【数学】河南省周口市中英文学校2019-2020学年高二下学期期中考试(6月)(文)
【精编文档】河南省周口中英文学校2018-2019学年高二数学下学期期中试卷理.doc

周口中英文学校2018——2019学年下期高二期中考试理科数学试卷一、选择题(共12小题,每小题5分,共60分)1.设复数z1=1-3i,z2=1-i,则z1+z2在复平面内对应的点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若(m2-1)+(m2-3m+2)i是纯虚数,则实数m的值为( )A. 1 B.-1 C.±1 D. 1或23.数列1,,,,…的通项公式可能为( )A.a n= B.a n= C.a n=n D.a n=4.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于( )A. 28 B. 76 C. 123 D. 1995.下列运算正确的是( )A. (sin)′=cos B. (log)′=axC. (3x)′=x3x-1 D. ()′=-6.求:i1+i2+i3+…+i2 008等于( )A. 0 B.-1 C. 1 D. i7.在下列命题中,正确命题的个数是( )①两个复数不能比较大小;②复数z=i-1对应的点在第四象限;③若(x2-1)+(x2+3x+2)i是纯虚数,则实数x=±1;④若(z1-z2)2+(z2-z3)2=0,则z1=z2=z3.A. 0 B. 1 C. 2 D. 38.在应用数学归纳法证明凸n边形的对角线为n(n-3)条时,第一步验证n等于( )A. 1 B. 2 C. 3 D. 09.由①正方形的四个内角相等;②矩形的四个内角相等;③正方形是矩形.根据“三段论”推理得出一个结论,则作为大前提、小前提、结论的分别为( )A.②①③ B.③①② C.①②③ D.②③①10.已知f(x)=ax3+bx2+c,其导函数f′(x)的图象如图,则函数f(x) 的极小值是( )A.a+b+c B. 8a+4b+cC. 3a+2b D.c11.函数F(x)=在[-1,5]上( )A.有最大值0,无最小值 B.有最大值0,最小值-C.有最小值-,无最大值 D.既无最大值也无最小值12.函数y=f(x)的导函数y=f′(x)的图象如图所示,给出下列命题:①-3是函数y=f(x)的极值点;②-1是函数y=f(x)的最小值点;③y=f(x)在区间(-3,1)上单调递增;④y=f(x)在x=0处切线的斜率小于零.以上正确命题的序号是( )A.①② B.③④ C.①③ D.②④二、填空题(共4小题,每小题5分,共20分)13.已知i为虚数单位,如果复数z=的实部和虚部互为相反数,那么实数b的值为____.14.已知数列{a n}满足a1=1,a n+1=a n+1(n∈N*),通过计算a1,a2,a3,a4可猜想an=________.15.=________.16.若函数f(x)=x3-3x+a有三个不同的零点,则实数a的取值范围是________.三、解答题(第17题10分,其余每小题12分,共70分)17.求当实数m为何值时,z=+(m2+5m+6)i分别是:(1)实数;(2)虚数;(3)纯虚数.18.若an+1=2an+1(n=1,2,3,…),且a1=1.(1)求a2,a3,a4,a5;(2)归纳猜想通项公式a n19.已知函数f(x)=x3-3x.(1)求f(x)的单调区间;(2)求f(x)在区间[-3,2]上的最值.20.已知复数z1=m(m-1)+(m-1)i,z2=(m+1)+(m2-1)i(m∈R),在复平面内对应的点分别为Z1,Z2.(1)若z1是纯虚数,求m的值;(2)若z2在复平面内对应的点位于第四象限,求m的取值范围.21.若x,y∈R,x>0,y>0且x+y>2.求证:和中至少有一个小于2.22.函数f(x)=x3+ax2+bx+c,曲线y=f(x)上的点P(1,f(1))处的切线方程为y=3x+1.(1)若y=f(x)在x=-2处有极值,求f(x)的表达式;(2)若函数y=f(x)在区间[-2,1]上单调递增,求b的取值范围.答案解析1.D2.B3.A4.C5.D6.A7.A8.C9.D 10.D 11.B 12.C13.【答案】0.14.【答案】15.【答案】16.【答案】(-2,2)17.【答案】解要使有意义,则m≠-3.(1)当,即m=-2时,复数z为实数.(2)当,即m≠-3且m≠-2时,复数z为虚数.(3)当,即m=3时,复数z为纯虚数.【解析】18.【答案】解(1)由已知a1=1,an+1=2an+1,得a=3=22-1,a3=7=23-1,2a=15=24-1,a5=31=25-1.4(2)归纳猜想,得=2n-1(n∈N*).an【解析】19.【答案】(1)∵f(x)=x3-3x,∴f′(x)=3x2-3=3(x+1)(x-1).令f′(x)=0,得x=-1,x=1.当x∈(-∞,-1)∪(1,+∞)时,f′(x)>0,当x∈(-1,1)时,f′(x)<0,故f(x)在(-∞,-1),(1,+∞)上是增函数,在(-1,1)上是减函数.(2)∵f(-3)=-18,f(-1)=2,f(1)=-2,f(2)=2,∴当x=-3时,f(x)在区间[-3,2]上取到最小值为-18;当x=-1或2时,f(x)在区间[-3,2]上取到最大值为2.【解析】20.【答案】(1)因为复数z1=m(m-1)+(m-1)i(m∈R)是纯虚数,所以m(m-1)=0,且m-1≠0,解得m=0.(2)因为复数z2=(m+1)+(m2-1)i(m∈R)在复平面内对应的点位于第四象限,所以解得-1<m<1.【解析】21.【答案】证明假设它们都不小于2,则有≥2,≥2,则1+x≥2y,1+y≥2x,两式相加得2≥x+y,与已知矛盾,故原命题成立.【解析】22.【答案】(1)∵f(x)=x3+ax2+bx+c,∴f′(x)=3x2+2ax+b,曲线y=f(x)上的点P(1,f(1))处的切线方程为y-f(1)=f′(1)(x-1),即y-(a+b+c+1)=(3+2a+b)(x-1).∵曲线y=f(x)上的点P(1,f(1))处的切线方程为y=3x+1,∴即∵y=f(x)在x=-2时有极值,∴f′(-2)=0,即-4a+b=-12.③由①②③相联立解得a=2,b=-4,c=5,∴f(x)=x3+2x2-4x+5.(2)函数y=f(x)在区间[-2,1]上单调递增,又f′(x)=3x2+2ax+b,由①知2a+b=0,依题意f′(x) 在区间[-2,1]上恒有f′(x)≥0,即3x2-bx+b≥0在区间[-2,1]上恒成立.当x=≥1时,f′(x)min=f′(1)=3-b+b>0,∴b≥6. 当x=≤-2时,f′(x)min=f′(-2)=12+3b≥0,∴b∈∅.当-2≤≤1时,f′(x)min=f′()=≥0,则0≤b≤6.综上可知,所求参数b取值范围是[0,+∞).【解析】。
【学期】河南省周口市高二数学下学期期中试题理新人教A版

【关键字】学期周口中英文学校高二期中考试数学理科试卷一、选择题:本大题共12小题,每小题5分,满分60分;每小题给出的四个选项中只有一项是符合题目要求的.1.单数=()A.i B.-iC.--i D.-+i2.要证明+<2,可选择的方法有以下几种,其中最合理的是()A.综合法B.分析法C.反证法D.归纳法下列关于残差的叙述正确的是3. 当0<m<1时,z=(m+1)+(m-1)i对应的点位于() A.第一象限B.第二象限C.第三象限D.第四象限4. 函数f(x)=x2-2ln x的单调递减区间是().A.(0,1] B.[1,+∞)C.(-∞,-1]∪(0,1] D.[-1,0)∪(0,1]5. 工人月工资(元)依劳动产值(千元)变化的回归直线方程为=60+90x,下列判断正确的是()A.劳动产值为1 000元时,工资为50元B.劳动产值提高1 000元时,工资提高150元C.劳动产值提高1 000元时,工资提高90元D.劳动产值为1 000元时,工资为90元6.否定:“自然数a,b,c中恰有一个偶数”时正确的反设为() A.a,b,c都是偶数B.a,b,c都是奇数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少有两个偶数7.设f(x)=则ʃf(x)dx等于(c)A. B. C. D.不存在8.若函数f (x)=x3-6bx+3b在(0,1)内有极小值,则实数b的取值范围是()A.(0,1) B.(-∞,1)C.(0,+∞) D.9.在R上定义运算⊗:x⊗y=x(1-y).若不等式(x-a)⊗(x+a)<1对任意实数x都成立,则() A.-1<a<1 B.0<a<2C.-<a< D.-<a<10.已知曲线y=的一条切线斜率为,则切点的横坐标为() A.1 B..3 D.411.函数y=的最大值为() A.e-1 B.eC.e2 D.12.已知函数f(x)=-x2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是 ( ).A .(0,1)∪(2,3)B .(0,2) (C .(0,3)D .(0,1]∪[2,3)二.填空题: 本大题共4小题,每小题5分,满分20分.13. 已知函数y =f(x)=x3+3ax2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则极大值与极小值之差为_____14.现有一个关于平面图形的命题:如图所示,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为.类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为______已知单数z =,其中i 是虚数单位,则|z|=________.16.已知a 、b 、u ∈R +,且+=1,则使得a +b≥u 恒成立的u 的取值范围是___三.解答题:(本大题共6小题,满分70分, 解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)实数m 分别取什么数值时,单数z =(m2++6)+(m2--15)i : (1)与复数2-12i 相等;(2)与复数12+16i 互为共轭; (3)对应的点在x 轴上方. 18.(本小题满分12分).观察下表: 1 2,3 4,5,6,78,9,10,11,12,13,14,15 ……问:(1)此表第n 行的最后一个数是多少? (2)此表第n 行的各个数之和是多少? (3)2 010是第几行的第几个数?19.(本小题满分12分)已知函数f(x)=aln x x +1+bx ,曲线y =f(x)在点(1,f(1))处的切线方程为x +2y -3=0. 求a ,b 的值;20..如图1所示,有面积关系:S △PA′B′S △PAB =PA′·PB′PA·PB ,则在图2可以类比得到什么结论?并加以证明.图1 图2 21. (本小题满分12分)已知{an}是正数组成的数列,a1=1,且点(an ,an +1) (n ∈N*)在函数y =x2+1的图象上. (1)求数列{an}的通项公式; (2)若数列{bn}满足b1=1,求证:bn·bn +2<b2n +1.22.(本小题满分12分) 已知函数f(x)=x3-3ax2+3x +1. (1)设a =2,求f(x)的单调区间;(2)设f(x)在区间(2,3)中至少有一个极值点,求a 的取值范围.12.n a n n b b +=+数学试题参考答案 一.选择题:题目 1 2 3 4 5 6 7 8 9 10 11 12 答案ABDACDCDCA AA二.填空题:13.4 14. a38 15.102 16.(-∞,16] 三.解答题: 17.