七年级数学上册12月反馈练习题(有答案)-word文档
七年级上册数学练习题(有答案)

七年级上册数学练习题(有答案)一、单选题1.在一条东西向的跑道上,小亮向东走了8米,记作“+8米”;那么向西走了10米,可记作()A .+2米B .﹣2米C .+10米D .﹣10米2.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a-b+c-d的值为()A .1B .-1C .2或-1D .1或33.下列说法中,正确的是()A . -a一定是负数B .若a是正数,则 -a一定是复苏C .a的倒数是-1a4.A .4B .-4C . 4或-4D .2 或-25、-7的倒数是()A . 7B . - 17C . 17D .-76、把(﹣3)﹣(﹣7)+4﹣(+5)写成省略加号的和的形式是()A .﹣3﹣7+4﹣5B .﹣3+7+4﹣5C .3+7﹣4+5D .﹣3﹣7﹣4﹣57.下列各图中,可以是一个正方体的平面展开图的是()8、有理数a,b在数轴上的对应点如图所示,则下列式子错误的是()A .b<0B .a+b<0C .a<0D .b﹣a<0二、填空题9.若关于x的方程2(x-1)+a=0的解是x=3,则a的值为.三、计算题10、计算:(1)﹣5+7﹣(﹣8)(2)(﹣3)2﹣+|﹣2|.11.计算12.计算13.计算:10-(-16)+(-5)×7四、解答题五、综合题15、用正数或负数填空:(1)小商店平均每天可盈利250元,一个月(按30天计算)的利润是元;(2)小商店每天亏损20元,一周的利润是元;(3)小商店一周的利涧是1400元,平均每天的利润是元;(4)小商店一周共亏损840元,平均每天的利润是元.16、有8筐白菜,以每筐25千克为标准,超过记正数,不足记负数,称后的记录为:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5,回答下列问题:(1)这8筐白菜中最接近标准重量的白菜重多少千克?(2)这8筐白菜一共重多少千克?17、某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?。
山东省济南市高新区2020-2021学年七年级下学期期末考试数学试题(Word版,含答案)

绝密★启用前2020至2021学年第二学期期末学业水平测试高新初中数学七年级试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为48分;第Ⅱ卷共5页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.计算1)20211(所得结果是 ( ) A .2021 B .20211 C .﹣20211D .﹣2021 2.下面四个图形分别是绿色食品、低碳、节能和节水标志,是轴对称图形的是( )A .B .C .D .3.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )A .B .C .D .4.如图,沿笔直小路DE 的一侧栽植两棵小树B ,C ,小明在A 处测得AB =5米,AC =7米,则点A 到DE 的距离可能为( ) A .4米 B .5米C .6米D .7米5.在行进路程s 、速度v 和时间t 的相关计算中,若保持行驶的路程不变,则下列说法正确的是( )A .变量只有速度vB .变量只有时间tC .速度v 和时间t 都是变量D .速度v 、时间t 、路程s 都是常量6.现有两根长度分别3cm和7cm的木棒,若要钉成一个三角形木架,则应选取的第三根木棒长为()A.4cm B.7cm C.10cm D.13cm7.如图,一只电子蚂蚁从正方体的顶点A处沿着表面爬到顶点C处,电子蚂蚁的部分爬行路线在平面展开图中的表示如图的虚线,其中能说明爬行路线最短的是()A.B.C.D.8.等腰三角形的一个内角为50°,它的顶角的度数是()A.65°B.80°C.65°或80°D.50°或80°9.若m,n为常数,等式(x+2)(x﹣1)=x2+mx+n恒成立,则m n的值为()A.1 B.﹣1 C.2 D.﹣210.如图,将一个长方形纸条折成如图的形状,若已知∠1=140°,则∠2为()A.50°B.60°C.70°D.80°11.设一个直角三角形的两直角边分别是a,b,斜边是c.若用一把最大刻度是20cm的直尺,可一次直接测得c的长度,则a,b的长可能是()A.a=12,b=16 B.a=11,b=17 C.a=10,b=18 D.a=9,b=1912.如图有两张正方形纸片A和B,图1将B放置在A内部,测得阴影部分面积为2,图2将正方形AB并列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A和2个正方形B并列放置后构造新正方形如图3,(图2,图3中正方形AB纸片均无重叠部分)则图3阴影部分面积()A.22 B.24 C.42 D.44第Ⅱ卷(非选择题共102分)注意事项:1.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算(y+2)(y﹣2)的结果等于.14.某人连续抛掷一枚质地均匀的硬币3次,结果都是正面朝上,则他第四次抛掷这枚硬币,正面朝上的概率为.15.如图,在△ABC中,AD平分∠BAC,∠BAC=80°,∠B=35°,则∠ADC的度数为°.16.某工程队承建30km的管道铺设,工期60天,施工x天后剩余管道ykm,则y与x的关系式为.17.如图,在△ABC中,AB的垂直平分线分别交AB,AC于D,E两点,且AC=10,BC=4,则△BCE的周长为.第17题图第18题图18.在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S1,S2,S3,S4,则S1+S2﹣S3﹣S4=.