广东省深圳市百合外国语学校小升初数学试卷(下午场)

合集下载

深圳市外国语学校小升初数学试卷及答案

深圳市外国语学校小升初数学试卷及答案

广东省深圳市龙岗区百合外国语学校小升初数学试卷一、判断题1.分针转180°时,时针转30°.(判断对错)2.两圆相比,周长小的面积一定小..(判断对错)3.甲和乙两个数,甲比乙少,则乙比甲多.(判断对错)4.有5克盐,制成95克盐水,则含盐率为5%.(判断对错)6.要剪一个面积是9.42cm2的圆形纸片,至少要11cm2的正方形纸片..(判断对错)二、选择题7.跳蚤市场琳琳卖书,两本每本60元,一本赚20%,一本亏20%,共()A.不亏不赚B.赚5元C.亏2元D.亏5元8.如图,长方形被分成四块面积相等的部分,其中A.B为长方形,其中长方形B的长和宽的比为3:2,求长方形A的长和宽的比为()A.2:3B.3:6C.3:2D.6:19.教室里有红黄蓝三盏灯,只有一个拉环,拉一次亮红灯,拉两次亮红灯和黄灯,拉三次三灯全亮,拉四次全部灭,现在有编号1到100的同学,每个同学拉开关拉自己编号吹灯,比如第一个同学拉一次,第二个拉两次,照此规律一百个同学拉完灯的状态是()A.亮红灯B.亮红灯和黄灯C.全部亮D.全部灭10.水流增加对船的行驶时间()A.增加B.减小C.不增不减D.都有可能11.定义新运算:○与?已知A○B=A+B﹣1,A?B=A×B﹣1.x○(x?4)=30,求x.()A.B.C.三、填空题12.图中一共有个三角形.13.一张地图比例尺为1:30000000,甲、乙两地图上距离为6.5cm,实际距离为千米.14.一个长方形的长和宽都为整数厘米,面积160有种可能.15.小明周末去爬山,他上山时4千米/小时,下山时5千米/小时,他上下山的平均速度是.16.一个棱长为1的正方体,按水平向任意尺寸切成3段,再竖着按任意尺寸切成4段,求表面积.17.一个圆柱和一个圆锥,底面周长之比是2:3,体积之比是5:6,圆柱和圆锥的高之比是:.18.一款东西120元,先涨价30%,再打8折,原来(120元),利润率为50%.则现在变为%.19.100名学生去离学校33公里的地方,只有一辆载25人的车,车每小时行驶55公里,学生步行速度5km/h,求最快要多久到目的地?20.一根竹竿,一头伸进水里,有1.2米湿了,另一头伸进去,现没湿部分是全长的一半少0.4米,求没湿部分的长度.21.如图,以CD为底边时,高14cm,以BD为底边时,高20cm,ACDB周长为102cm,面积是四、解答题(共1小题,满分0分)22.计算题.x+x=0.36:8=x:25 15÷[()]﹣0.591×﹣1÷13×100+9×+11÷11 [22.5+(3+1.8+1.21×)]+()+()+()+…+(++…+)五、应用题23.一家商场做促销,一款东西120元,先涨价30%,再打8折,原来(120元)利润率为50%,则现在变为百分之多少?24.环形跑道400米,小百小合背向而行,小百6米/秒,小合4米/秒,当小百正面和小合相遇时,立刻转向跑.当小百追上小合时,小合立即转向跑,两人第11次碰头时离起点多少米?(按较短计算)25.A、B、C、D四个数,每次计算三个数的平均数,这样计算四次,得出的平均数分别为29、28,32、36,求这四个数的平均数.26.欢欢与乐乐月工资相同,欢欢每月存30%,乐乐月开支比欢欢多10%,剩下的存入银行1年(12个月)后,欢欢比乐乐多存了5880元,求欢欢、乐乐月工资为多少?27.甲、乙、丙三人4天合作一项工程的,4天内,甲休息了2天,乙休息了3天,甲干3天等于丙1天,乙干2天等于丙1天,问工程完成共用多少天?28.货车每小时40km,客车每小时60km,甲、乙两地相距360km,同时同向从甲地开往乙地,客车到乙地休息了半小时后立即返回甲地,问从甲地出发后几小时两车相遇?深圳市龙岗区百合外国语学校小升初数学答案一、判断题1.分针转180°时,时针转30°×.(判断对错)【分析】1分钟分针旋转的度数是6度,依此先求出分针转180度需要的时间,时针1分钟旋转的度数是0.5度,乘以求出的分钟数,即可得到时针旋转的度数.【解答】解:180÷6×0.5=30×0.5=15(度)答:分针转180°时,时针转15度.故答案为:×.2.两圆相比,周长小的面积一定小.正确.(判断对错)【分析】圆的半径的大小确定圆的面积的大小;半径大的圆的面积就大;圆的周长=2πr,周长小的圆,它的半径就小.由此即可判断.【解答】解:半径确定圆的大小,周长小的圆,半径就小,所以面积也小.所以原题说法正确.故答案为:正确.3.甲和乙两个数,甲比乙少,则乙比甲多.×(判断对错)【分析】甲比乙少,把乙数看作单位“1”,则甲数就是1﹣=,求乙数比甲数多几分之几,就是求乙数比甲数多的部分占甲数的几分之几,用甲、乙两数之差除以甲数,根据计算结果进行判断.【解答】解:把乙数看作单位“1”,则甲数就是1﹣=(1﹣)÷=÷=即甲和乙两个数,甲比乙少,则乙比甲多.原题说法错误.故答案为:×.4.有5克盐,制成95克盐水,则含盐率为5%.×(判断对错)【分析】用盐的重量除以盐水的总重量乘100%求得含盐率,再与5%比较得解.【解答】解:5÷95×100%≈5.3%.答:盐水的含盐率约是5.3%.5%≠5.3%故答案为:×.6.要剪一个面积是9.42cm2的圆形纸片,至少要11cm2的正方形纸片.×.(判断对错)【分析】要剪一个面积是9.42平方厘米的圆形纸片,需要的正方形纸片的边长是圆的直径,知道圆的面积可以求半径的平方,把正方形用互相垂直的圆的两个直径分成4个小正方形,则每个小正方形的面积都为圆的半径的平方,进而可求大正方形的面积.【解答】解:小正方形的面积(半径的平方):9.42÷3.14=3(平方厘米),大正方形的面积:3×4=12(平方厘米);答:至少需要一张12平方厘米的正方形纸片,所以题干的说法是错误的.故答案为:×.二、选择题7.跳蚤市场琳琳卖书,两本每本60元,一本赚20%,一本亏20%,共()A.不亏不赚B.赚5元C.亏2元D.亏5元【分析】两本每本卖60元,一本赚20%,一本亏20%,要求出两本书的原价.【解答】解:设两本书的原价分别为x元,y元则:x(1+20%)=60y(1﹣20%)=60解得:x=50y=75所以两本书的原价和为:x+y=125元而售价为2×60=120元所以她亏了5元8.如图,长方形被分成四块面积相等的部分,其中A.B为长方形,其中长方形B的长和宽的比为3:2,求长方形A的长和宽的比为()A.2:3B.3:6C.3:2D.6:1【分析】为方便,把图给标上字母,如图:;长方形B的长和宽的比为3:2,也就是a:b=3:2,设a是3,那么b就是2;长方形A长是c,宽是d,那么A的面积就是c×d,直角三角形C的面积是:×(c﹣b)×a,由B和C的面积相等,求出c的长度;再根据A、B的面积相等求出d,然后作比即可.【解答】解:为方便,把图给标上字母,如图:;设a是3,那么b就是2;长方形A长是c,宽是d;由B、C的面积相等可知:ab=×(c﹣b)×a3×2=×(c﹣2)×3c﹣2=4c=6;由A、B的面积相等可知:cd=ab6×d=2×3d=1;所以c:d=6:1.答:长方形A长和宽的比是6:1.故选:D.9.教室里有红黄蓝三盏灯,只有一个拉环,拉一次亮红灯,拉两次亮红灯和黄灯,拉三次三灯全亮,拉四次全部灭,现在有编号1到100的同学,每个同学拉开关拉自己编号吹灯,比如第一个同学拉一次,第二个拉两次,照此规律一百个同学拉完灯的状态是()A.亮红灯B.亮红灯和黄灯C.全部亮D.全部灭【分析】把按4次看成一次操作,这一次操作中按第一次第一盏灯亮,按两次第二盏灯亮,按三次三灯全亮,再按一次全部灯灭;求出100里面有几个这样的操作,还余几,然后根据余数推算.【解答】解:第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+……+100=5050(次)5050÷4=1262(次)…2(次)余数是2,就是第二次的状态,红灯和黄灯亮.故选:B.10.水流增加对船的行驶时间()A.增加B.减小C.不增不减D.都有可能【分析】此题分几种情况:1.小船船头垂直于河岸时,由于船的实际运动与沿船头指向的分运动同时发生,时间相等,故水流速度对小船的渡河时间无影响,2.当小船顺水而下时,船速等于静水速度加水速,速度加快,路程不变时,时间减少,3.当小船逆水而上时,船速等于静水时速度减水速,所以船速减慢,时间增加.所以三种情况都可能出现,据此解答.【解答】解:分三种情况:1.小船船头垂直于河岸时,小船行驶时间不增不减,所以C正确;2.当小船顺水而下时,船速加快,时间减少,所以B正确;3.当小船逆水而上时,船速减慢,时间增加,所以A正确;故选:D.11.定义新运算:○与?已知A○B=A+B﹣1,A?B=A×B﹣1.x○(x?4)=30,求x.()A.B.C.【分析】根据题意可知,A○B=A+B﹣1,表示两个数的和减1,A?B=A×B﹣1表示两个数的积减1;根据这种新运算进行解答即可.【解答】解:x○(x?4)=30x○(4x﹣1)=30x+4x﹣1﹣1=305x=32x=.故选:B.三、填空题12.图中一共有37个三角形.【分析】由题意知:三角形的个数等于最下边一条边的线段的条数加上最右边一条边的线段的长度,然后加上总体这个三角形,据此解答即可.【解答】解:三角形的个数为:6+(5+4+3+2+1)×2+1=6+30+1=37(个)答:图中一共有37个三角形.故答案为:37.13.一张地图比例尺为1:30000000,甲、乙两地图上距离为6.5cm,实际距离为1950千米.【分析】要求实际距离是多少千米,根据“图上距离÷比例尺=实际距离”,代入数值计算即可.【解答】解:6.5÷=195000000(厘米),195000000厘米=1950千米;答:实际距离是1950千米.故答案为:1950.14.一个长方形的长和宽都为整数厘米,面积160有6种可能.【分析】根据长方形的面积公式:S=ab,160=160×1=80×2=40×4=32×5=20×8=16×10,据此解答.【解答】解:因为,160=160×1=80×2=40×4=32×5=20×8=16×10,所以面积是160有6种情况.答:一个长方形的长和宽都为整数厘米,面积160有6种情况.故答案为:6.15.小明周末去爬山,他上山时4千米/小时,下山时5千米/小时,他上下山的平均速度是4千米/小时.【分析】首先根据题意,把山脚到山顶的距离看作单位“1”,分别用1除以小明上山、下山的速度,求出他上山、下山用的时间各是多少;然后用2除以他上、下山一共用的时间,求出他上下山的平均速度是多少即可.【解答】解:2÷(+)=2÷=4(千米/小时)故答案为:4千米/小时.16.一个棱长为1的正方体,按水平向任意尺寸切成3段,再竖着按任意尺寸切成4段,求表面积.【分析】根据题干分析可得:每切一刀,就增加2个正方体的面的面积,由此只要求出一共切了几刀,即可求出一共增加了几个正方体的面的面积,再加上原来正方体的表面积,就是这些块长方体的表面积之和.按水平向任意尺寸切成3段,是切割了2刀,再竖着按任意尺寸切成4段,是切割了3刀,所以一共切了2+3=5刀,所以表面积一共增加了5×2=10个正方体的面,由此即可解答问题.