解析:(1)根据复数相等的充要条件得⎩⎪⎨⎪⎧ m2+5m +6=2,m2-2m -15=-12.解之得m =-1. (2)根据共轭复数的定义得⎩⎪⎨⎪⎧m2+5m +6=12,m2-2m -15=-16.解之得m =1. (3)根据复数z 对应的点在x 轴上方可得 m2-2m -15>0,解之得m<-3或m>5. 18.(1)∵第n +1行的第一个数是2n , ∴第n 行的最后一个数是2n -1.(2)2n -1+(2n -1+1)+(2n -1+2)+…+(2n -1) =2n -1+2n -1·2n -12=3×22n -3-2n -2为所求.(3)∵210=1 024,211=2 048,1 024<2 010<2 048, ∴2 010在第11行,该行第1个数是210=1 024.由2 010-1 024+1=987,知2 010是第11行的第987个数.19.解 f′(x)=a ⎝⎛⎭⎫x +1x -ln x x +12-bx2.由于直线x +2y -3=0的斜率为-12,且过点(1,1),故 ⎩⎪⎨⎪⎧ f 1=1,f′1=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12.解得a =1,b =1. 20.解析: 由题意知三棱锥作为三角形的类比对象,如图1、图2中,与△PAB 、△PA′B′相对应的,是三棱锥P —ABC 、P —A′B′C′;与△PA′B′两条边PA′、PB′相对应的,是三棱锥P —A′B′C′的三条侧棱PA′、PB′、PC′;与△PAB 两条边PA 、PB 相对应的,是三棱锥P —ABC 的三条侧棱PA 、PB 、PC.由此,我们可以类比图1中面积关系得到图2中的体积关系为PA′·PB′·PC′PA·PB·PC .上述猜想的证明: 21.解:(1) 由已知得an +1=an +1,即an +1-an =1, 又a1=1,所以数列{an}是以1为首项,公差为1的等差数列. 故an =1+(n -1)×1=n.(2)证明 方法一 由(1)知:an =n ,从而bn +1-bn =2n. bn =(bn -bn -1)+(bn -1-bn -2)+…+(b2-b1)+b1 =2n -1+2n -2+…+2+1=1-2n1-2=2n -1.因为bn·bn +2-b2n +1=(2n -1)(2n +2-1)-(2n +1-1)2 =(22n +2-2n +2-2n +1)-(22n +2-2·2n +1+1) =-5·2n +4·2n =-2n<0, 所以bn·bn +2<b2n +1. 方法二 因为b1=1, bn·bn +2-b2n +1=(bn +1-2n)(bn +1+2n +1)-b2n +1 =2n +1·bn +1-2n·bn +1-2n·2n +1 =2n(bn +1-2n +1)=2n(bn +2n -2n +1) =2n(bn -2n)=…=2n(b1-2)=-2n<0, 所以bn·bn +2<b2n +1.22.解:(1)当a =2时,f(x)=x3-6x2+3x +1. f′(x)=3x2-12x +3 =3(x2-4x +1)=3(x -2+3)(x -2-3).当x <2-3,或x >2+3时,得f′(x)>0; 当2-3<x <2+3时,得f′(x)<0.因此f(x)递增区间是(-∞,2-3)与(2+3,+∞); f(x)的递减区间是(2-3,2+3). (2)f′(x)=3x2-6ax +3,Δ=36a2-36,由Δ>0得,a >1或a <-1,又x1x2=1, 可知f′(2)<0,且f′(3)>0, 解得54<a <53,因此a 的取值范围是⎝⎛⎭⎫54,53.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
河南省周口中英文学校高二下学期第二次月考(全科10套)

周口中英文学校2014-2015学年下期高二第三次考试高二数学试题(文)一、选择题:本大题共12小题,每小题5分,满分60分;每小题给出的四个选项中只有一项是符合题目要求的. 1.复数的共轭复数是( )A. B. C. D.2.设a 是实数,且a 1+i +1-i2是实数,则a =( )A.12B .-1C .1D .2 3.有下列命题:①两组对应边相等的三角形是全等三角形; ②“若xy =0,则|x |+|y |=0”的逆命题;③“若a >b ,则2x ·a >2x ·b ”的否命题; ④“矩形的对角线互相垂直”的逆否命题.其中真命题共有( )A .1个B .3个C .2个D .4个4.有一段演绎推理是这样的“任何实数的平方都大于0.因为所以”结论显然是 错误A .大前提错误B .小前提错误C .推理形式错误D .非以上错误5.两个变量和进行回归分析,得到一组样本数据()()(),,,...,,,,2211n n y x y x y x 则下列说法中不正确的是( )A.由样本数据得到的回归方程必过样本点的中心B.残差平方和越小的模型,拟合的效果越好C.用相关指数来刻画回归效果,越小说明拟合效果越好D.若变量和之间的相关系数为,则变量和之间具有线性相关关系6用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为( )A. 2B. 3C. 4D. 5 8.根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元9.如图所示,经过⊙O 上的点A 的切线和弦BC 的延长线相交于点P ,若∠CAP =40°,∠ACP =100°,则∠BAC 所对的弧的度数为( ). A .40° B .100° C .120° D .30°(9题图) (10题图) (11题图)10.在△ABC 中,∠BAC =90°,AD 是BC 边上的高,则相似三角形共有( ) A .0对 B .1对 C .2对 D .3对11.如图,∠ACB =90°,CD ⊥AB 于D ,AD =3,CD =2,则AC BC 的值为( ) A.32 B.94 C.23 D.4912.若a>1,则不等式|x|+a>1的解集是 ( ) A.{x|a-1<x<1-a} B.{x|x<a-1或x>1-a} C. D.R二.填空题: (本大题共4小题,每小题5分,满分20分)13.由1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,得到1+3+…+(2n -1)=n 2用的是14.已知a ,b ∈R ,i 是虚数单位.若(a +i)(1+i)=b i ,则a +b i =________.15.若关于x 的不等式ax 2-|x+1|+2a<0的解集为空集,则实数a 的取值范围是 .16.如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF ⊥DB ,垂足为F ,若AB =6,AE =1, 则DF ·DB =______.三.解答题:(本大题共6小题,满分70分, 解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分).已知复数z=lg (m 2﹣2m ﹣2)+(m 2+3m+2)i ,根据以下条件分别求实数m 的值或范围. (1)z 是纯虚数;(2)z 对应的点在复平面的第二象限. 18.(本小题满分12分) .如图所示,D 为△ABC 中BC 边上的一点,∠CAD =∠B ,若AD =6,AB =10,BD =8,求CD 的长.19.(本小题满分12分).某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:参考数据(∑5i =1x 2i =145=i 1(1)求线性回归方程;(2)试预测广告费支出为10百万元时,销售额多大? 20.(本小题满分12分).已知数列的前项和为,,满足(). (Ⅰ)计算,,;(Ⅱ)猜想的表达式(不用证明....).21. (本小题满分12分)已知函数()()m x x x f --++=21log 2.(1)当时,求函数的定义域.(2)若关于的不等式的解集是,求的取值范围.22.(本小题满分12分)某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高二年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名,现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.(1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关;(2)规定80分以上者为优分(含80分),请你根据已知条件作出列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.周口中英文学校2014---2015学年高二下期第三次考试(文科数学答题卷)一、选择题(本题每小题5分,共60分)二、填空题:(每小题5分,共20分)13、 14、15、 16、三:解答题:(本题70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)18. (本小题满分12分)19. (本小题满分12分)20. (本小题满分12分)21. (本小题满分12分)22. (本小题满分12分)高二数学文试题参考答案13. 归纳推理 14. 1+2i 15 16.5 三.解答题:17解 (1)由()()i m m m m z 2322lg 22+++--=是纯虚数得()⎪⎩⎪⎨⎧≠++=--023022lg 22m m m m.....3分即⎪⎩⎪⎨⎧≠++=--02312222m m m m 所以m =3............................................................................. 5分(2)根据题意得()⎪⎩⎪⎨⎧>++<--023022lg 22m m m m ,...................................................................... 7分由此得⎪⎩⎪⎨⎧>++<--<023122022m m m m ,................................................................................ 9分即.......10分18.解 在△ABD 中,AD =6,AB =10,BD =8,满足AB 2=AD 2+BD 2,∴∠ADB =90°, 即AD ⊥BC .又∵∠CAD =∠B ,且∠C +∠CAD =90°. ∴∠C +∠B =90°,即∠BAC =90°, 故在Rt △BAC 中,AD ⊥BC ,由射影定理知AD 2=BD ·CD ,即62=8·CD ,∴CD =92. 19(1)列出下表,并用科学计算器进行有关计算:因此,x =255=5,y =2505=50,∑5i =1x 2i =145,∑5i =1y 2i =13 500,∑5i =1x i y i =1 380.于是可得:b ^=∑5i =1x i y i-5x ·y ∑5i =1x 2i -5x 2=1 380-5×5×50145-5×5×5=6.5;a ^=y -b ^x =50-6.5×5=17.5.因此,所求线性回归方程为:y ^=6.5x +17.5.(3)根据上面求得的线性回归方程,当广告费支出为10百万元时,y ^=6.5×10+17.5=82.5(百万元),即这种产品的销售收入大约为82.5百万元.20.(本小题满分12分)解: (Ⅰ)由已知得 ,,,,…………….6分(Ⅱ)由,,,猜想 …………….12分21. 21.(1)由题意知,则有或或........................................4分所以函数的定义域为..................................................................6分 (2)不等式,即因为时,恒有()()32121=--+≥-++x x x x ..........................................10分由题意,所以的取值范围.........................................................12分22.(1)男生的平均分为:5.7115.0951.08525.0753.06515.05505.0451=⨯+⨯+⨯+⨯+⨯+⨯=-x .............2分女生的平均分为:5.7105.095325.08525.075125.0651.05515.0452=⨯+⨯+⨯+⨯+⨯+⨯=-x ......4分从男、女生各自的平均分来看,并不能判断数学成绩与性别有关. ................................5分 (2)由频数分布表可知:在抽取的100名学生中,“男生组”中的优分有15人,“女生组”中的优分有15人,据此可得列联表如下:..........8分可得()79.1703040604515251510022≈⨯⨯⨯⨯-⨯⨯=K ,...............................................................10分因为,所以没有90%以上的把握认为“数学成绩与性别有关”...........12分。