三、解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题满分4分)计算:a3•a2•a+(a2)3.20.(本题满分4分)计算:(x﹣3)(x+6).21.(本题满分4分)如图,在边长为1的小正方形网格中,点A,B,C均落在格点上.(1)画出△ABC关于直线l的轴对称图形△A1B1C1.(2)△A1B1C1的形状是.22.(本题满分5分)填写下列空格:已知:如图,CE平分∠ACD,∠AEC=∠ACE.求证:AB∥CD.证明:∵CE平分∠ACD(已知),∴∠ACE=∠().∵∠AEC=∠ACE(已知),∴∠AEC=∠().∴AB∥CD().23.(本题满分5分)已知:如图,在△ABC中,BC⊥AC,若AC=8,BC=6,求AB的长.24.(本题满分6分)如图是一位病人的体温记录图,看图回答下列问题:(1)自变量是,因变量是;(2)护士每隔小时给病人量一次体温;(3)这位病人的最高体温是摄氏度,最低体温是摄氏度;(4)他在4月8日12时的体温是摄氏度.25.(本题满分6分)先化简,再求值:(2x +3y )2﹣(2x +y )(2x ﹣y ),其中x =1,y =﹣1. 26.(本题满分6分)如图,AD 是等边△ABC 的中线,AE =AD ,求∠AED 的度数.27.(本题满分8分)完成下列推理过程:如图所示,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠2=∠3,AD =AB .猜想AC 与AE 之间的数量关系,并说明理由. 答:AC AE .解:∵∠2= ,∠AFE =∠DFC ,∴180°﹣∠2﹣∠AFE =180°﹣∠3﹣∠DFC ∴∠E = . 又∵∠1=∠2,∴ +∠DAC = +∠DAC . ∴∠BAC =∠DAE ( ). 在△ABC 和△ADE 中,⎪⎩⎪⎨⎧=∠=∠)(______________)(已知(已证)已证AD AB DAE BAC ∴△ABC ≌△ADE ( ). ∴AC =AE .28.(本题满分8分)一圆盘被平均分成10等份,分别标有1,2,3,4,5,6,7,8,9,10这10个数字,转盘上有指针,转动转盘,当转盘停止,指针指向的数字即为转出的数字,现有两人参与游戏,一人转动转盘另一人猜数,若猜的数与转盘转出的数相符,则猜数的获胜,否则转动转盘的人获胜,猜数的方法从下面三种中选一种: (1)猜“是奇数”或“是偶数”;(2)猜“是3的倍数”或“不是3的倍数”;(3)猜“是大于4的数”或“是不大于4的数”.若你是猜数的游戏者,为了尽可能获胜,应选第几种猜数方法?并请你用数学知识说明理由.29.(本题满分10分)如图,△ABC 与△ADE 是以点A 为公共顶点的两个三角形,且AD =AE ,AB =AC ,∠DAE =∠CAB =90°,且线段BD 、CE 交于F . (1)求证:△AEC ≌△ADB .(2)猜想CE 与DB 之间的关系,并说明理由.30.(本题满分12分)“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了A ,D 两座可旋转探照灯.假定主道路是平行的,即PQ ∥CN ,A ,B 为PQ 上两点,AD 平分∠CAB 交CN 于点D ,E 为AD 上一点,连接BE ,AF 平分∠BAD 交BE 于点F . (1)若∠C =20°,则∠EAP = ;(2)作AG 交CD 于点G ,且满足∠1=31∠ADC ,当∠2+56∠GAF =180°时,试说明:AC ∥BE ;(3)在(1)问的条件下,探照灯A 、D 照出的光线在铁路所在平面旋转,探照灯射出的光线AC 以每秒5度的速度逆时针转动,探照灯D 射出的光线DN 以每秒15度的速度逆时针转动,DN 转至射线DC 后立即以相同速度回转,若它们同时开始转动,设转动时间为t 秒,当DN 回到出发时的位置时同时停止转动,则在转动过程中,当AC 与DN 互相平行或垂直时,请直接写出此时t 的值.备用图2020至2021学年第二学期期末学业水平测试 高新初中数学七年级参考答案及评分标准13.y 2﹣4. 14.12. 15.75. 16.y =30﹣0.5x 17.14. 18.﹣2. 三、解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题4分)解:原式=a 6+a 6·····················································································2分=2a 6·······················································································4分 20.(本题4分)解:原式=x 2+6x ﹣3x ﹣18·············································································2分=x 2+3x ﹣18·················································································4分 21.(本题4分)解: (1)如图,△A 1B 1C 1为所求;·······································································································3分 (2)△A 1B 1C 1是等腰直角三角形····················································································4分 22.(本题5分)DCE ;角平分线的定义;DCE ;等量代换;内错角相等,两直线平行 23.