【解答】解:1×1×6+(3+2)×2×(1×1)=6+5×2×1=6+10=16答:表面积是16.17.一个圆柱和一个圆锥,底面周长之比是2:3,体积之比是5:6,圆柱和圆锥的高之比是5:8.【分析】由周长比可以求出半径比,由公式知,半径比等于底面周长比,底面积之比等于半径比的平方,即是4:9,所以圆柱的高为:圆柱的体积÷底面积,圆锥的高为:体积×3÷底面积.所以圆柱与圆锥的高的比为:(圆柱的体积÷底面积):(圆锥体积×3÷底面积),代入数据就可以解答.【解答】解:底面周长的比是2:3,底面半径的比是2:3,底面面积的比是半径比的平方:(2×2):(3×3)=4:9圆柱和圆锥的高的比是:(5÷4):(6×3÷9)=5:8故答案为:5:8.18.一款东西120元,先涨价30%,再打8折,原来(120元),利润率为50%.则现在变为56%.【分析】将原价当作单位“1”,则先涨价30%后的价格是原价的1+30%,再打八折,即按涨价后价格的80%出售,则此时价格是原价的(1+30%)×80%,又原来利润是50%,则原来售价是进价的1+50%,则进价是120÷(1+50%)=80元,又现在售价是120×(1+30%)×80%=124.8元,则此时利润是124.8﹣80元,利润率是(124.8﹣80)÷80.【解答】解:120×(1+30%)×80%=120×130%×80%=124.8(元)120÷(1+50%)=120÷150%=80(元)(124.8﹣80)÷80=44.8÷80=56%答:现在利润率是56%.故答案为:56.19.100名学生去离学校33公里的地方,只有一辆载25人的车,车每小时行驶55公里,学生步行速度5km/h,求最快要多久到目的地?【分析】如图:AB是两地距离33公里,100个人被分成4组,每组是25人,第一组直接从A开始上车被放在P1点;汽车回到C2接到第2组放在了P2点;下面都是一样,最后一组是在C4接到的,直接送到B点;我们知道,这4组都是同时达到B点,时间才会最短;那么其4个组步行的距离都是一样的;当第一组被送到P1点时,回到C2点这段时间,另外三个组都步行到了C2,根据速度比=路程之比=55:5=11:1;我们把接到每组之间的步行距离看作单位1,那么汽车从出发到返回P2就是11个单位;那么出发点A到P1就是(11+1)÷2=6个单位;因为步行的距离相等,所以2段对称;(例如第一组:步行的距离是P1到B点3份,最后一组是A到C4也是三段距离是3份);所以以第一组为例,它步行了后面的3份,乘车行了前面的6份,可见全程被分为9份,每份是33÷9=千米,步行速度是5千米每小时,时间就是(3×)÷5=小时;乘车速度是55千米每小时,时间就是(6×)÷55=小时;合计就是小时.【解答】解:(33÷9)×3÷5+(33÷9)×6÷55=+=(小时)答:最快要小时到目的地.20.一根竹竿,一头伸进水里,有1.2米湿了,另一头伸进去,现没湿部分是全长的一半少0.4米,求没湿部分的长度.【分析】设这根竹竿长x米,则两次浸湿部分都应是1.2米,两次共浸湿了1.2×2=2.4米,没浸湿的部分是(x﹣2.4)米;再由“没有浸湿的部分比全长的一半还少0.4米”可知,没浸湿的部分是(﹣0.4)米,没浸湿的部分是相等的,据此可得等式:x﹣2.4=﹣0.4,解出此方程,问题就得解.【解答】解:设这根竹竿长x米.则有x﹣1.2×2=﹣0.4=2x=4;没浸湿的部分是:4÷2﹣0.4=1.6(米);答:这根竹竿没有浸湿的部分长1.6米.21.如图,以CD为底边时,高14cm,以BD为底边时,高20cm,ACDB周长为102cm,面积是420平方厘米【分析】根据平行四边形的周长公式:C=(a+b)×2,已知周长是102厘米,那么CD+BD=51厘米,根据平行四边形的面积公式:S=ah,即CD×14=BD×20,因为平行四边形的面积一定,所以底和高成反比例,也就是平行四边形底边的比等于高的反比,据此求出CD与BD的比,利用按比例分配的方法求出CD或BD,然后把数据代入公式解答.【解答】解:102÷2=51(厘米),14:20=7:10,所以CD:BD=10:710+7=17,51×=30(厘米),30×14=420(平方厘米),答:这个平行四边形的面积是420平方厘米.故答案为:420平方厘米.四、解答题(共1小题,满分0分)22.计算题.x+x=0.36:8=x:2515÷[()]﹣0.591×﹣1÷13×100+9×+11÷11[22.5+(3+1.8+1.21×)]+()+()+()+…+(++…+)【分析】(1)先化简方程的左边,同时除以即可;(2)先根据比例的基本性质,把比例方程变成简易方程,再根据等式的性质求解;(3)先算小括号里面的减法,再算中括号里面的除法,然后算括号外的除法,最后算括号外的减法;(4)运用乘法分配律简算;(5)先算小括号里面的乘法,再算从左到右的顺序计算小括号里面的加法,然后算中括号里面的加法,最后算括号外的除法;(6)=0.5=1=1.5=2…每个小括号里面的和可以看成是一个首项是0.5、公差是0.5的等差数列,那么最后一项就是++…+=0.5+(49﹣1)×0.5=0.5+48×0.5=24.5,这个数列的末项是24.5,然后根据等差数列的求和公式求解即可.【解答】解:(1)x+x=x=x÷=÷x=;(2)0.36:8=x:258x=0.36×258x=98x÷8=9÷8x=;(3)15÷[()]﹣0.5=15÷[]﹣0.5=15÷2﹣0.5=7.5﹣0.5=7;(4)91×﹣1÷13×100+9×+11÷11=(91﹣100+9)×+(11+)×=0×+11×+×=0+1+=1;(5)[22.5+(3+1.8+1.21×)]=[22.5+(3+1.8+0.55)]=[22.5+(5.4+0.55)]=(22.5+5.95)÷=28.45=56.9;(6)+()+()+()+…+(++…+)=0.5+1+1.5+2+2.5+3+…+24.5=(0.5+24.5)×49÷2=25×49÷2=612.5.五、应用题23.一家商场做促销,一款东西120元,先涨价30%,再打8折,原来(120元)利润率为50%,则现在变为百分之多少?【分析】根据题意,把这款商品的进价看作单位“1”,有关系式:原售价=进价×(1+50%),则进价为:120÷(1+50%)=80(元),然后根据现在的政策算出现在的价钱:120×(1+30%)×80%=124.8(元),然后计算现价比进价多百分之几,即利润率.【解答】解:120÷(1+50%)=120÷1.5=80(元)120×(1+30%)×80%=120×1.3×0.8=124.8(元)(124.8﹣80)÷80×100%=44.8÷80×100%=56%答:现在的利润率是56%.24.环形跑道400米,小百小合背向而行,小百6米/秒,小合4米/秒,当小百正面和小合相遇时,立刻转向跑.当小百追上小合时,小合立即转向跑,两人第11次碰头时离起点多少米?(按较短计算)【分析】第一次相遇是正常的相遇,但是第二次相遇是追及,十一次相遇里,有五次是追及,六次相遇.一次追及的时间是400÷(6﹣4)=200s,一次相遇的时间是400÷(6+4)=40s,由于小百方向没有变,所以可求了小百行的总路程是200×5+40×6=1240s,小百跑的路程1240×4=4960m,4960÷400=12圈…160米.【解答】解:400÷(6+4)=400÷10=40(秒)400÷(6﹣4)=400÷2=200(秒)200×5+6×40=1000+240=1240(秒)1240×4÷400=4960÷400=12(圈)…160(米)答:两人第11次相遇时离起点160米.25.A、B、C、D四个数,每次计算三个数的平均数,这样计算四次,得出的平均数分别为29、28,32、36,求这四个数的平均数.【分析】根据得出的平均数:29、28、32、36,可求出A、B、C、D四个数的和的3倍,再除以3得A、B、C、D四个数的和,再用和除以4即得4个数的平均数.【解答】解:A、B、C、D四个数的和的3倍:29×3+28×3+32×3+36×3=87+84+96+108=375A、B、C、D四个数的和:375÷3=125;四个数的平均数:125÷4=31.25.答:4个数的平均数是31.25.26.欢欢与乐乐月工资相同,欢欢每月存30%,乐乐月开支比欢欢多10%,剩下的存入银行1年(12个月)后,欢欢比乐乐多存了5880元,求欢欢、乐乐月工资为多少?【分析】将欢欢与乐乐的每月工资当作单位“1”,欢欢每月把工资的30%存入银行,则还剩下全部的1﹣30%,乐乐每月的日常开支比乐乐多10%,则乐乐的开支为(1﹣30%)×(1+10%)=77%,所以乐乐存入的为每月工资的1﹣77%=23%,则每月欢欢比乐乐多存每月工资的30%﹣23%,又乐乐比欢欢每月少存5880÷12元,所以乐乐每月工资是5880÷12÷(30%﹣23%)元.【解答】解:(1﹣30%)×(1+10%)=70%×110%=77%5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%]=490÷7%=7000(元).即欢欢、乐乐的月工资是7000元.故答案为:7000.27.甲、乙、丙三人4天合作一项工程的,4天内,甲休息了2天,乙休息了3天,甲干3天等于丙1天,乙干2天等于丙1天,问工程完成共用多少天?【分析】根据题意,把丙的工作效率看作单位“1”,甲乙丙三人的工作效率的比为:2:3:6,又因为甲、乙、丙三人4天合作一项工程的,所以,丙4天完成所做工程的:=,即完成整项工程的,所以丙每天完成整项工程的,所以甲每天完成整项工程的:,乙每天完成整项工程的.然后计算剩余工程三人合作所需时间:(1﹣)÷()=8(天),所以完成整项工程所需天数为:8+4=12(天).【解答】解:把丙的工作效率看作单位“1”甲乙丙三人的工作效率的比为:2:3:6又因为甲、乙、丙三人4天合作一项工程的所以,丙4天完成所做工程的:=即完成整项工程的所以丙每天完成整项工程的,即丙的工作效率.所以甲每天完成整项工程的:,即甲的工作效率.乙每天完成整项工程的,即乙的工作效率.剩余工程三人合作所需时间:(1﹣)÷()==8(天)所以完成整项工程所需天数为:8+4=12(天)答:工程完成共用12天.28.货车每小时40km,客车每小时60km,甲、乙两地相距360km,同时同向从甲地开往乙地,客车到乙地休息了半小时后立即返回甲地,问从甲地出发后几小时两车相遇?【分析】第一步求出客车从甲地出发驶到乙地再停留半小时用的时间是360÷60+0.5=6.5(小时),第二步求出6.5小时货车行的路程,第三步求出货车距乙还有的路程,第四步根据路程除以速度和,求出再过多少时间相遇,进而得出答案.【解答】解:客车从甲地出发到达乙地后再停留半小时,共用的时间:360÷60+0.5=6+0.5=6.5(小时)(360﹣40×6.5)÷(60+40)=(360﹣260)÷100=100÷100=1(小时)6.5+1=7.5(小时)答:从甲地出发后7.5小时两车相遇.。