河南省周口中英文学校高二数学下学期期中试题 理

周口中英文学校2015-2016学年下期高二期中考试高二数学试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分;每小题给出的四个选项中只有一项是符合题目要求的.1.如果复数212bii-+的实部和虚部互为相反数,那么实数b 的值是( ) A.2 B.2- C.23- D.232.设函数()f x 可导,则()()011lim 3x f x f x∆→+∆-∆等于( )A. ()1f 'B.()31f 'C.()113f ' D. ()3f ' 3.()=--⎰dx x 1211( )A.1B.4π C. 2πD. π 4.曲线22y x x =+在点()1,3处的切线方程是 ( )A. 410x y --=B. 3410x y -+=C. 340x y -=D. 4310y x -+= 5.函数sin cos y x x x =+在(),3ππ内的单调增区间是( )A. 3,2ππ⎛⎫ ⎪⎝⎭ B .35,22ππ⎛⎫ ⎪⎝⎭ C.5,32ππ⎛⎫⎪⎝⎭D.(),2ππ6. 函数()()1sin cos 2x f x e x x =+在区间0,2π⎡⎤⎢⎥⎣⎦上的值域是( ) A .211,22e π⎡⎤⎢⎥⎢⎥⎣⎦ B.211,22e π⎛⎫ ⎪ ⎪⎝⎭C .21,e π⎡⎤⎢⎥⎣⎦ D.21,e π⎛⎫ ⎪⎝⎭ 7.函数()()04x f x t t dt =-⎰在[]1,5-上( )A . 有最大值0,无最小值 B. 有最大值0,最小值323- C . 最小值323-,无最大值 D. 既无最大值,也无最小值 8.观察()()()2432,4,cos sin xx x x x x '''===-,由归纳推理可得.若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -等于( )A . ()f xB .()f x -C .()g xD .()g x -A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除10.已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则(1)(0)f f '的最小值为( )A.3B.52 C.2 D.32 11. 设O 是原点,向量,OA OB u u u r u u u r 对应的复数分别为23,32i i --+,那么向量BA uu u r对应的复数是( )A.55i -+B.55i --C.55i +D.55i -12. 设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( ) A.15-B.0C.15D.5二.填空题: 本大题共4小题,每小题5分,满分20分.13. 函数()33g x x ax a =--在()0,1内有最小值,则a 的范围是 ----------14.函数()()20f x ax c a =+≠,若()()1f x dx f x =⎰,其中010x-<<,则0x 等于15. 如图所示的数阵中,第20行第2个数字是________.1 12 12 13 14 13 14 17 17 1416. 如图1是()y f x =的导函数的图像,现有四种说法. (1)()f x 在()2,1-上是增函数(2) 1x =-是()f x 的极小值点 (3) ()f x 在()1,2-上是增函数(4)x=2是()f x 的极小值点 以上说法正确的序号是三.解答题:(本大题共6小题,满分70分, 解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分).设函数f (x )=2x 3-3(a +1)x 2+6ax +8,其中a ∈R.已知f (x )在x =3处取得极值. (1)求f (x )的解析式;(2)求f (x )在点A (1,16)处的切线方程.18.(本小题满分12分)设函数f(x)=c bx 83ax 3x 223+++在x=1及x=2时取得极值.(Ⅰ)求a, b 的值(Ⅱ)若对于任意的x ∈[0,3],都有f(x)<c 2成立,求c 的取值范围.19. (本小题满分12分)已知复数z 1=2-3i ,z 2=15-5i2+i 2.求:(1)z 1+z 2;(2)z 1·z 2;(3)z 1z 2.20. (本小题满分12分) 在数列{a n }中,a 1=12,a n +1=3a na n +3,求a 2、a 3、a 4的值,由此猜想数列{a n }的通项公式,并用数学归纳法证明你的猜想.21. (本小题满分12分) 求由曲线22y x =+与直线3,0,2y x x x ===所围成的平面图形的面积.y()y f x '=2- 2 43- 1- 0 1 3 x图1(1) 当2a =时,求函数()f x 的单调递增区间;(2) 函数()f x 是否为R 上的单调函数,若是,求出a 的取值范围若不是,请说明理由.班级 姓名 学号 考场号 座号------------------- ………………………密…………………………封……………………………………………线…………………………………… ………..周口中英文学校2015-2016学年下期高二期中考试(理科数学答题卷)一、选择题(本题每小题5分,共60分)二、填空题:(每小题5分,共20分)13、 14、15、 16、 三:解答题:(本题70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)18. (本小题满分12分)题号 12 3 4 5 6 7 8 9 10 11 12 答案19. (本小题满分12分)20. (本小题满分12分)21. (本小题满分12分)22. (本小题满分12分)理科数学试题参考答案一.选择题:题目 1 2 3 4 5 6 7 8 9 10 11 12答案CCBABABDBC DB二.填空题:13. 01a << 14 . 33- 15. 1191 16. (2),(3)三.解答题:17.解 (1)f ′(x )=6x 2-6(a +1)x +6a . ∵f (x )在x =3处取得极值,∴f ′(3)=6×9-6(a +1)×3+6a =0, 解得a =3.∴f (x )=2x 3-12x 2+18x +8. (2)A 点在f (x )上,由(1)可知f ′(x )=6x 2-24x +18,f ′(1)=6-24+18=0,∴切线方程为y =16.18.Ⅰ)b ax x x f 366)(2++='因为函数f(x) 在x=1及x=2时取得极值.则有0)2(,0)1(='='f f 即6630241230a b a b ⎧⎨⎩++=++=解得a=-3,b=4.(Ⅱ)由(Ⅰ)知,f(x)=)2)(1(612186)(,8129x 2223--=+-='++-x x x x x f c x x . 当x ∈(0,1)时,)(f x '>0; 当x ∈(1,2) 时,)(f x '<0 当x ∈(2,3) 时,)(f x '>0所以当x=1时,f(x)取得极大值f(1)=5+8c,f(0)=8c,f(3)=9+8c.则当x ∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x ∈[0,3],有f(x)<c 2恒成立,所以9+8c <c 2. 解得c <-1或c >9.因此,c 的取值范围为(-∞,-1)∪(9,+∞).19. 解 z 2=15-5i 2+i 2=15-5i 3+4i =53-i 3-4i3+4i 3-4i =5-15i5=1-3i. (1)z 1+z 2=(2-3i)+(1+3i)=3.(2)z 1·z 2=(2-3i)(1-3i)=2-9-9i =-7-9i. (3)z 1z =2-3i =2-3i1+3i=2+9+3i 10=1110+310i. 20在数列{a n }中,a 1=12,a n +1=3a na n +3,求a 2、a 3、a 4的值,由此猜想数列{a n }的通项公式,并用数学归纳法证明你的猜想.解 a 1=12=36,a 2=37,a 3=38,a 4=39,猜想a n =3n +5,下面用数学归纳法证明:①当n =1时,a 1=31+5=12,猜想成立.②假设当n =k (k ≥1,k ∈N *)时猜想成立, 即a k =3k +5.则当n =k +1时, a k +1=3a ka k +3=3·3k +53k +5+3=3k +1+5,所以当n =k +1时猜想也成立, 由①②知,对n ∈N *,a n =3n +5都成立.21.解.解方程组 223y x y x⎧=+⎨=⎩ ,得曲线22y x =+与直线3y x =交点的横坐标121,2x x ==由图像知,所求的面积()()12220123321x x dx x x dx ⎡⎤⎡⎤+-+-+=⎣⎦⎣⎦⎰⎰22. 解.由于()()2x f x x axe =-+,()()()22()22x xxf x x a x ax x a x a e e e'=-+-+⎡⎤=-+-+⎣⎦+(1)当2a =时,()2()2x f x x e '=-+,当()2()20x f x x e '=-+>,则220x-+>,即22x -<<时,函数()f x 单调递增.所以,当2a =时,函数()f x 的单调递增区间是(2,2. (2)函数()f x 不是R 上的单调函数.理由如下.记()2()2g x x a x a =-+-+,()222440a a a =-+=+>V而x R ∈时,0xe >恒成立于是当x R ∈时,()()x f x g x e '=的值有正有负, 故而函数()f x 不是R 上的单调函数。
2019-2020学年河南省周口市中英文学校高二下学期期中考试英语试题