(本题5分) 解:∵BC ⊥AC∴∠C =90°··············································································································1分 ∵Rt △ABC 中,∠C =90°,AC =8,BC =6·····································································3分 ∴BC 2+ AC 2= AB 2·······································································································4分AB=10··········································································································5分 24.(本题6分) 解:(1)时间,体温··········································································································2分(2)6························································································································3分(3)39.5,36.8············································································································5分(4)37.5·····················································································································6分25.(本题6分)解:原式=4x2+12xy+9y2﹣(4x2﹣y2)···················································································2分=4x2+12xy+9y2﹣4x2+y2=12xy+10y2··················································································4分当x=1,y=﹣1时,原式=﹣12+10=﹣2·····································································································6分26.(本题6分)解:∵AD是等边△ABC的中线,∴∠BAC =60°,AD平分∠BAC·····················································································2分∴∠CAD=1 2∠BAC=30°································································································3分∵AD=AE,∴∠ADE=∠AED·······································································································5分∴∠AED=75°·············································································································6分27.(本题8分)每空1分答:=解:∠3,∠C,∠1,∠2,等式性质,∠E=∠C,AAS28.(本题8分)解:选第2种猜数方法··································································································1分理由:P(是奇数)=0.5,P(是偶数)=0.5;P(是3的倍数)=0.3,P(不是3的倍数)=0.7;P(是大于4的数)=0.6,P(不是大于4的数)=0.4·········································································7分∵P(不是3的倍数)最大,∴选第2种猜数方法,并猜转盘转得的结果不是3的倍数······················································8分29.