(解析版)2015年广东省深圳市百合外国语学校小升初数学试卷(下午场)

(解析版)2015年广东省深圳市百合外国语学校小升初数学试卷(下午场)

2015年广东省深圳市百合外国语学校小升初数学试卷(下午场)一、填空题(共6小题,每小题2分,满分12分)1.(2分)生产的90个零件中,有10个是废品,合格率是90%.错误(判断对错).【分析】首先理解合格率,合格率是指合格产品的个数占产品总个数的百分之几,进而用:×100%=合格率,由此列式解答后再判断.【解答】解:合格产品的个数:90﹣10=80(个),合格率:×100%≈0.889=88.9%;答:合格率是88.9%.故答案为:错误.【点评】此题属于考查求百分率的应用题,应用的等量关系式是:×100%=合格率.2.(2分)真分数除以假分数的商一定比1小.正确.【分析】首先要理解真分数和假分数的概念,真分数是分子比分母小的分数,即真分数都小于1;假分数是分子等于或大于分母的数,假分数大于等于1,举例进行验证.【解答】解:举例:=<1;=<1;=<1;而且找不出反例,所以真分数除以假分数的商一定比1小.故答案为:正确.【点评】本题根据真分数都小于1,而假分数大于等于1,这一基本的知识求解.3.(2分)大圆周长与直径的比值大于小圆周长与直径的比值.×(判断对错)【分析】根据圆周率的意义,任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率.由此解答即可.【解答】解:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率.一般用“π”表示.即周长÷直径=π(一定),所以大圆周长与直径的比值和小圆周长与直径的比值相等.故答案为:×.【点评】此题主要根据圆周率的意义解决问题.4.(2分)一个长方形的长增加50%,宽减少,长方形的面积不变.√.(判断对错)【分析】设长方形原来的长和宽分别是a和b;根据“长方形的面积=长×宽”计算出原来的长方形的面积;然后根据一个数乘分数的意义,分别计算出后来长方形的长和宽,并根据长方形的面积计算公式计算出后来的面积,进行比较,得出结论.【解答】解:原来的面积:ab;后来的面积:[a×(1+50%)]×[b×(1﹣)]=1.5a×b=ab;故长方形的面积不变.故答案为:√.【点评】解答此题的关键是先设出原来长方形的长和宽,进而根据长方形的面积计算方法求出原来的长方形的面积;分别计算出后来长方形的长和宽,并计算出后来的面积,进行比较,得出结论.5.(2分)一根木料锯成4段要4分钟,锯成7段要7分钟.×.(判断对错)【分析】根据题意,分成4段,截的次数是4﹣1=3次,那么可以求出截一次的时间;分7段,截的次数是7﹣1=6次,乘上截每次的时间即可.【解答】解:4÷(4﹣1)×(7﹣1)=4÷3×6=8(分钟)答:锯成7段要8分钟.故答案为:×.【点评】本题的关键是理解截的次数和分的段数是不一样的,截的次数要比分的段数少1,求出截一次的时间,然后再进一步解答即可.6.(2分)甲、乙两数是正整数,如果甲数的恰好是乙数的,则甲、乙两数和的最小值是13.√.(判断对错)【分析】把乙数看做单位“1”,则甲数是÷=,所以甲乙两个数的和是1+=,因为甲、乙两数是自然数,要使甲乙两数之和也是自然数,让它最小,乙只能是10,从而甲数是3,和为13.【解答】解:把乙数看做单位“1”,则甲数是÷=,所以甲乙两个数的和是1+=,因为甲、乙两数是自然数,要使甲乙两数之和也是自然数,让它最小,乙只能是10,从而甲数是3,和为13.答:甲、乙两数和的最小值是13.故答案为:√.【点评】此题考查了最大与最小.化成甲数用乙数来表示,甲乙都是自然数,让分数乘以一个自然数得到一个最小的自然数,只能是这个自然数就是分数的分母.二、选择题(共10小题,每小题3分,满分30分)7.(3分)甲数是a,比乙数的3倍少b,表示乙数的式子是()A.3a﹣b B.a÷3﹣b C.(a+b)÷3 D.(a﹣b)÷3【分析】甲数加上b是乙数的3倍,再除以3就是乙数.【解答】解:乙数=(a+b)÷3,故答案选:C.【点评】做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.8.(3分)的分子扩大3倍,要使分数大小不变,分母应加上()A.12 B.24 C.36【分析】根据分数的基本性质:分数的分子和分母同时扩大或缩小相同的倍数(0除外),分数的大小不变;由此即可得出答案.【解答】解:的分子扩大3倍,要使分数大小不变,分母也应扩大3倍;12×3=36,36﹣12=24;分母应加上24.故选:B.【点评】此题主要利用分数的基本性质解决问题.9.(3分)已知M=4322×1233,N=4321×1234,下面结论正确的是()A.M>N B.M=N C.M<N D.无法判断【分析】N=4321×1234=(4322﹣1)×(1233+1)=4322×1233+4322﹣1233﹣1=M+3088,所以M<N,据此判断即可.【解答】解:N=4321×1234=(4322﹣1)×(1233+1)=4322×1233+4322﹣1233﹣1=M+3088,所以M<N.故选:C.【点评】此题主要考查了比较大小的问题,解答此题的关键是把4321分成4322﹣1,把1234分成1233+1,进而表示出M和N的关系.10.(3分)小明上学期期末考试语文86分,数学比语文、数学两科的平均分高6分,则数学期末考试的分数是()A.96分B.92分C.94分D.98分【分析】根据“语文86分,数学比语文、数学两科的平均分高6分,”知道数学数学期末考试的分数是比语文多6×2分,由此即可得出答案.【解答】解:86+6×2=86+12=98(分)答:数学期末考试的分数是98分.故选:D.【点评】解答此题的关键是,根据平均数的意义,找出数量关系,列式解答即可.11.(3分)盒子里有8个黄球,5个红球,至少摸()次一定会摸到红球.A.8 B.5 C.9 D.6【分析】考虑最坏情况:摸出8次,都是摸出的黄球,则再摸出一个一定是红球,据此即可解答.【解答】解:8+1=9(次),答:至少需要摸9次一定会摸到红球.故选:C.【点评】此考查抽屉原理,要注意考虑最差情况.12.(3分)甲步行每分钟行80米,乙骑自行车每分钟200米,二人同时同地相背而行3分钟后,乙立即调头来追甲,再经过()分钟乙可追上甲.A.6 B.7 C.8 D.10【分析】先求出二人同时同地相背而行3分钟走的路程,再根据路程差÷速度差=追及时间,即可解答.【解答】解:(80+200)×3÷(200﹣80),=280×3÷120,=840÷120,=7(分);答:再经过7分钟乙可追上甲.故选:B.【点评】本题主要考查追及问题,明确路程差是二人同时同地相背而行3分钟走的路程是解答本题的关键.13.(3分))某砖长24厘米,宽12厘米,高5厘米,用这样的砖堆成一个正方体,用砖的块数可以为()A.40 B.120 C.1200 D.2400【分析】先求出24、12、5的最小公倍数为120,即堆成的正方体的棱长是120厘米,由此求出正方体每条棱长上需要的小长方体的个数,即可解决问题.【解答】解:24、12、5的最小公倍数是120,120÷24=5(块),120÷12=10 (块),120÷5=24(块),所以一共需要:5×10×24=1200(块),故选:C.【点评】利用长方体的长宽高的最小公倍数求出拼组后的正方体的棱长是解决此问题的关键.14.