周口市中英文学校2019-2020学年高二下学期期中考试英语试题第I卷第一部分阅读理解(共两节,满分40 分)第一节(共15 小题; 每小题 2 分,满分30 分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该项涂黑。
AA woman was sitting by herself in a movie theatre. The movie she was about to see was a musical version (版本)of a very successful book that had sold a million copies that year.As the woman was waiting for the movie to begin,she noticed that the theatre was very crowded but the two seats next to her were empty.Suddenly a large man carrying a big fur coat walked down the aisle (通道)and sat down, placing the fur coat on the seat next to her.When the lights went out, the fur coat began to move,and the woman realized it was not a coat but a large furry dog. He was sitting up in the seat, watching the movie screen with great interest. As soon as the movie started,the dog began to nod his head and beat his paws(爪)in perfect time to the music.When the movie was over,the woman turned to the man and said,“Excuse me,sir, but I’ve never seen such a well-behaved dog in a movie theatre before. Does he often go to the movies? ”“Oh,yes,” replied the man.“And he seemed to enjoy everything so much,” she said “It was just amazing!”“As a matter of fact, it surprised me, too,” said the maa “He hated the book!”1. What kind of movie was the woman about to see?A. A movie about a clever dog.B. A movie about two film-goers.C. A musical movie based on a book.D. A movie telling of a popular book.2. What can we conclude from Para 4?A. The man enjoyed the movie very muchB. The dog made noise and disturbed othersC The woman enjoyed the movie very much. D. The dog was bright enough to enjoy the movie.3. What did the woman do when the movie was over?A. She communicated with the man happily.B. She praised the man for bringing his dog.C. She punished the dog for making noise.D. She complained about the dog angrily.BThere was once a jar(罐子) of fresh, clean water. Every drop of water in the jar felt immensely proud of being so clear and pure.Day after day they would congratulate each other on how clean and beautiful they were. That was, until one day when one of the drops got bored with his ultra-clean existence.He wanted to try what it was like being a dirty drop.The other drops tried to talk him out of it, but he stuck to his guns. Hardly realizing, when the drop came back all dirty, he turned all the other drops in the jar into dirty drops, too.They tried to get clean again, but couldn’t. They tried everything to shake off the dirtiness. Finally, much later, someone dipped the jar in a fountain,and only when a lot of clean water entered the jar, did the drops regain their old transparency and purity. Now they all know that if they all want to be nice clean drops, then each and every one of them has to stay clean, even if they find it difficult. That drop that succeeded in being dirty has realized that correcting the mistake of one single drop needs a lot of work for everyone else.The same happens with us and our friends. If we want to live in a jar of clean water, each one of us will have to be a clean drop. None of us should try being the dirty drop who spoils everything. How about you? What are you? A clean drop?4. One of the drops made a change because he _______.A.got tired of his state of existing.B.was less beautiful than other drops.C.wanted to dirty othersD.was too proud a drop5. We can infer from Para.2 that the drop was ________.A.confidentB.braveC.dangerousD.stubborn6.Realizing the trouble he caused, the drop that succeeded in being dirty must have felt very ________.A.pleasedB.importantC.sorryD.proud7.What’s the writer’s purpose of writing this article?A.To blame the drop for his foolish mistake.B.To advise readers to be “a clean drop”.C.To tell readers how to work together effectively.D.To tell readers the way to be “a clean drop”.CWinslow Homer was the second of the three sons of Henrietta Benson Homer and Charles Savage Homer. He was born in Boston, Massachusetts in 1836 and grew up in Cambridge, Massachusetts. His father was an importer of tools and other goods. His mother was a painter. Winslow got his interest in drawing and painting form his mother. But his father also supported his son’s interest. Once, on a business trip to London, Charles Winslow bought a set of drawing facsimiles (摹本) for his son to copy. Young Winslow used these to develop his early skill.Winslow’s older brother Charles went to Harvard University in Cambridge, Massachusetts. The family expected Winslow would go, too. But, at the time, Harvard didn’t teach art. So Winslow’s father found him a job as an assistant in the trade of making and preparing pictures for print media. At 19, Winslow learned the process of lithography (平版印刷术), which was the only formal training that Winslow ever received in art.In 1859, Winslow Homer moved to New York City to work for Harper’s Weekly. Homer also started to paint seriously. He hoped to go to Europe to study painting. But, something cropped up that would change the direction of Winslow Homer’s artistic work. Harper’s Magazine would send him to draw pictures of the biggest