(本题10分)(1)证明:∵∠BAC =∠DAE ,∴∠BAC +∠CAD =∠DAE +∠CAD , ∴∠BAD =∠CAE ·····························································································1分在△BAD 与△CAE 中,{AB =AC∠BAD =∠CAE AD =AE···························································································3分 ∴△BAD ≌△CAE(SAS )···················································································4分 (2)答:=,⊥············································································································6分解:由(1)知,△BAD ≌△CAE ,∴∠ABD =∠ACE ,BD =CE ··············································································7分∵∠BAC =90°, ∴∠CBF +∠BCF =∠ABC +∠ACB =90°································································9分∴∠BFC =90°·······························································································10分 30.(本题12分) 解:(1)100°···················································································································2分 (2)∵∠1=13∠ADC ,∴令∠1=a ,则∠ADC =3a ························································································3分∵PQ ∥CN ,∴∠ADC =∠BAD =3a ∵AD 平分∠BAC , ∴∠CAD =∠ADC =∠BAD =3a ················································································4分∵AF 平分∠BAD , ∴∠BAD =2∠EAF . ∴∠EAF =1.5a∴∠GAF =∠1+∠EAF =2.5a∴65∠GAF =3a ······································································································5分∵∠2+65∠GAF =180°,∴∠2+3a=180°.∴∠2+∠CAD=180°.∵∠2+∠AEB=180°,∴∠CAD=∠AEB·································································································6分∴AC∥BE············································································································7分(3)t的值为2s或11s或12.5s或17s或21.5s···································································12分。
人教版七年级上册数学第一章有理数应用题专项训练(word版含答案)

人教版七年级上册数学第一章有理数应用题专项训练1.某出租车沿某南北方向的公路上载客,约定前北为正,向南为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,﹣3,+4,﹣8,+13,﹣2,+12,+8.(1)问收工时距A地多远?(2)若每千米路程耗油0.15升,问从A地出发到收工共耗油多少升?2.某自行车厂计划平均每天生产200辆,但是由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知该厂星期三生产自行车多少辆?(2)产量最多的一天比产量最少的一天多生产自行车多少辆?3.出租车一天下午以家为出发地在东西方向营运,向东为正方向,向西为负方向,行车里程(单位:km)依先后载客次序记录如下:+8,﹣9,﹣7,+6,﹣3,﹣14,+5,+12(1)该出租车师傅将最后一名乘客送达到目的地,出租车离家有多远?(2)该出租车师傅下午离家最远有多少千米?(3)若汽车耗油量为0.2升/千米,这天下午接送乘客,出租车共耗油多少升?(4)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米啊1.2元,问这天下午该出租车师傅的营业额是多少元?4.哈市出租车司机李师傅某天的营运全都是在一条东西方向的大街上运行的,若规定从出发点向东方向为正,向西方向为负,他这天走的里程如下:(单位:千米)-3,+4,-12,-5,+6,-8,-7,+9,-10,+11(1)李师傅第四次运营后的位置在出发点的哪个方向?多少千米处?(2)若每千米耗油0.04升,则这天营运耗油多少升?5.某服装厂一周计划生产2800套运动服,计划平均每天生产400套,超出计划产量的记为“+”,不足计划产量的记为“-”,下表记录的是该厂某一周的生产情况:表中星期六的记录情况被墨水涂污了.(1)根据记录可知,星期六工厂生产多少套运动服?(2)产量最多的一天比产量最少的一天多生产多少套运动服?(3)该服装厂工资结算方式如下:①每人每天基本工资200元.①以每天完成400套为标准,若当天超额完成任务,超额部分每套奖励10元;若当天未完成生产任务,则少生产一套扣掉15元.该服装厂采用流水作业方式生产,当天所得奖金总额按人均分配,若该工厂这一周每天都有20名工人生产,则这一周服装厂实际需要付给该工厂每名工人多少元?6.