(3分)小华从A到B,先下坡再上坡共有7小时,如果两地相距24千米,下坡每小时行4千米,上坡每小时行3千米,那么原路返回要()小时.A.7B.6C.6D.7【分析】①要求原路返回所用的时间,需要求出,上坡路的距离和下坡路的距离分别是多少;所以这里可以根据题干先求出去时的上坡路程和下坡路程;②根据题干,设小华从A到B上坡路程为x千米,则下坡路程为24﹣x千米,根据速度、时间和路程的关系,利用上坡路用的时间+下坡路用的时间=总时间,即可列出方程求得去时的上坡路程和下坡路程,从而得出返回时的上坡路程和下坡路程,即可解决问题.【解答】解:设小华从A到B上坡路程为x千米,则下坡路程为24﹣x千米,根据题意可得方程:4x+72﹣3x=2×43;4x﹣3x=86﹣72;x=14;24﹣14=10(千米);那么可得返回时上坡路为10千米,下坡路为14千米:(10÷3)+(14÷4)===6(小时)答:返回时用的时间是6小时.故选:C,【点评】此题考查了速度、时间和路程之间的关系的灵活应用,这里抓住来回时,上坡和下坡的路程正好相反,是解决本题的关键.15.(3分)已知×<+,且a、b、c都是不等于0的自然数,则有()A.a+b>c B.a+b=c C.a+b<c【分析】由于×=,+==,即<,c×c<c(a+b).由于在乘法算式中,其中一个因数相同,另一个因数越大,则即就越大,所以a+b>c.【解答】解:×=,+==,即<,所以:c×c<c(a+b).则a+b>c.故选:A.【点评】将题目中的算式通分合并后进行分析是完成本题的关键.16.(3分)同一宿舍住着小花、小朵、小美、小丽四名学生,正在听音乐,她们中有一个人在修指甲,一人在做头发,一人在化妆,一人在看书,已知:(1)小花不在修指甲,也不在看书(2)小朵不在化妆,也不在修指甲(3)如果小花不在化妆,那么小美就不在修指甲(4)小丽不在看书,也不在修指甲下列说法正确的是()A.小花在化妆B.小朵在做头发C.小美在做头发D.小丽在化妆【分析】由条件(1)小花不在修指甲,也不在看书(2)小朵不在化妆,也不在修指甲(4)小丽不在看书,也不在修指甲,可以得出只有小美在修指甲,再由条件(3)如果小花不在化妆,那么小美就不在修指甲推知小花一定在化妆,据此解答即可.【解答】解:根据条件(1)小花不在修指甲,也不在看书(2)小朵不在化妆,也不在修指甲(4)小丽不在看书,也不在修指甲,可以得出只有小美在修指甲,再由条件(3)如果小花不在化妆,那么小美就不在修指甲推知小花一定在化妆.故选:A.【点评】这是一个典型的逻辑推理应用题,解题方法是由确定项开始用排除法,逐个推论确定各自的正确选项,最终解决问题.三、解答题(共6小题,满分12分)17.(2分)一座城市地图中两地图上距离为10cm,表示实际距离30km,该幅地图的比例尺是1:300000 .【分析】根据比例尺的意义知道,图上距离与实际距离的比就是比例尺,由此先把实际距离30千米换算成以厘米做单位,再写出对应比,化简即可.【解答】解:因为,30km=3000000cm,所以,10cm:3000000cm=1:300000;故答案为:1:300000.【点评】此题主要考查了比例尺的意义,另外注意图上距离与实际距离的单位要统一;比例尺是一个比,不能带单位.18.(2分)在边长为a厘米的正方形上剪下一个最大的圆,这个圆与正方形的周长比是π:4 .【分析】根据题意可知在边长a厘米的正方形中剪下一个最大的圆,该圆的直径为a厘米,再根据圆的周长公式:C=πd,和正方形的周长公式,计算即可求解.【解答】解:aπ:4a=π:4;答:这个圆与正方形的周长比是π:4.故答案为:π:4.【点评】考查了圆的周长和正方形的周长的计算方法,本题关键是理解在边长a厘米的正方形中剪下一个最大的圆,表达的意思是圆的直径为a厘米.19.(2分)一辆汽车的速度是每小时59千米,现有一块每5小时慢10分钟的表,若用该表计时,则测得这辆汽车的速度是61 千米/小时.【分析】由题意可知:正常表走5小时,慢表走的时间是5×60﹣10=290分,然后再根据速度=路程÷时间进行解答.【解答】解:正常表走5小时,慢表只走了:5×60﹣10=300﹣10=290(分)=(小时)这辆汽车的速度是:59×5÷=295≈61(千米/小时)答:测得这辆汽车的时速约61千米/小时.故答案为:61.【点评】本题的关键是求出慢表走的实际时间,再根据速度=路程÷时间进行解答.20.(2分)如图是一个棱长4厘米的正方体,在正方体上面正中向下挖一个棱长是2厘米的正方体小洞,接着在小洞的底面正中再向下挖一个棱长是1厘米正方体小洞,最后得到的立方体图形的表面积是多少平方厘米?【分析】把棱长是2厘米的正方体的底面向上平移,把棱长是1厘米的正方体底面向上平移,则容易看出:求最后得到的立方体图形的表面积,即棱长为4厘米的正方体的表面积与棱长为2厘米的正方体四个侧面和棱长为1厘米的正方体四个侧面的面积之和;根据“正方体的表面积=棱长2×6”求出棱长为4厘米的正方体的表面积,根据“正方体的侧面积=棱长2×4”分别求出棱长为2厘米的正方体四个侧面和棱长为1厘米的正方体四个侧面的面积,然后相加即可.【解答】解:42×6+22×4+12×4,=96+16+4,=116(平方厘米);答:最后得到的立方体图形的表面积是116平方厘米.【点评】解答此题的关键是明确:最后得到的立方体图形的表面积,即棱长为4厘米的正方体的表面积与棱长为2厘米的正方体四个侧面和棱长为1厘米正方体的四个侧面的面积之和.21.(2分)在生活中,经常把一些同样大小的圆柱管如图捆扎起来,下面我们来探索捆扎时绳子的长度,图中,每个圆的直径都是8厘米,当圆柱管放置放式是“单层平放”时,捆扎后的横截面积如图所示:那么,当圆柱管有100个时需要绳子1608 厘米(π取3)【分析】如图,把绳子的长度分解:1个圆柱体时,绳子的长度就是底面圆的周长;2个圆柱体时,绳子的长度就是一个底面圆的周长加上2个圆的直径;3个圆柱体,绳子的长度就是一个底面圆的周长加上4个圆的直径;100个圆柱体,绳子的长度就是一个底面圆的周长加上99个圆的直径.【解答】解:8×3+16×(100﹣1)=24+1584=1608(厘米);故答案为:1608.【点评】解决本题的关键是观察分析得到每类圆柱管的放置规律,以及圆周长的计算方法,一个圆柱体是绳子的长度就是圆的周长,以后每增加一个圆柱体,绳子的长度就会增加2个圆的直径.22.(2分)有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有89 种不同的方式.【分析】这是一道菲波那契数列的应用题目,解答时,可以采用化繁为简的方法,用列举的方法先找出登上级数少的1级、2级、3级、4级各有几种方法,再在此基础上运用找规律的方法得出结果.[因为每次跨到n级,只能从(n﹣1)或(n﹣2)级跨出.根据加法原理得到跨到第1、2、3、4、5、6、7、8、9、10级的方法依次为:1、2、3、5、8、13、21、34、55、89.【解答】解:当跨上1级楼梯时,只有1种方法,当跨上2级楼梯时,有2种方法,当跨上3级楼梯时,有3种方法,当跨上4级楼梯时,有5种方法,…以此类推;最后,得出数列1、2、3、5、8、13、21、34、55、89;发现从第三个数开始,每个数都是前面两个数的总和;这样,到第10级,就有89种不同的方法.答:从地面登上第10级,有89种不同的方法.故答案为:89.【点评】此题采用用递推法,抓住数的变化规律解决问题.四、解方程23.(4分)解方程:(1)3.2x﹣4×3=52 (2)8(x﹣2)=2(x+7)【分析】(1)先化简方程的左边,变成3.2x﹣12=52,然后方程的两边同时加上12,再同时除以3.2即可;(2)先根据乘法分配律化简方程的左右两边,再根据等式的性质解这个方程即可.【解答】解:(1)3.2x﹣4×3=523.2x﹣12=523.2x﹣12+12=52+123.2x=643.2x÷3.2=64÷3.2x=20(2)8(x﹣2)=2(x+7)8x﹣16=2x+148x﹣16﹣2x=2x+14﹣2x6x﹣16+16=14+166x=306x÷6=30÷6x=5【点评】本题考查了运用等式的性质解方程的方法,计算时要细心,注意把等号对齐.