event in American history since independence. It was the American Civil War between the Union and the rebel (反叛的) southern states.Winslow Homer went to Washington, D. C., in 1861. He drew pictures of the campaign of Union Army Major General George B. McClellan the next year. His pictures of the war showed many ways that conflicts affect people.8.Who had the same interest as Winslow according to the text?A.His father.B.His mother.C.His teacher.D.His brother9.Why didn’t Winslow go to Harvard University?A.He didn’t want to go there.B.He wasn’t admitted to Harvard University.C.He couldn’t learn art in Harvard UniversityD.His family had no money to send him there.10.The underlined phrase “cropped up” in the third paragraph is closest in meaning to “____”.A.appearedB.remainedC.followedD.interrupted11.How does the text develop?A.By comparison.B.In order of time.C.By giving examples.D.By questioning the points.DOne ambitious high school student knew exactly how to show his family that he got accepted into his dream college—by surprising them on Christmas Day.Barrington Lincoln, class president at Lutheran High School North in Ferguson, got accepted into Morehouse College in Atlanta back on Dec. 15. But for months, he knew he wanted to make the news known in a big way to his mother and aunt, Lincoln told ABC News. “I thought of the surprise in October,” he said, adding that once he got accepted he would purchase two school T-shirts from Morehouse’s online storeOn Christmas Day, in a now video on Twitter, Lincoln, 17, gifted his mom Lisa McDonald and his aunt Shirley Gray the T-shirts with the school’s name on it. When the two sisters opened the gifts, they had no idea what they meant.In the video, Lincoln nudges (用肘轻推) his family, “You know what that means right? I got in!” While McDonald falls heavily on the couch in delight, Gray asks, “You’ve been holding out on us?”“I didn’t expect anything like that,” McDonald told ABC News. “It’s so satisfying to see him get the return on his studying.” “He always wanted to be the first in line and help everybody stay in line,” his mother added.McDonald said it’s especially sweet since she had to work an extra job to afford his private school after his father, a former Marine, passed away in 2015. Lincoln was only 15.“All kids need to have quality education,” the mother added. “I am putting an investment (投资) in his future.”12.What did Lincoln choose two T-shirts for his mother and aunt mainly for?A.To show he loves them forever.B.To give them a Christmas gift.C.To tell them his academic success.D.To show he had grown up already.13.How did Lincoln’s mother and aunt feel when they saw his presents?A.Puzzled.B.Satisfied.C.Disappointed.D.Embarrassed.14.Which of the following can replace the underlined sentence “You’ve been holding out on us”?A.You’ve been telling a lie to the two of us.B.You’ve been longing to tell us the truth.C.You’ve been playing a joke with two of us.D.You’ve been keeping it a secret from us.15.What can we infer from the text?A.Lincoln’s parents could hardly afford his education.B.Lincoln’s mother felt her efforts paid off at last.C.Lincoln bought the T-shirts in the local supermarket.D.The video had been popular before December 15.第二节(共5 小题;每小题 2 分,满分10 分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
河南省周口中英文学校高二数学下学期期中试题 理

河南省周口中英文学校2017-2018学年高二数学下学期期中试题 理考试时间:120分钟 试卷满分:150分一、选择题 (共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项是符合要求的)1.若复数z =a +i 的实部与虚部相等,则实数a =( )A .-1B .1C .-2D .22.已知22123i 4(56)i z m m m z m =-+=++,,其中m 为实数,i 为虚数单位,若120z z -=,则m 的值为 ( )(A) 4(B) 1-(C) 6(D) 03.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( )A .-eB .-1C .1D .e4.由①y =2x +5是一次函数;②y =2x +5的图象是一条直线;③一次函数的图象是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是( )A .②①③B .③②①C .①②③D .③①② 5.曲线x y e =,xy e -= 和直线1x =围成的图形面积是 ( ) (A)1e e -- (B) 1e e -+ (C) 12e e --- (D) 12e e -+- 6.函数223)(a bx ax x x f +--=在1=x 处有极值10, 则点),(b a 为 ( ) (A ))3,3(- (B ))11,4(- (C ) )3,3(-或)11,4(- (D )不存在 7.若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0” 的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )必要条件8.已知函数y =f (x )的导函数y =f ′(x )的图象如图1所示,则( )图1A .函数f (x )有1个极大值点,1个极小值点B .函数f (x )有2个极大值点,2个极小值点C .函数f (x )有3个极大值点,1个极小值点D .函数f (x )有1个极大值点,3个极小值点9.现有4种不同款式的上衣和3不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )。
河南省周口市中英文学校2019-2020学年高二下学期期中考试(6月)(理)