某市股民小张上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元):(1)本周三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)若小张在本周四交易,问他的盈利情况如何?(交易时的手续费忽略不计)7.据新闻报道,渝万高铁于即将通车,为了保证安全,某动车检修小组沿铁路检修,约定前进为正,后退为负,某天自甲地出发到收工时所走路线(单位:km)为+10,-3,+4,-2,-9,+13,-2,+12,+8,+5;问:(1)检修小组第几次回到甲地?(2)收工时距甲地多远?(3)若每千米耗电25度,则从甲地出发到收工共耗电多少度.8.某水果店以每箱40元的价格从水果批发市场购进8箱苹果.若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:-1,1,0,-2,-1,-1,-2,1.(1)这8箱苹果的总重量是多少千克?(2)如果把这些苹果全部以零售的形式卖掉,水果店将获利50%,那么苹果零售价应定为每千克多少元?(3)若第一天水果店以(2)中的单价售出了全部苹果的60%,第二天因害怕剩余的苹果腐烂变质,决定降价把剩余的苹果按原零售价的七五折销售完.请计算该水果店在销售这批苹果过程中盈利多少元?9.本市图书馆上周借书记录如下(超过100册记为正,不超过100册记为负):(1)上周星期三比星期四多借出多少册书?(2)上周平均每天借出多少册书?10.一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东为正,向西为负,行车里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)将最后一名乘客送到目的地,出租车离该商场有多远?(2)按出租车每行驶100km油耗为10L,1L汽油的售价为7.2元,计算出租车在该上午消耗汽油的金额是多少元?(3)如果不计其它成本,只计消耗的汽油费用,每千米收费3元,计算这名司机挣(或赔)了多少元?11.2020年新冠肺炎疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个.由于种种原因,实际每天生产量与计划量相比有出入.下表是工人小王某周的生产情况(超产记为正,减产记为负).(1)根据记录的数据可知,小王星期五生产口罩______个;(2)根据表格记录的数据可知,小王本周实际生产口罩数量为______个;(3)若该厂实行每周计件工资制,每生产一个口罩可得0.8元,若超额完成周计划工作量,则超过部分每个另外奖励0.2元;若完不成每周的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?(4)若该厂实行每日计件工资制,每生产一个口罩可得0.8元.若超额完成每日计划工作量,则超过部分每个另外奖励0.2元;若完不成每天的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?12.有一批试剂,每瓶标准剂量为250毫升,现抽取8瓶样品进行检测,超过或不足标准剂量的部分分别用正、负数表示,记录结果如下(单位:毫升):+6,-2,+3,+10,-6,+5,-15,-8.(1)这8瓶样品试剂的总剂量是多少?(2)若增加或者减少每瓶试剂剂量的人工费为10元/毫升,求将这8瓶样品试剂再加工制作成标准剂量需要多少人工费?13.有6筐白菜,以每筐25千克为标准质量,超过的千克数记作正数,不足的千克数记作负数,称量后的记录如图.请回答下列问题:(1)这6筐白菜中最接近标准质量的这筐白菜为____________千克.(2)与标准质量相比,这6筐白菜总计超过或不足多少千克?14.某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:(1)求n的值及这20箱樱桃的总重量;(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.15.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售.刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________斤;(2)本周实际销售总量是否达到了计划数量?试说明理由;(3)若冬枣每斤按8元出售,每斤冬枣需要小明支付的平均运费是3元,那么小明本周销售冬枣实际共得多少元?16.出租车司机小李某天下午的运营是在南北走向的大街进行的,假定向南为正,向北为负,他那天下午行驶里程(单位:km)如下:+15,-3,+14,-11,+10,+4,-26(1)小李在送第几位乘客时行驶的路程最远?(2)小李送完最后一位乘客时所处的地点,在他最初出发地的什么方向?距离出发地多远?(3)若汽车耗油量为0.1L/km,这天下午汽车一共耗油多少升?17.新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售前五天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况,如表所示:(1)这五天中赚钱最多的是第_____天,这天赚钱_____元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?18.某股民上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:(单位:元)(1)星期三收盘时每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期六才将股票全部卖出,请算算他本周的收益如何?19.某城市治安巡逻队员乘车沿东西方向的一条主干线进行巡逻.某天早上从A地出发,晚上最后到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣12,﹣4,+12,﹣5,﹣6(1)B地在A地何方,相距多少千米?