五、计算题24.(8分)计算题.(1)(2)(4)(3)3.14×43+7.2×31.4﹣150×0.314(4)1+3+5.【分析】(1)从左往右依次运算;(2)先算括号内的,再算括号外的除法,最后算加法;(3)运用乘法分配律简算;(4)把分数拆成整数与分数相加的形式,然后再把分数拆成两个分数相减的形式,通过加减相互抵消,求得结果.【解答】解:(1)=××=(2)(4)=+×=+2=2(3)3.14×43+7.2×31.4﹣150×0.314=3.14×43+72×3.14﹣15×3.14=3.14×(43+72﹣15)=3.14×100=314(4)1+3+5=(1+3+5+7+9+11+13+15+17+19)+(++++++++)=(1+19)×10÷2+(﹣+﹣+﹣+﹣+﹣+﹣+﹣+﹣+﹣)=90+(﹣)=100+=100【点评】完成此题,注意运算顺序以及运用运算定律或运算技巧灵活简算.六、解决问题25.(8分)请根据如图的统计图回答下列问题.(1) 4 月份收入和支出相差最小.(2)9月份收入和支出相差30 万元.(3)全年实际收入740 万元.(4)平均每月支出30 万元.(5)你还获得了哪些信息?【分析】(1)同一个月份收入和支出的点最接近的相差最小;(2)用9月份收入减支出即可;(3)把12个月的收入相加即可;(4)用12个月的总支出除以12即可;(5)从图中获得正确信息即可.【解答】解:(1)由图示得出:4月份收入和支出相差最小;(2)70﹣40=30(万元).答:9月份收入和支出相差30万元.(3)40+60+30+30+50+60+80+70+70+80+90+80=740(万元).答:全年实际收入740万元.(4)(20+30+10+20+20+30+20+30+40+50+40+50)÷12=360÷12=30(万元).答:平均每月支出30万元.(5)得出:7月份收入和支出相差最大.故答案为:(1)4;(2)30;(3)740;(4)30.【点评】本题是复式折线统计图,要读懂本图,根据图中所示的数量解决问题.26.(5分)一项工程,甲独做10天完成,乙独做12天完成,现两人合做,完成后共得工资2200元,如果按完成工程量分配工资,甲、乙各分得多少元?【分析】因两人合做完成时用的工作时间一样,所以两人工作量的比与工作效率的比成正比,求出两人工作量的比,再根据按比例分配的知识进行解答.【解答】解:甲乙两人工作量的比是::=6:5,甲分的钱是:2200×,=2200×,=1200(元),乙分的钱是:2200×,=2200×,=1000(元).答:甲分1200元,乙分1000元.【点评】本题的关键是根据工作时间一定,工作效率与工作量成正比,求出两工作量的比,再根据按比例分配的知识进行解答.27.(5分)一块长方形铁皮利用图中阴影部分刚好能做成一个圆柱形油桶,(如图)(接头处忽略不计),这个桶的容积是100.48 立方分米.(单位:分米)【分析】由图意可知:长方形的宽等于圆的直径的2倍,油桶的高等于长方形的宽,且圆的直径+底面周长=长方形的长,长方形的长已知,从而可以分别求出油桶的底面积和高,进而求出油桶的体积.【解答】解:设圆的直径为d分米,则d+πd=16.56,4.14d=16.56,d=4;油桶的体积:3.14××(4×2)=3.14×4×8=12.56×8=100.48(立方分米),答:这个桶的容积是100.48立方分米.故答案为:100.48.【点评】此题主要考查圆柱体体积的计算方法,关键是明白:圆的直径+底面周长=长方形的长,且长方形的宽就是圆柱体的高.28.(5分)两个顽皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒.已知在电梯静止时,男孩每秒走3米,女孩每秒走2米.则该自动扶梯长150 米.【分析】把此题转化为工程问题来解答,这里把自动扶梯的长看作单位“1”,男孩的速度(效率)是1÷100=,女孩的速度(效率)是1÷300=,速度差为();男孩每秒走3米,女孩每秒走2米,速度差为(3﹣2).根据速度差即可求出.【解答】接:(3﹣2)÷()=1÷=150(米).答:该自动扶梯长150米.故答案为:150.【点评】此题虽属于牛吃草问题,但可以用工程问题的解题思路来解答,因为这样比较好理解,起到了化难为易的目的.29.(5分)甲、乙两人合作清理400米环形跑道上的积雪,两人同时从同一地点背向而行各自进行清理,最初甲清理的速度比乙快,后来乙用了10分钟去调换工具,回来继续清理,但工作效率比原来提高了一倍,结果从甲、乙开始清理时算起,经过1小时,就完成了清理积雪工作,并且两人清理的跑道一样长,问乙换工具后又工作了多少分钟?【分析】设乙原来清理速度为v,最初甲清理的速度比乙快,则甲的清理速度是乙的1+,即,又甲1小时即60分钟清理了400÷2=200米,由此可得方程:60×(1+)v=200,求出v=.2.5米每分钟,又后来回来继续清理,但工作效率比原来提高了一倍,即为每分钟2.5×(1+1)米,又设乙换工具后又工作了x分钟,则乙按原速度清理了60﹣10﹣x分钟,清理了(60﹣10﹣x)×2.5米,后来清理了2.5×(1+1)x米,由此可得方程:(60﹣10﹣x)×2.5+2.5×(1+1)x=400÷2.【解答】解:1小时=60分钟设乙原来清理速度为v,可得:60×(1+)v=400÷2,60×v=200,v=2.5设乙换工具后又清理了x分钟,由此可得:(60﹣10﹣x)×2.5+2.5×(1+1)x=400÷2;(50﹣x)×2.5+5x=200;125+2.5x=200;2.5x=75;x=30答:换工具后,乙又工作了30分钟.【点评】首先根据已知条件列出方程求出乙原来的速度是完成本题的关键.30.(6分)底边长为6厘米,高为9厘米的等腰三角形20个,迭放如图:每两个等腰三角形有等距离的间隔,底边迭合在一起的长度是44厘米.回答下列问题:(1)两个三角形的间隔距离;(2)三个三角形重迭(两次)部分的面积之和;(3)只有两个三角形重迭(一次)部分的面积之和;(4)迭到一起的总面积.【分析】(1)因为20个三角形迭放,有(20﹣1)个间隔,用(44﹣6)÷(20﹣1)就是要求的答案;(2)因为每三个连着的三角形重迭产生这样的一个符合条件的小三角形,每增加一个大三角形,就多产生一个三次重迭的三角形,而且与前一个不重迭,因此这样的小三角形共有(20﹣2)个,三次重迭的三角形的底是原来三角形底的,高是原来三角形高的,由此即可解答;(3)每两个连着的三角形重迭部分,也是原来的三角形一般模样的三角形,每增加一个大三角形,就产生一个小三角形,共产生(20﹣1)个,由此符合条件面积即可求出;(4)20个三角形的面积之和减去重迭部分,其中120平方厘米重迭一次,54平方厘米重迭两次,由此问题即可解决.【解答】解:(1)(44﹣6)÷(20﹣1)=2(厘米),(2)6××9×××(20﹣2)=3×18=54(平方厘米);(3)(6××9××)×(20﹣1)﹣54×2=12×19﹣108=228﹣108=120(平方厘米);(4)6×9××20﹣120﹣54×2=540﹣120﹣108=420﹣108=312(平方厘米),答:(1)两个三角形的间隔距离是2厘米;(2)三个三角形重迭(两次)部分的面积之和是54平方厘米;(3)只有两个三角形重迭(一次)部分的面积之和是120平方厘米;(4)迭到一起的总面积是312平方厘米.【点评】解答此题的关键是,找出三个三角形重迭(两次)部分的面积与只有两个三角形重迭(一次)部分的面积各是哪部分,利用三角形的面积比与高与底的关系,即可解答.。