1河南省周口市中英文学校2019-2020学年 高二下学期期中考试(6月)(理)一、选择题:本大题共12小题,每小题5分,满分60分;每小题给出的四个选项中只有一项是符合题目要求的.1.如果复数212bii-+的实部和虚部互为相反数,那么实数b 的值是( )2- C.23- D.232.设函数()f x 可导,则()()11lim3x f x f x∆→+∆-∆等于( )A. ()1f 'B.()31f 'C.()113f ' D. ()3f ' 3.()=--⎰dx x 1211( )A.1B.4π C. 2πD. π 4.函数f (x )=x 3-ax 2-bx +a 2在x =1处有极值10,则a ,b 的值为( )A.⎩⎪⎨⎪⎧a =3b =-3或⎩⎪⎨⎪⎧a =-4b =11B.⎩⎪⎨⎪⎧a =-4b =11 C.⎩⎪⎨⎪⎧a =-1b =5 D.以上都不对5..已知f (x +1)=2f (x )f (x )+2,f (1)=1(x ∈N *),猜想f (x )的表达式为( )A.42x +2B.2x +1C.1x +1D.22x +16.设f (x )=13x 3+ax 2+5x +6在区间[1,3]上为单调函数,则实数a 的取值范围是( )A.[-5,+∞)B.[-∞,-3]C.(-∞,-3]∪[-5,+∞)D.[-5,5] 7.函数()()04xf x t t dt =-⎰在[]1,5-上( )A . 有最大值0,无最小值 B. 有最大值0,最小值323- C . 最小值323-,无最大值 D. 既无最大值,也无最小值28.数列{a n }满足a 1=12,a n +1=1-1a n ,则a 2 018等于( )A.12B.-1C.2D.39.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( )A . a ,b 都不能被3整除B .a ,b 都能被3整除C .a ,b 不都能被3整除D .a 不能被3整除10.若点P 在曲线y =x 3-3x 2+(3-3)x +34上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π2B.⎣⎢⎡⎦⎥⎤0,π2∪⎣⎢⎡⎭⎪⎫2π3,πC.⎣⎢⎡⎭⎪⎫2π3,πD.⎣⎢⎡⎦⎥⎤0,2π311.设z =1-i1+i+2i ,则|z |=( ) A.0B.12C.1D. 212.定义在R 上的函数f (x )满足f (-x )=-f (x +4),且f (x )在(2,+∞)上为增函数.已知x 1+x 2<4且(x 1-2)·(x 2-2)<0,则f (x 1)+f (x 2)的值( )A.恒小于0B.恒大于0C.可能等于0D.可正也可负二.填空题: 本大题共4小题,每小题5分,满分20分.13.若曲线y =kx +ln x 在点(1,k )处的切线平行于x 轴,则k =_______14.复平面内,若z =m 2(1+i)-m (4+i)-6i 所对应的点在第二象限,则实数m 的取值范围是________.15. 如图所示的数阵中,第20行第2个数字是________.1 12 12 13 14 131 4171714151111111111516. 已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数),给出以下说法:①函数f(x)在区间(1,+∞)上是增函数;②函数f(x)在区间(-1,1)上无单调性;③函数f(x)在x=-12处取得极大值;④函数f(x)在x=1处取得极小值.其中正确的说法有________(填序号).三.解答题:(本大题共6小题,满分70分, 解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分).)设复数z=lg(m2-2m-2)+(m2+3m+2)i,当m为何实数时,(1)z是实数?(2)z是纯虚数?18.(本小题满分12分)设a,b,c三数依次成等比数列,而x,y分别为a,b和b,c的等差中项,试证:ax+cy=2.19. (本小题满分12分)已知复数z=(1+2i)(-2+i)-3+i1+i.(1)计算复数z;(2)若z2+(2a-1)z-(1-i)b-16=0,求实数a,b的值.20. (本小题满分12分)求由曲线22y x=+与直线3,0,2y x x x===所围成的平面图形的面积.321. (本小题满分12分) )已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.22. (本小题满分12分))已知函数f(x)=4ln(x-1)+12x2-(m+2)x+32-m(m为常数),(1)当m=4时,求函数的单调区间;(2)若函数y=f(x)有两个极值点,求实数m的取值范围.45参考答案一.选择题:二.填空题:13. -1 14 .(3,4) 15. 119116. ①④ 三.解答题:17.解 (1)要使复数z 为实数,需满足⎩⎪⎨⎪⎧m 2-2m -2>0,m 2+3m +2=0,解得m =-2或-1,即当m =-2或-1时,z 是实数.(2)要使复数z 为纯虚数,需满足⎩⎪⎨⎪⎧m 2-2m -2=1,m 2+3m +2≠0,解得m =3,即当m =3时,z 是纯虚数.18.证明 依题意,a ,b ,c 依次成等比数列,即a b =bc. 由比例性质有aa +b =bb +c,又由题设x =a +b2,y =b +c2,因而a x +c y =2a a +b +2c b +c =2b b +c +2c b +c =2(b +c )b +c=2.619.解 (1)z =(1+2i)(-2+i)-(3+i )(1-i )(1+i )(1-i )=-4-3i -4-2i2=-4-3i -(2-i)=-6-2i.(2)∵(-6-2i)2+(2a -1)(-6-2i)-(1-i)b -16=0, ∴32+24i -6(2a -1)-2(2a -1)i -b +b i -16=0, ∴22-12a -b +(26-4a +b )i =0,∴⎩⎪⎨⎪⎧22-12a -b =0,26-4a +b =0.解得a =3,b =-14. 20.解方程组 223y x y x⎧=+⎨=⎩ ,得曲线22y x =+与直线3y x =交点的横坐标121,2x x == 由图像知,所求的面积()()12220123321x x dx x x dx ⎡⎤⎡⎤+-+-+=⎣⎦⎣⎦⎰⎰21.解 (1)∵f (2)=23+2-16=-6, ∴点(2,-6)在曲线上.∵f ′(x )=(x 3+x -16)′=3x 2+1, ∴在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,∴切线的方程为y =13(x -2)+(-6), 即13x -y -32=0. (2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16. 又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16, 整理得x 30=-8,∴x 0=-2,y 0=(-2)3+(-2)-16=-26, ∴k =3×(-2)2+1=13,∴直线l 的方程为13x -y =0,切点坐标为(-2,-26). 22. 解 依题意得,函数的定义域为(1,+∞). (1)当m =4时,f (x )=4ln(x -1)+12x 2-6x -52.f ′(x )=4x -1+x -6=x 2-7x +10x -1=(x -2)(x -5)x -1.7令f ′(x )>0,解得x >5或1<x <2. 令f ′(x )<0,解得2<x <5.可知函数f (x )的单调递增区间为(1,2)和(5,+∞),单调递减区间为(2,5). (2)f ′(x )=4x -1+x -(m +2)=x 2-(m +3)x +m +6x -1.若函数y =f (x )有两个极值点,则⎩⎪⎨⎪⎧Δ=[-(m +3)]2-4(m +6)>0,1-(m +3)+m +6>0,m +32>1.解得m >3.故实数m 的取值范围是(3,+∞).。
2019-2020学年河南省周口市中英文学校高二下学期期中考试(6月)英语试题 Word版

周口中英文学校2019-2020学年下期高二期中考试英语试题本试卷分选择题和非选择题两部分。
满分120 ,考试用时120分钟第I卷第二部分阅读理解(共两节,满分40 分)第一节(共15 小题; 每小题 2 分,满分30 分)阅读下列短文,从每题所给的四个选项(A 、B 、C 和 D )中,选出最佳选项,并在答题卡上将该项涂黑。
AA woman was sitting by herself in a movie theatre. The movie she was about to see was a musical version (版本)of a very successful book that had sold a million copies that year.As the woman was waiting for the movie to begin,she noticed that the theatre was very crowded but the two seats next to her were empty.Suddenly a large man carrying a big fur coat walked down the aisle (通道)and sat down, placing the fur coat on the seat next to her.When the lights went out, the fur coat began to move,and the woman realized it was not a coat but a large furry dog. He was sitting up in the seat, watching the movie screen with great interest. As soon as the movie started,the dog began to nod his head and beat his paws(爪)in perfect time to the music.When the movie was over,the woman turned to the man and said,“Excuse me,sir, but I’ve never seen such a well-behaved dog in a movie theatre before. Does heoften go to the movies? ”“Oh,yes,”replied the man.“And he seemed to enjoy everything so much,”she said “It was just amazing! ”“As a matter of fact, it surprised me, too,”said the maa “He hated the book!”21. What kind of movie was the woman about to see?A. A movie about a clever dog.B. A movie about two film-goers.C. A musical movie based on a book.D. A movie telling of a popular book.22. What can we conclude from Para 4?A. The man enjoyed the movie very muchB. The dog made noise and disturbed othersC The woman enjoyed the movie very much. D. The dog was bright enough to enjoy the movie.23. What did the woman do when the movie was over?A. She communicated with the man happily.B. She praised the man for bringing his dog.C. She punished the dog for making noise.D. She complained about the dog angrily.BThere was once a jar(罐子) of fresh, clean water. Every drop of water in the jar felt immensely proud of being so clear and pure. Day after day they would congratulate each other on how clean and beautiful they were. That was, until one day when one of the drops