(2)问巡逻队员在距A地最远时的最远距离是多少千米?(3)每千米耗油0.6升,每升4.5元,这天共耗油费用为多少元?20.某冷库一天的冷冻食品进出记录如下表(运进用正数表示,运出用负数表示);(1)这天冷库的冷冻食品的质量相比原来是增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨冷冻食品费用200元,运出每吨冷冻食品费用400元;方案二:不管运进还是运出每吨冷冻食品费用都是300元.从节约运费的角度考虑,选择哪一种方案比较合算?参考答案:1.(1)34千米(2)9升2.(1)192辆(2)25辆3.(1)在家的西方,离家有2km(2)19千米(3)12.8升(4)128元4.(1)西方,16 千米(2)3升5.(1)星期六生产了448套运动服(2)多生产56套运动服(3)需付给每名工人1435元6.(1)34.5元(2)35.5元,26元(3)盈利5000元7.(1)第五次回到了甲地(2)距离甲地36km(3)从甲地出发到收工共耗电1700度8.(1)这8箱苹果的总重量是75千克(2)苹果的零售价应定为每千克6.4元(3)该水果店在销售这批苹果过程中盈利112元9.(1)上周星期三比星期四多借出39册书(2)上周平均每天借出105册书10.(1)出租车在商场西面,距商场2km处(2)消耗汽油的金额是50.4元(3)这名司机挣了159.6元11.(1)291(2)2111(3)1691元(4)1689.85元12.(1)1993毫升;(2)550元13.(1)24.5(2)总计超过3千克14.(1)5n ,203千克;(2)1075元;(3)是盈利的,盈利466元.15.(1)29(2)达到了计划数量(3)3585元16.(1)小李在送最后一位乘客时行车里程最远;(2)在他最初出发地的正南方向,距离出发地3km;(3)这天下午汽车共耗油8.3升17.(1)4,96(2)360元18.(1)34.5元(2)35.5元;26元(3)赚889.5元19.(1)B地在A地东方,相距1千米处(2)18千米(3)197.1元20.(1)减少了,理由见解析(2)从节约运费的角度考虑,选择方案二比较合算。
1.10有理数的乘方(5大题型提分练)2024-2025学年七年级数学上册同步精品课堂「含答案」

第一章 有理数1.10 有理数的乘方(5大题型提分练)知识点01 有理数的乘方1.乘方的概念:一般地,n 个相同的因数a 相乘,记作n a ,读作a 的n 次方.求n 个相同因数的积的运算,叫做乘方.2.乘方的结果叫做幂(power );在n a 中,a 叫做底数(base number ),n 叫做指数(exponent ).题型一 有理数幂的概念理解1.35-的意义是( )A .5-乘以3B .35的相反数C .3个5-相乘D .3个5-相加2.下列说法正确的是( )A .82-的底数是2-B .52表示5个2相加C .3(3)-与33-意义相同D .323-的底数是23.计算232223333m n ´´´++++6447448L L 1442443个个=( )A .23nmB .23mn C .32m nD .23m n4.()()()()3333-´-´-´-可以表示为( )A .34-+B .()43´-C .()43-D .()()()()3333-+-+-+-5.33-的底数是.6.底数是35,指数是2的幂写成 .7.在432æö-ç÷èø中底数是 ,指数是 .8.在()52-中,底数是 ,指数是 ,幂是 .9.把下列各式写成乘方的形式,并指出底数和指数各是什么.(1)()()()()()3.14 3.14 3.14 3.14 3.14----´´´´-;(2)222222555555´´´´´10.仔细观察下列算式:222(24)242424´=´´´=´,222(37)373737´=´´´=´.(1)()2ab = ;(2)()3ab = ;(3)()nab = .题型二 有理数的乘方运算11.计算:232æö--=ç÷èø( )A .92B .92-C .94D .94-12.若一个数的平方为64,则这个数是( )A .8B .−8C .32D .8±13.计算:()()2013212-´-正确的结果为( )A .8052B .8052-C .4D .4-14.设n 是一个正整数,则10n 是( )A .10个n 相乘所得的积B .一个()1n -位整数C .一个n 位整数D .一个1后面有n 个0的数15.()()320.254-´-=.16.计算:323æö=ç÷èø;323öæ-=ç÷èø;323= .17.已知a ,b 满足3264a b ==,那么a b += .18.已知n 为正整数,计算()()22111nn +---的结果是 ;19.计算:23493( 3.2)0.434æö-+´--¸ç÷èø.20.我们已经学习过“乘方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果b a N =(0,1,0)a a N >¹>),则b 叫做以a 为底N 的对数,记作log Na b =,例如:因为35125=,所以125log53=;因为211121=,所以121log112=.(1)填空:6log6=_______,8log 2=______;(2)如果()2log 24m -=,求m 的值.题型三 有理数乘方逆运算21.20202021(0.125)8-´等于( )A .8-B .8C .0.125D .0.125-22.已知28.6274.3044=,若20.743044x =,则x 的值( )A .86.2B .0.862C .0.862±D .86.2±23.()2222636,23234936´´´====,由此你能算出3363212æö=ç÷èø´( )A .6B .8C .18D .十分麻烦24.