深圳百合外国语学校小升初考试真题试卷试卷习题

深圳百合外国语学校小升初考试真题试卷试卷习题

v1.0 可编写可改正深圳百合外国语学校2019 年小升初考试真题第一场1、数学1.数几何图形(几个三角形,几个线段)2.燕尾求面积3.行程工程问题(小学奥数)2、英语Part 1观看名著英文片段,要求说有名著书名a. 《格列佛游记》Gulliver's Travelsb. 《八十天环游地球》Around the World In 80 DaysPart 2争辩“考试是鼓舞仍是压力”分正反方,每方各三组(ABC组一方,DEF组一方)环节共10min 左右,每方只有四次讲话时机。

Part 3二谚语一古诗中英互译①欲速则不达More haste, less speed.②物以类聚,人以群分Birds of a feather flock together.③英文古诗(参照版本)The Snowbound RiverOver mountains and mountains no bird is on the wing;On thousand lines of the pathways there’ s no footprint.In a lone boat on the snowbound river, an old man,In palm-back cape and straw hat, drops his angle string.答案:《江雪》千山鸟飞绝,万径人踪灭。

孤舟蓑笠翁,独钓寒江雪。

3、语文1.诗词鉴赏(“浓愁哪处来”中”浓愁“指什么)2.赏析句子(“呵,童年是梦中的真,是真中的梦,是泪水中的浅笑”)3.黑暗十年的苦功4.书信(我想对你说)4、英文争辩攻略争辩赛重点:争辩赛要先亮出看法,而后列出论证,最后总结。

注意层次,内容丰满,尽可能举例,最好加入些名言。

假如是英语语言功底较好的孩子,平常有丰富的演讲经验,能够使用appeal to emotion的技巧,先讲一个吸引人的故事(不用太长,可是要能激发共识),再立刻提出自己的论点。

小学广东省深圳百合外国语学校人教版小升初考试数学试卷(含答案解析)

小学广东省深圳百合外国语学校人教版小升初考试数学试卷(含答案解析)

广东省深圳百合外国语学校【精品】人教版小升初考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、判断题1.个位上是3、6、9的数都是3的倍数。

(______)2.正方形的周长和面积都与边长成正比。

(_____)3.直径是过圆心的一条线段。

(______)4.215,14,18,161,725中,有4个可以化为限小数。

(______) 5.两个分数比大小,分母越大的反而小,分母越小的反而大。

(______)6.m=2×3×5,所以 m 有7个因数。

(_______)二、选择题7.已知 0<a<1,把 a ,2a ,1a 从小到大进行排列,正确的是 () A .210a a << B .21a a a << C .21a a a << D .a a a<<21 8.△÷□=4 ○÷□=3 □= 1 ,则△比○大( ) A .12 B .13 C .14 D .112 9.一个小组若干个人,参加一场考试,小白分数如果再提高 13 分,则平均分达到 90 分,若小白分数少了 5 分,则平均分只有 87 分,则该小组有( )人 A .4 B .5 C .6 D .710.甲、乙二兄弟从学校回家,离家的距离与时间的关系如图所示,则第18分钟时两人的距离是( )米A .200B .280C .320D .300 11.甲、乙两商品成本共600元,甲按45%的利润定价,乙按 40%的利润定价,甲打8折出售,乙打9折出售,共获利润 110 元,甲、乙中成本较高的是( )元。

A .450 B .460 C .480 D .50012.这几个算式谁的计算结果最大?( )A .11+201419⎛⎫⨯ ⎪⎝⎭B .11+02429⎛⎫⨯3 ⎪⎝⎭C .11+03439⎛⎫⨯4 ⎪⎝⎭D .11+04449⎛⎫⨯5 ⎪⎝⎭13.有8个人做零件,做出的甲乙零件数量比为 2:3,其中一个工人每天平均能做 12 个甲零件或 18 个乙零件,问有多少人做甲?设有 x 人做甲零件,则正确的方程是( ) A .18x :12(8-x )=2:3B .12(8-x ):18x =2:3C .12x :18(8-x )=2:3D .12x :18x =2:314.当A >B 时,A@B=3A+2B ,当A <B 时,A@B=2A+3B ,若x @2=7,则x 是( ) A .2B .1C .12D .14三、填空题15.将一张正方形的纸如图按竖直中线对折,再将对折后的纸片从中间(用虚线表示)处剪开,得到三个长方形纸片中,则小长方形周长和大长方形周长的比为_________。