got bored with his ultra-clean existence. He wanted to try what it was like being a dirty drop.The other drops tried to talk him out of it, but he stuck to his guns. Hardly realizing, when the drop came back all dirty, he turned all the other drops in the jar into dirty drops, too.They tried to get clean again, but couldn't. They tried everything to shake off the dirtiness. Finally, much later, someone dipped the jar in a fountain, and only when a lot of clean water entered the jar, did the drops regain their old transparency and purity. Now they all know that if they all want to be nice clean drops, then each and every one of them has to stay clean, even if they find it difficult. That drop that succeeded in being dirty has realized that correcting the mistake of one single drop needs a lot of work for everyone else.The same happens with us and our friends. If we want to live in a jar of clean water, each one of us will have to be a clean drop. None of us should try being the dirty drop who spoils everything. How about you? What are you? A clean drop?24.One of the drops made a change because he _______.A.got tired of his state of existing.B.was less beautiful than other drops.C.wanted to dirty othersD.was too proud a drop25.We can infer from Para.2 that the drop was ________.A.confidentB.braveC.dangerousD.stubborn26.Realizing the trouble he caused, the drop that succeeded in being dirty must have felt very ________.A.pleasedB.importantC.sorryD.proud27.What’s the writer’s purpose of writing this arti cle?A.To blame the drop for his foolish mistake.B.To advise readers to be “a clean drop”.C.To tell readers how to work together effectively.D.To tell readers the way to be “ a clean drop”.CWinslow Homer was the second of the three sons of Henrietta Benson Homer and Charles Savage Homer. He was born in Boston, Massachusetts in 1836 and grew up in Cambridge, Massachusetts. His father was an importer of tools and other goods. His mother was a painter. Winslow got his interest in drawing and painting form his mother. But his father also supportedhis son’s interest. Once, on a business trip to London, Charles Winslow bought a set of drawing facsimiles (摹本) for his son to copy. Young Winslow used these to develop his early skill.Winslow’s older brothe r Charles went to Harvard University in Cambridge, Massachusetts. The family expected Winslow would go, too. But, at the time, Harvard didn’t teach art. So Winslow’s father found him a job as an assistant in the trade of making and preparing pictures for print media. At 19, Winslow learned the process of lithography (平版印刷术), which was the only formal training that Winslow ever received in art.In 1859, Winslow Homer moved to New York City to work for Harper’s Weekly. Homer also started to paint seriously. He hoped to go to Europe to study painting. But, something cropped up that would change the direction of Winslow Homer’s artistic work. Harper’s Magazine would send him to draw pictures of the biggest event in American history since independence. It was the American Civil War between the Union and the rebel (反叛的) southern states.Winslow Homer went to Washington, D. C., in 1861. He drew pictures of the campaign of Union Army Major General George B. McClellan the next year. His pictures of the war showed many ways that conflicts affect people.28.Who had the same interest as Winslow according to the text?A.His father.B.His mother.C.His teacher.D.His brother29.Why didn’t Winslow go to Harvard University?A.He didn’t want to go there.B.He wasn’t admitt ed to Harvard University.C.He couldn’t learn art in Harvard UniversityD.His family had no money to send him there.30.The underlined phrase “cropped up” in the third paragraph is closest in meaning to “____”.A.appearedB.remainedC.followedD.interrupted31.How does the text develop?A.By comparison.B.In order of time.C.By giving examples.D.By questioning the points.DOne ambitious high school student knew exactly how to show his family that he got accepted into his dream college—by surprising them on Christmas Day.Barrington Lincoln, class president at Lutheran High School North in Ferguson, got accepted into Morehouse College in Atlanta back on Dec. 15. But for months, he knew he wanted to make the news known in a big way to his mother and aunt, Lincoln told ABC News. “I thought of the surprise in October,” he said, adding that once he got accepted he would purchase two school T-shirts from Morehouse’s online store On Christmas Day, in a now video on Twitter, Lincoln, 17, gifted his mom Lisa McDonald and his aunt Shirley Gray the T-shirts with the school’s name on it. When the two sisters opened the gifts, they had no idea what they meant.In the video, Lincoln nudges (用肘轻推) his family, “You know what that means right? I got in!” While McDonald fall s heavily on the couch in delight, Gray asks, “You’ve been holding out on us?”