若x 、y 、z 是三个连续的正整数,若x 2=44944,z 2=45796,则y 2=( )A .45 369B .45 371C .45 465D .46 48925.已知 225a =,那么=a .26.已知29x =,则x = ,若()334x =-,x = .27.规定两数a ,b 之间的一种运算,记作:(),a b ,若c a b =,则(),a b c =,我们叫(),a b 为“雅对”.根据上述规定,()2,4-=.28.一般地,n 个相同因数a 相乘:n a a a a a ×××14424L 43个记为n a .如328=,此时3叫做以2为底的8的对数,记做2log 8(即2log 83=).根据上述定义,计算2231(log 16)log 813-的值为 .29.已知||5a =,29b =,且0ab <,求a b -的值.30.解答题;(1)231134624æöæö-+¸-ç÷ç÷èøèø.(2)已知229x y ==,,且x y >,求 x y +的值题型四 乘方运算的符号规律31.在计算3333(2)(2)(2)(2)-+-+-+-时,结果可表示为( )A .52-B .62-C .42-D .24-32.有下列各数:①21-;②2(1)--;③31-;④4(1)--,其中结果等于1-的是( )A .①②③B .①②④C .②③④D .①②③④33.当0a <时,下列式子:①20230a <;②2023a =2023()a --;③20242024()a a =-;④2023a =2023a -中,成立的有( )A .①②③B .②③④C .①②④D .①③④34.通过计算器计算发现:211121=,211112321=,211111234321=……,按照以上的规律计算21111111的结果是( )A .123454321B .1234564321C .1234567654321D .12345678765432135.4()m m --=.36.若│x -1│+(y +2)2=0,则x y = 37.计算:()20201-的结果为.38.若()2|1|20x y -++=,则()2021x y += .39.求11(1)(1)(1)44n n n n ++--+--的值(n 为正整数)40.判断下列各式计算结果的正负:(1)12(6)-;(2)9(0.0033)-;(3)85-;(4)1125æö-ç÷èø.题型五 乘方的应用41.一张纸厚度为0.2mm ,假设可以无限对折,那么对折10次后,纸的高度为( )A .102.4mmB .204.8mmC .2mmD .2cm42.某种细菌每分钟分裂成3个,一个细菌经过3分钟分裂,再继续分裂t 分钟后共分裂成( )个.A .9tB .9tC .33tD .33t+43.一张纸的厚度大约为0.09mm ,如图,将其对折、压平,称作第1次操作,再将其对折、压平,称作第2次操作…假设这张纸足够大,每一次也能压得足够平整,如此重复,则第10次操作后的厚度最接近于( )A .数学课本的厚度B .姚明的身高C .一层楼房的高度D .一支中性笔的长度44.小明的Word 文档中有一个如图1的实验中学Logo ,他想在这个Word 文档中用1000个这种Logo ,设计出一幅如图2样式的图案.他使用“复制-粘贴”(用鼠标选中Logo ,右键点击“复制”,然后在本Word 文档中“粘贴” )的方式完成,则他需要使用“复制-粘贴”的次数至少为( )A .9次B .10次C .11次D .12次45.计算:2023202422-= .46.一个正方体的棱长扩大3倍,则它的体积扩大 倍.47.长方体的长是4210´厘米,宽是31.510´厘米,高是3310´厘米,那么它的体积是 立方厘米.48.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再拉伸,反复几次,如草图所示.这样捏合到第8次后可拉出根细面条.49.某企业今年的利润300万元,预计利润的年平均增长率为10%,则后年该企业的利润是多少万元?50.如图是某种细胞分裂示意图,这种细胞经过1次分裂便由1个分裂成2个.根据此规律可得:(1)这样的一个细胞经过2次分裂后可分裂成 个细胞;(2)这样的一个细胞经过5次分裂后可分裂成 个细胞;(3)这样的一个细胞经过n (n 为正整数)次分裂后可分裂成 个细胞.51.4(3)-表示( )A .3-与4的积B .4个3-的积C .4个3-的和D .3个4-的积52.如果等式2(23)1x x +-=,则等式成立的x 的值的个数为( )A .1个B .2个C .3个D .4个53.定义运算:若m a b =,则log (0)a b m a =>,例如328=,则2log 83=.运用以上定义,计算:53log 125log 81-=( )A .1-B .2C .1D .454.观察下列三组数的运算:3(2)8-=-,382-=-;3(3)27-=-,3327-=-;3(4)64-=-,3446-=-.联系这些具体数的乘方,可以发现规律.下列用字母a 表示的式子:①当a<0时,33()a a =-;②当0a >时,33()a a -=-.其中表示的规律正确的是( )A .①B .②C .①、②都正确D .①、②都不正确55.有一种细菌,经过1分钟分裂成2个,再过1分钟,又发生了分裂,变成4个.把这样一个细菌放在瓶子里繁殖,直至瓶子被细菌充满为止,用了1小时,如果开始时,就在瓶子里放入这样的细菌16个,那么细菌充满瓶子所需要的时间为( )A .44分钟B .56分钟C .半小时D .1小时56.215æö-ç÷èø的底数是.57.已知216x =,3y =,0xy <,那么x y -= .58.若a 、b 、c 、d 是互不相等的整数()a b c d <<<,且121abcd =,则c d a b += .59.《庄子》中记载:“一尺之捶,日取其半,万世不竭.”这句话的意思是一尺长的木棍,每天截取它的一半,永远也截不完.