深圳百合外国语学校小升初招生考模拟试题3

深圳百合外国语学校小升初招生考模拟试题3

深圳百合外国语学校小升初招生考模拟试题3一、填空题1. 0.108,1.08,108这三个数相加,它们的和是(1011)个1000108。

2. 被减数减去减数再减去差,结果是(0)。

3. 在下面的( )里填上适当的数,使这道除法的被除数尽可能的小。

(299)÷(30)=9 (29)4. 1.05平方千米=(105)公顷 1.25吨:500千克=(2.5)(比值)5. 1/5时比1/10时多(6)分。

6. 50个自然数的总和为3000,其中奇数的个数比偶数的个数多,那么这50个自然数最多有(24)偶数。

7. 7根半径为10厘米的圆木捆在一起,至少需要铁丝(182.8)厘米。

(不计接头)8. 甲乙两人共有邮票140张,甲给乙20张邮票后两人的邮票数量相等,甲有邮票(90)张。

9. 一台收音机如卖42元,可赚40%,如卖36元,还可赚(6)元。

10. 右图表示四边形,平行四边形,梯形,长方形的关系。

B 圈表示平行四边形,A 圈表示(梯形),C 圈表示(长方形)。

二、选择正确答案的序号填在括号里。

1. 把42写成两个质数之和的形式共有( )种方法。

A 4B 3C 2D 12. 下面三组数中和不同的是( )。

A 87,76,65,54B 77,66,55,84C 58,86,64,753. 如果3A=4B ,那么A 和B 成( )。

A 正比例B 反比例C 不成比例4. 同学们栽树,每行栽5棵,到最后一行只栽了4棵树,那么这些树的棵数是( )。

A 5的倍数B 4的倍数C 5的倍数多4D 4的倍数多55. 将左图直角三角形绕O 点向右旋转90度后,得到下列图形中的( )。

三、按要求计算。

A BC A B C D1. 脱式计算。

)25.0625.0169375.0(8.3÷+÷÷)25.01.245.0()5.128.04.2(⨯⨯÷⨯⨯2. 简便计算(写出过程) 3.解方程248.153********⨯+⨯+⨯x x 5211512.1-=-3. 列式计算。

百合外国语小升初招生考试数学试卷真题-精品

百合外国语小升初招生考试数学试卷真题-精品

15.如图,水面高 7 厘米,将容器倒放后,水面高度为多高?(距圆锥顶部)
4
16.1.64 ,1.64 1 ,1.64 2 ,……,1.64 29 ,求整数部分总和是多少?
30
30
30
17.在 7 点多时,分针落后时针100 度,问现在是 7 点__________分.
18.如图,一张正方形纸片,沿中线对折后再沿长边中点直线切割形,形成1 个大长方形和两个小长方形, 则一个小长方形和一个大长方形周长之比为?
【解析】如图,填满高度为 6 的圆锥需 2cm 高的圆柱型液体,剩下 5cm 圆柱不变,仅倒置.所以高度 为 5 6 11cm
16.1.64 ,1.64 1 ,1.64 2 ,……,1.64 29 ,求整数部分总和是多少?
30
30
30
12
【解析】1 30 30 1 0.64 0.36 10.8
8 9
8 9
(3)
1 12.5
1 10
2.5
4
11 16
4 24
6 11 14
8
1 7
1
1 2
2 25
1 10
5 2
75 16
4 25
95 14
7 57
3 2
= 9 52 50 2
=9 40
(4)
1 4
4.85
5 18
3.6
6.15
3
3 5
= 1 18 4.85 1 6.15
8. △ □ 4 A. 1 2
◯ □ 3 □ 1 , △ 比 ◯ 大多少?() 4
B. 1 3
C. 1 4
D. 1 12
【解析】 △ 1 ◯= 3 △ ◯= 1 ,故选 C.

广东省深圳市百合外国语学校小升初招生数学试卷

广东省深圳市百合外国语学校小升初招生数学试卷

小升初招生数学试卷一、判断题(共6题;共12分)1.因为圆周长C=πd所以π与d成反比例.2.把甲、乙、丙、丁四人分成两组,每组2人,则甲、乙分在同一组的可能性为.3.周长相等的圆、正方形、长方形三种图形中,面积最大的是正方形.4.一件商品,降低原价的20%后,现在又提价20%,商品现在的价格跟原来一样.5.把棱长是20厘米的正方体木块,分割成棱长是4厘米的小正方体,可以分割成25块。

6.m、n是不为0 的自然数,m+n=3,那么m 、n的最大公约数是n;它们的最小公倍数是m.二、选择题(共10题;共23分)7.李莉有张数相同的5元和1元零用钱若干,你认为她的钱可能是()A. 38元B. 36元C. 28元D. 8元8.把250 克盐溶于1千克水中,盐占盐水重量的()A. 25%B. 125%C. 20%D. 15%9.如下图中的四个正方形的边长均相等,其中阴影部分面积最大的图形是()A. B. C. D.10.墙上有一面镜子,镜子对面的墙上有一个数字式电子钟.如果在镜子里看到该电子钟的时间显示如图所示,那么它的实际时间是()A. 12:51B. 15:21C. 15:51D. 12:2111.如图,用8相同的长方形地砖刚好拼成一个宽为20cm的长方形图案(地砖间的缝隙忽略不计),则每块长方形地砖的面积是()A. 75cm2B. 60cm2C. 40cm2D. 20cm212.如图,己知在正方形网格中,每个小方格的边长都为1,A、B 两点在小正方形的顶点上,点C 也在小正方形的顶点上,且以A、B 、C 为顶点的三角形面积为1个平方单位,则C点的个数为()A. 4个B. 5 个C. 6 个D. 7 个13.一个袋子中装有除了颜色以外都相同的红、白、黑三种球共10个,红球个数的5倍与白球的个数之和为20,任意从袋中摸出一球,可能性最大的是()A. 红球B. 白球C. 黑球D. 三种球一样14.繁分数化简后的整数部分是()A. 9B. 10C. 11D. 1215.百合外国语学校生活区水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示.出水口出水量与时间的关系如图乙所示,某天0 点到6 点,该水池的蓄水量与时间的关系如图丙所示.下列推论:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和一个出水口;③3点到4点,关闭两个进水口,打开出水口;④5 点到6点,同时打开两个进水口和一个出水口.其中,可能正确的推论是()A. ①③B. ①④C. ②③D. ②④16.四个小朋友站成一排(如图),老师按图中的规则数数,数到2018时对应的小朋友可得到一朵红花,那么得红花的小朋友是()A. 小沈B. 小叶C. 小李D. 小王三、填空题(共7题;共7分)17.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面,则“你”在正方体的________面.18.在一副比例尺为1:1000000 的地图上,表示72千米的距离,地图上应画________厘米.19.一个圆柱的高是4分米,沿底面直径剖开可得两个正方形的剖面,这个圆柱的体积是________立方分米.(π 取3.14)20.小军同学这学期前几次测验的平均分是85分,为了能升入百外最近非常努力,这次测验的到100分,将平均分提高到88分,那个这次测验是第________次.21.甲、乙分别从一个周长为196米的长方形围墙的对角顶点按顺时针方向同时出发绕围墙跑(如图),甲每秒跑7 米,乙每秒跑5米,经过________秒钟后,甲第一次看到乙.22.当n无限大时,的值接近于________.(在横线填一个你认为正确的数)23.从A 、B 、C ,3人中选取2个人当代表,可以有A和B ,A和C ,B 和C 三种不同的选法,抽象成数学模型是:从3个元素中选取2个元素的组合,记作,一般地,从m 个元素选取n个元素的组合,记作根据以上分析,从7人中选取4人当代表的不同的选法有=________种.四、解方程(共1题;共10分)24.解方程。