“I didn’t expect anything like that,” McDonald told ABC News. “It’s so satisfying to see him get the return on his studying.” “He always wanted to be the first in line and help everybody stay in line,” his mother added.McDonald said it’s especially sweet since she had to work an extra job to afford his private school after his father, a former Marine, passed away in 2015. Lincoln was only 15.“All kids need to have quality education,” the mother added. “I am putting an investment (投资) in his future.”32.What did Lincoln choose two T-shirts for his mother and aunt mainly for?A.To show he loves them forever.B.To give them aChristmas gift.C.To tell them his academic success.D.To show he had grown upalready.33.How did Lincoln’s mother and aunt feel when they saw his presents?A.Puzzled.B.Satisfied.C.Disappointed.D.Embarrassed.34.Which of the following ca n replace the underlined sentence “You’ve beenholding out on us”?A.You've been telling a lie to the two of us.B.You've been longing to tell us the truth.C.You've been playing a joke with two of us.D.You've been keeping it a secret from us.35.What can we infer from the text?A.Lincoln's parents could hardly afford his education.B.Lincoln's mother felt her efforts paid off at last.C.Lincoln bought the T-shirts in the local supermarket.D.The video had been popular before December 15.第二节(共 5 小题;每小题 2 分,满分10 分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省周口市中英文学校2019-2020学年
高二下学期期中考试(6月)(文)
一、选择题(共12小题,每小题5分,共60分)
1.复数z=1+i的虚部是()
A.1 B.-1 C.i D.-i
2.下列说法错误的是()
A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系
B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强
C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好
3.一位母亲在孩子的成长档案中记录了年龄和身高间的数据(截取其中部分):
根据以上样本数据,建立了身高y(cm)与年龄x(周岁)的线性回归方程为ŷ=7.19x+â,可预测该孩子10周岁时的身高为()
A.142.8 cm
B.145.9 cm
C.149.8 cm
D.151.7 cm
4.观察下列事实:|x|+|y|≤1的不同整数解(x,y)的个数为5,|x|+|y|≤2 的不同整数解(x,y)的个数为13,|x|+|y|≤3的不同整数解(x,y)的个数为25,|x|+|y|≤4的不同整数解(x,y)的个数为41,|x|+|y|≤5的不同整数解(x,y)的个数为61,….则|x|+|y|≤20的不同整数解(x,y)的个数为()
A.841 B.761 C.925 D.941
5.下列推理过程是演绎推理的是()
A.由平面三角形的性质推测空间三棱锥的性质
B.某校高二1班有55人,2班有52人,由此得高二所有班人数都超过50人
C.两条直线平行,同位角相等;若∠A与∠B是两条平行直线的同位角,则∠A=∠B D.在数列{a n}中,a1=2,a n=2a n-1+1(n≥2),由此归纳出{a n}的通项公式
1
32
456
10987
1112131415
…
A.19
21
B.20
21
C.10
11
D.21
22
7.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是()
A.ŷ=-10x+200
B.ŷ=10x+200
C.ŷ=-10x-200
D.ŷ=10x-200
8.用反证法证明命题“三角形的内角中至少有一个大于60°”,反证假设正确的是() A.假设三内角都大于60°
B.假设三内角都不大于60°
C.假设三内角至多有一个大于60°
D.假设三内角至多有两个大于60°
9.已知x,y为实数,且满足3x2+2y2≤6,则2x+y的最大值为()
A.6 B.√6
C.11 D.√11
10. 复数z=-lg(x2+2)-(2x+2--x-1)i(x∈R)在复平面内对应的点位于()
A.第一象限B.第二象限
C.第三象限D.第四象限
11.按如下图所示的算法框图运算,若输出k=2,则输入x的取值范围是()
A.19≤x<200
B.x<19
C.19<x<200
D.x≥200
12.给出演绎推理的“三段论”,已知函数f(x)=1
在(-∞,0)∪(0,+∞)是单调递减的,又
x
因为-1<2,所以f(-1)>f(2),即-1>1
,这显然是不对的,那么这个推理是()
2
A.大前提推理
B.小前提推理
C.推理形式错误
D.非以上错误
二、填空题(共4小题,每小题5分,共20分)
13.若两个方程x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,则实数a的取值范围是_______
14.不等式|x+1|+|2x-4|>6的解集为__________.
15.若正三角形内切圆的半径为r,则该正三角形的周长C(r)=6√3r,面积S(r)=3√3r2,发现S′(r)=C(r).相应地,若正四面体内切球的半径为r,则该正四面体的表面积S(r)=24√3r2.请用类比推理的方法猜测该正四面体的体积V(r)=_______(写出关于r的表达式).
16.不等式|x+1|-|x-2|>k的解集为R,则实数k的取值范围为__________.
三、解答题
17.已知复数z1=m(m-1)+(m-1)i是纯虚数.
(1)求实数m的值;(2)若(3+z1)z=4+2i,求复数z.
18.某校体育教研组研发了一项新的课外活动项目,为了解该项目受欢迎程度,在某班男女中各随机抽取20名学生进行调研,统计得到如下列联表:
附:参考公式及数据
(1)在喜欢这项课外活动项目的学生中任选1人,求选到男生的概率;
(2)根据题目要求,完成2×2列联表,并判断是否有95%的把握认为“喜欢该活动项目与性别有关”?
19.用数学归纳法证明:1+n
2≤1+1
2
+1
3
+…+1
2n
≤1
2
+n(n∈N*).
20.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y 关于x 的线性回归方程y ̂=b ̂x +a ̂,
(3)试预测加工20个零件需要多少小时?
用最小二乘法求线性回归方程系数公式:
b ̂=n Σi=1x i y i −nx̅y ̅n Σi=1
x i 2−nx̅2,a ̂=y ̅-b ̂x̅.
21.若正数a ,b ,c 满足a +b <2c ,求证:c -√c 2−ab <a <c +√c 2−ab .
22.已知函数f (x )=|x -1|.
(1)解关于x 的不等式f (x )+x 2-1>0;
(2)若g (x )=-|x +3|+m ,f (x )<g (x )的解集非空,求实数m 的取值范围.
联系电话:4000-916-716 6 参考答案
一、1-5、ABBAC 6-10、BABDC 11-12、AA
二、13.(−∞,−2]∪[−1,+∝) 14. (−∞,−1)∪(3,+∝) 15. 8√3r 3
16.(−∞,−3)
三、
17.【答案】(1)根据纯虚数的概念,需实部为0,虚部不为0.
{m(m −1=0)m −1≠0,
解得m =0.
(2)当m =0时,z 1=-i.
由(3+z 1)z =4+2i ,即(3-i)z =4+2i ,
得z =4+2i 3−i =(4+2i)(3+i)(3−i)(3+i)=1+i.
18.【答案】(1)依题意知,喜欢这项活动的男生有8人,女生有15人,
从中选一人有23种选法,其中选到男生有8种,
所求概率为823.
(2)根据题意,填写列联表如下:
所以K 2=40×(15×12−8×5)220×20×23×17≈5.013>3.841,
所以,有95%的把握认为“喜欢该活动项目与性别有关”.
19. 【答案】证明 (1)当n =1时,左边=1+12,右边=12
+1, ∴32≤1+12≤32,即命题成立.
(2)假设当n =k (k ∈N*)时命题成立,即1+k 2
≤1+12+13+…+12k ≤12+k , 则当n =k +1时,
1+12+13+…+12k +12k +1+12k +2+…+12k +2k >1+k 2
+2k ·12k +2k =1+k+12.
联系电话:4000-916-716 7 又1+12+13+…+12k +12k +1+12k +2+…+12k +2k <12+k +2k ·12k =12+(k +1),
即当n =k +1时,命题成立.
由(1)(2)可知,命题对所有n ∈N*都成立.
20. 【答案】(1)散点图如下图,
(2)由表中数据得:4Σi =1x iyi =52.5,x̅=3.5,y ̅=3.5,4Σi =1
x i 2=54,
∴b
̂=0.7,∴a ̂=1.05, ∴y
̂=0.7x +1.05. (3)将x =20代入线性回归方程,得y ̂=0.7×20+1.05=15.05,
∴预测加工20个零件需要15.05小时.
21.【答案】欲证c -√c 2−ab <a <c +√c 2−ab ,
只需证-√c 2−ab <a -c <√c 2−ab ,
只需证|a -c |<2−ab ,
只需证(a -c )2<c 2-ab ,
只需证a 2-2ac <-ab ,
只需证a (a +b )<2ac ,又a >0,
只需证a +b <2c ,
∵a +b <2c 是题设条件,显然成立,
故c -√c 2−ab <a <c +√c 2−ab .
22.【答案】(1)由题意原不等式可化为|x -1|>1-x 2,
即x -1>1-x 2或x -1<x 2-1,
由x -1>1-x 2,得x >1或x <-2;
由x -1<x 2-1,得x >1或x <0.
综上,原不等式的解为x >1或x <0.
(2)原不等式等价于|x-1|+|x+3|<m的解集非空.
令h(x)=|x-1|+|x+3|,即h(x)min<m,
又|x-1|+|x+3|≥|x-1-x-3|=4,所以h(x)min=4,所以m>4.
8
联系电话:4000-916-716。