,使每组中的币值和为1元:(0,100),(1,99),(2,98),(3,97),…(49,51),(50,50)因为0,2,4,6,…,50这26个数能用所给硬币构成,所以对应的100,98,96,94,…50也能用所给硬币构成.下面讨论奇数:1,3,5,7, (99)因为4,6,8,10,…,50均可由贰分硬币构成,所以将其中两个贰分币换成一个伍分币,得到5,7,9,11,…,51,可用所给硬币构成.只有1、3不能构成,对应的99、97也不能构成,所以共有4种不能构成的币值.4.每分750米.(1)7分时慢车与快车相距多少米?(800-600)×7=1400(米)(2)骑车人的速度是每分多少米?600-1400÷(14-7)=400(米)(2)快车出发时与骑车人相距多少米?(800-400)×7=2800(米)(4)中速车每分行多少米?400+2800÷8=750(米)小升初数学综合模拟试卷14一、填空题:2.某单位举办迎春会,买来5箱同样重的苹果,从每箱取出24千克苹果后,结果各箱所剩的苹果重量的和恰好等于原来一箱的重量,那么原来每箱苹果重_______千克.3.有5分、1角、5角、1元的硬币各一枚,一共可以组成______种不同的币值.4.有500人报考的入学考试,录取了100人,录取者的平均成绩与未录取者的平均成绩相差42分,全体考生的平均成绩是51分,录取分数线比录取者的平均分少14.6分,那么录取分数线为______.5.A、B、C、D分别代表四个不同的数字,依下列除式代入计算:结果余数都是4,如果B=7,C=1,那么A×D=_______.6.某校师生为贫困地区捐款1995元,这个学校共有35名教师,14个教学班,各班学生人数相同且多于30人,不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款______元.7.数一数,图中包含小红旗的长方形有______个.8.在3时与4时之间,时针与分针在______分处重合.一昼夜24小时,时针与分针重合______次.9.如图,大长方形的面积是小于200的整数,它的内部有三个边长是10.将自然数按如下顺序排列:在这样的排列下,9排在第三行第二列,那么1997排在第______行第______列.二、解答题:1.计算:2.5个工人加工735个零件,2天加工了135个,已知2天中有1人因事请假1天,照这样的工作效率,如果以后几天无人请假,还要多少天才能完成任务?3.老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,4.甲、乙在椭圆形跑道上训练,同时从同一地点出发反向而跑,每人跑完第一圈回到出发点立即回头加速跑第二圈.跑第一圈时,乙的速度是甲条椭圆形跑道长多少米?答案一、填空题:2.30.根据题设可知,5箱苹果中共取出(24×5=)120千克,相当于原来4箱苹果的重量,所以每箱苹果重(120÷4=)30千克.3.15.分类计算:从4枚硬币中任取一枚,有4种取法;从4枚硬币中任取二枚,有6种取法;从4枚硬币中任取三枚,有4种取法;从4枚硬币中取4枚,有1种取法,所以共有(4+6+4+1=)15种取法.4.70分.(1)录取者总成绩比未录取者总成绩多多少分?42×100=4200(分)(2)未录取者平均分是多少分?51-4200÷500=42.6(分)(3)录取分数线是多少分?(42.6+42)-14.6=70(分)5.45.验证其余四个算式均满足条件,所以A×D=45.6.3因为1995=3×5×7×19.平均每人捐款钱数定是1995的一个约数.经试验可知,只有3满足条件,此时每个教学班人数为(1995÷3-35)÷14=45(人).7.48.(1)在小红旗所在的竖行中,按照由1个、2个、3个、4个小长方形所组成的长方形的顺序去计算,包含小红旗的长方形共有1+2+2+1=6(个)(2)在小红旗所在的横行中,按照由1个、2个、3个、4个、5个小长方形所组成的长方形的顺序去计算,包含小红旗的长方形共有1+2+2+2+1=8(个)所以包含小红旗的长方形共有从3时开始计算,时针与分针重合需要24小时重合次数:9.53.因为三个正方形的边长是整数,所以长方形的长和宽也是整数.因此长方形的长是16的倍数,长方形的宽是4的倍数.当长是16时,正方形②的边长为16-7=9,所以长方形的宽是大于9且是4的倍数.故宽至少是12.因为长×宽<200,且6×12=192,所以只能是长为16,宽为12.S阴=192-9×9-7×7-3×3=53.10.44;20.先将原图形变形成下图:观察新旧图形发现,新图形中每行从右往左数,第i个位于原图形的第i行.新图形中每行从左往右数,第j个位于原图形的第j列,且第n行左数第1个是(1+n)×n÷2.下面找出1997所在的行数.因为63×62÷2=1953,所以1997在第63行.第62行左数第一个数是1953,第63行左数第一个数是(1953+63=)2016.根据1997-1953=44和2016-1997+1=20,可知1997在第44行第20列.二、解答题:2.8天.(1)1个工人每天可加工多少零件?135÷(5×2-1)=15(个)(2)还需要几天完成?(735-135)÷5÷15=8(天)3.22.+13+14=105,178-105=73>14,不符合条件.所以378-356=22为擦掉的数字.4.400米.设跑道的长为1,甲跑第一圈时的速度为1.(1)甲、乙第一次相遇时,甲跑离起点多远?(2)当甲回到起点时,乙离起点还有多远?(3)当乙回到起点时,甲又跑离起点多远?(4)当乙又跑离起点时,何时与甲相遇?(5)第二次相遇时,乙跑离起点多远?(6)跑道的长度是多少米?。

相关文档
最新文档