2020年广东省深圳市百合外国语学校小升初数学模拟试卷及答案解析

2020年广东省深圳市百合外国语学校小升初数学模拟试卷及答案解析

2020年广东省深圳市百合外国语学校小升初数学模拟试卷
一、填空题(共11小题,每小题3分,满分33分)
1.二十八亿九干零六万三千零五十,写作.
2.在一个比例里,已知两个外项互为倒数,其中一个内项是最小的质数,另一个内项是.
3.一个正方体的棱长由5厘米变成8厘米,表面积增加了平方厘米.
4.单独完成同一件工作,甲要4天,乙要5天,甲的工效是乙的工效的%.5.买电影票,5元、8元、12元一张的票一共150张,用去1140元,其中5元和8元的张数相等,则5元的电影票有.
6.已知一个圆柱体的底面积和侧面积相同.如果这个圆柱体的高是5厘米,那么它的体积是立方厘米(π取3.14).
7.分数化成小数后,小数点后面第1993位上的数字是.
8.1992年爷爷年龄是孙子的10倍,再过12年,爷爷年龄是孙子的4倍,那么1993年孙子是岁.
9
.一次考试,参加的学生中有得优,得良,得中,其余的得差,已知参加考试的学生不满50人,那么得差的学生有人.
10.某小学即将开运动会,一共有十项比赛,每位同学可以任报两项,那么要有人报名参加运动会,才能保证有两名或两名以上的同学报名参加的比赛项目相同.11.有一个电子钟,每走9分钟亮一次灯,每到整点时响一次铃,中午12时整,电子钟响铃又亮灯,问下一次既响铃又亮灯是时.
二、计算与方程:(每小题20分,共20分)
12.(20分)计算与方程:
①×(4.85÷﹣3.6+6.15×3)+[5.5﹣1.75×(1+)]
第1 页共17 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学试卷
一、填空题(共6小题,每小题2分,满分12分)
1.生产的90个零件中,有10个是废品,合格率是90%.(判断对错).
2.真分数除以假分数的商一定比1小.(判断对错)
3.大圆周长与直径的比值大于小圆周长与直径的比值.(判断对错)
4.一个长方形的长增加50%,宽减少,长方形的面积不变.(判断对错)
5.一根木料锯成4段要4分钟,锯成7段要7分钟.(判断对错)
6.甲、乙两数是正整数,如果甲数的恰好是乙数的,则甲、乙两数和的最小值是13.(判断对错)
二、选择题(共10小题,每小题3分,满分30分)
7.甲数是a,比乙数的3倍少b,表示乙数的式子是________ .
8.的分子扩大3倍,要使分数大小不变,分母应加上________ .
9.已知M=4322×1233,N=4321×1234,下面结论正确的是________
10.(2015•深圳)小明上学期期末考试语文86分,数学比语文、数学两科的平均分高6分,则数学期末考试的分数是________ .
11.盒子里有8个黄球,5个红球,至少摸________ 次一定会摸到红球.
12.甲步行每分钟行80米,乙骑自行车每分钟200米,二人同时同地相背而行3分钟后,乙立即调头来追甲,再经过________ 分钟乙可追上甲.
13.某砖长24厘米,宽12厘米,高5厘米,用这样的砖堆成一个正方体,用砖的块数可以为________ .
14.小华从A到B,先下坡再上坡共有小时,如果两地相距24千米,下坡每小时行4千米,上坡每小时行3千米,那么原路返回要________ 小时.
15.已知× <+ ,且a、b、c都是不等于0的自然数,则有________ .
16.同一宿舍住着小花、小朵、小美、小丽四名学生,正在听音乐,她们中有一个人在修指甲,一人在做头发,一人在化妆,一人在看书,已知:小花不在修指甲,也不在看书(2)小朵不在化妆,也不在修指甲(3)如果小花不在化妆,那么小美就不在修指甲(4)小丽不在看书,也不在修指甲,下列说法正确的是()
A. 小花在化妆
B. 小朵在做头发
C. 小美在做头发
D. 小丽在化妆
三、解答题(共6小题,满分12分)
17.一座城市地图中两地图上距离为10cm,表示实际距离30km,该幅地图的比例尺是________.
18.在边长为a厘米的正方形上剪下一个最大的圆,这个圆与正方形的周长比是________.
19.一辆汽车的速度是每小时59千米,现有一块每5小时慢10分钟的表,若用该表计时,则测得这辆汽车的速度是________千米/小时.
20.如图是一个棱长4厘米的正方体,在正方体上面正中向下挖一个棱长是2厘米的正方体小洞,接着在小洞的底面正中再向下挖一个棱长是1厘米正方体小洞,最后得到的立方体图形的表面积是多少平方厘米?
21.在生活中,经常把一些同样大小的圆柱管如图捆扎起来,下面我们来探索捆扎时绳子的长度,图中,每个圆的直径都是8厘米,当圆柱管放置放式是“单层平放”时,捆扎后的横截面积如图所示:
那么,当圆柱管有100个时需要绳子________厘米(π取3)
22.有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有________种不同的方式.
四、解方程
23.解方程:
①3.2x﹣4×3=52
②8(x﹣2)=2(x+7)
五、计算题
24.计算题.

② +(4 )
③3.14×43+7.2×31.4﹣150×0.314
④1+3 +5 .
六、解决问题
25.请根据下面的统计图回答下列问题.
(1)________月份收入和支出相差最小.
(2)9月份收入和支出相差________万元.
(3)全年实际收入________万元.
(4)平均每月支出________万元.
(5)你还获得了哪些信息?
26.一项工程,甲独做10天完成,乙独做12天完成,现两人合做,完成后共得工资2200元,如果按完成工程量分配工资,甲、乙各分得多少元?
27.一块长方形铁皮利用图中阴影部分刚好能做成一个圆柱形油桶,(如图)(接头处忽略不计),这个桶的容积是________ 立方分米.(单位:分米)
28.两个顽皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒.已知在电梯静止时,男孩每秒走3米,女孩每秒走2米.则该自动扶梯长________米.
29.甲、乙两人合作清理400米环形跑道上的积雪,两人同时从同一地点背向而行各自进行清理,最初甲清理的速度比乙快,后来乙用了10分钟去调换工具,回来继续清理,但工作效率比原来提高了一倍,结果从甲、乙开始清理时算起,经过1小时,就完成了清理积雪工作,并且两人清理的跑道一样长,问乙换工具后又工作了多少分钟?
30.底边长为6厘米,高为9厘米的等腰三角形20个,迭放如图:
每两个等腰三角形有等距离的间隔,底边迭合在一起的长度是44厘米.回答下列问题:
(1)两个三角形的间隔距离?
(2)三个三角形重迭(两次)部分的面积之和是多少?
(3)只有两个三角形重迭(一次)部分的面积之和是多少?
(4)迭到一起的总面积是多少?
答案解析部分
一、<b >填空题(共6<b >小题,每小题2分,满分12分)
1.【答案】错误
2.【答案】正确
3.【答案】错误
4.【答案】正确
5.【答案】错误
6.【答案】正确
二、<b >选择题(共10<b >小题,每小题3分,满分30分)
7.【答案】(a+b)÷3
8.【答案】24
9.【答案】M<N
10.【答案】98
11.【答案】9
12.【答案】7
13.【答案】1200
14.【答案】
15.【答案】a+b>c
16.【答案】A
三、<b >解答题(共6<b >小题,满分12分)
17.【答案】1:300000
18.【答案】π:4
19.【答案】61
20.【答案】解:42×6+22×4+12×4,=96+16+4,=116(平方厘米)答:最后得到的立方体图形的表面积是116平方厘米.
21.【答案】1608
22.【答案】89
四、<b >解方程
23.【答案】解:①3.2x﹣4×3=52
3.2x﹣12=52
3.2x﹣12+12=52+12
3.2x=64
3.2x÷3.2=64÷3.2
x=20
②8(x﹣2)=2(x+7)
8x﹣16=2x+14
8x﹣16﹣2x=2x+14﹣2x
6x﹣16+16=14+16
6x=30
6x÷6=30÷6
x=5
五、<b >计算题
24.【答案】解:①
=
=
② +(4 )
= + ×
= +2
=2
③3.14×43+7.2×31.4﹣150×0.314 =3.14×43+72×3.14﹣15×3.14
=3.14×(43+72﹣15)
=3.14×100
=314
④1+3 +5
=(1+3+5+7+9+11+13+15+17+19)+()
=(1+19)×10÷2+()=90+()
=100+
=100
六、<b >解决问题
25.【答案】(1)4
(2)30
(3)740
(4)30
(5)得出:7月份收入和支出相差最大
26.【答案】解:甲乙两人工作量的比是::=6:5,甲分的钱是:
2200×,=2200× ,
=1200(元),乙分的钱是:
2200× ,=2200× ,
=1000(元).
答:甲分1200元,乙分1000元。

27.【答案】100.48
28.【答案】150
29.【答案】解:1小时=60分钟
设乙原来清理速度为v,可得:
60×(1+ )v=400÷2 60×v=200
v=2.5
设乙换工具后又清理了x分钟,由此可得:
(60﹣10﹣x)×2.5+2.5×(1+1)x=400÷2
(50﹣x)×2.5+5x=200
125+2.5x=200
2.5x=75
x=30
答:换工具后,乙又工作了30分钟。

30.【答案】(1)解:(44﹣6)÷(20﹣1)=2(厘米)
答:两个三角形的间隔距离是2厘米;
(2)解:6× ×9× × ×(20﹣2)
=3×18,
=54(平方厘米)
答:三个三角形重迭(两次)部分的面积之和是54平方厘米;(3)解:(6× ×9× × )×(20﹣1)﹣54×2
=12×19﹣108
=228﹣108
=120(平方厘米)
答:只有两个三角形重迭(一次)部分的面积之和是120平方厘米;(4)解:6×9× ×20﹣120﹣54×2
=540﹣120﹣108
=420﹣108
=312(平方厘米)
答:迭到一起的总面积是312平方厘米.。

相关文档
最新文档