若按此方式截一根长为64米的木棍,第5天截取后木棍剩余的长度是 米.60.如果22(3)0a b ++-=,求b a 的值.61.阅读下列各式:222()a b a b ×=×,333()a b a b ×=×,444()a b a b ×=×,555()a b a b ××=…解答下列问题:(1)猜想:()n a b ×=_____.(2)计算:()2022202120000.12524-´´.62.(1)计算下面两组算式:①(3×5)2与32×52 ;②[(-2)×3]2与(-2)2×32 ;(2)根据以上计算结果猜想: (ab )3= (直接写出结果)(3)猜想与验证:当n 为正整数时,(ab )n 等于什么?请你利用乘方的意义说明理由.63.在计算1+2+22+23+…+299+2100时,可以先设S =1+2+22+23+…+299+2100,然后在等式两边同乘以2,则有2S =2+22+23+…+299+2100+2101,最后两式相减可得:2S -S =(2+22+23+…+299+2100+2101)-(1+2+22+23+…+299+2100)=2101-1,即得S =2101-1.即1+2+22+23+…+299+2100=2101-1.根据以上方法,计算:1+(12)+(12)2+(12)3+…+(12)2019+(12)2020.64.如果10b n =,那么b 为n 的“劳格数”,记为()b d n =.由定义可知:10b n =与()b d n =表示b 、n 两个量之间的同一关系.(1)根据“劳格数”的定义,填空:(10)d = ,2(10)d -=______;(2)“劳格数”有如下运算性质:若m 、n 为正数,则()()()d mn d m d n =+,()()()md d m d n n =-;根据运算性质,填空:3()()d a d a =________.(a 为正数)(3)若2d ()0.3010=,分别计算4d ();5d ().1.B【分析】本题考查了有理数的乘方和有理数的乘法,相反数,解题的关键是掌握有理数的乘方和有理数的乘法,相反数的定义.利用有理数的乘方,有理数的乘法,相反数的定义判断.【详解】解:35-的意义是35的相反数,只有选项B 符合题意,故选:B .2.D【分析】本题主要考查了有理数的乘方.根据乘方的意义,进行判断即可.【详解】解:A 、82-Q 的底数是2,∴此选项的说法错误,故不符合题意;B 、52Q 表示5个2相乘,∴此选项的说法错误,故不符合题意;C 、3(3)-Q 表示3个(3)-相乘,33-表示3个3相乘的相反数,∴它们表示的意义不同,故不符合题意;D 、Q 323-的底数是2,∴此选项的说法正确,故此选项符合题意,故选:D .3.B【分析】本题考查了有理数的乘方,掌握求n 个相同因数积的运算,叫做乘方是解题的关键.根据幂的意义和乘法是相同加数的和的简便运算即可得出答案.【详解】解:原式2=3mn ,故选:B 4.C【分析】本题考查了幂的意义,根据题意表示成幂的形式,即可求解.【详解】解:()()()()3333-´-´-´-可以表示为()43-,故选:C .5.3【分析】本题考查了有理数乘方的定义“一般地,n 个相同的因数a 相乘,记作n a ,这种运算叫做乘方,其中,a 叫底数,n 叫指数”,熟记有理数乘方的定义是解题关键.根据有理数的乘方的定义即可解答.【详解】解:根据乘方的定义,33-的底数是3.故答案为:3.6.235æöç÷èø【分析】本题考查了幂的概念,根据幂的书写规则即可求解.注意分数为底时,需要把底数加括号.【详解】解:底数为35,指数为2,写成235æöç÷èø,故答案为:235æöç÷èø.7.32- 4【分析】本题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.根据幂的定义中指数与底数的说明解答本题.【详解】解:在432æö-ç÷èø中底数是32-,指数是4,故答案为:32-,48. 2- 5()52-【分析】本题考查有理数的乘方:求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,记作n a ,其中,a 叫做底数,n 叫做指数.根据有理数乘方的意义进行判定即可.【详解】解:在()52-中,底数是2-,指数是5,幂是()52-.故答案为:2-,5,()52-.9.(1)()53.14-,底数为 3.14-,指数为5(2)625æöç÷èø,底数为25,指数为6【分析】本题考查乘方定义,乘方是一种特殊的乘法运算,幂是乘方的结果,当底数是负数或分数时,要先用括号将底数括起来再写指数.首先化成幂的形式,再指出底数和指数,熟记乘方定义是解决问题的关键.【详解】(1)解:()()()()()()53.14 3.14 3.14 3.14 3.14 3.14----=-´´´´-,\底数为 3.14-,指数为5;(2)解:622222255555255´´æöç÷è´´ø´=,\底数为25,指数为6.10.(1)22a b (2)33a b (3)n na b 【分析】(1)根据有理数的乘方的意义,有理数的乘法运算进行计算即可求解;(2)根据有理数的乘方的意义,有理数的乘法运算进行计算即可求解;(3)根据(1)(2)得出结论,即可求解.【详解】(1)()2ab =22ab ab a b ´=,故答案为:22a b .(2)()3ab =33ab ab ab a b ´´=,故答案为:33a b .(3)()n n n n ab n a n bab ab ab ab a a a b b b a b =´´×××´=´´×××´´´´×××´=14424431424314243个个个故答案为:n n a b .【点睛】本题考查了有理数乘方的意义,熟练掌握幂的概念是解题的关键.11.D【分析】本题主要考查有理数的乘方计算,根据有理数的乘方运算法则计算即可得出答案,熟练掌握有理数的乘方计算的运算法则是解此题的关键.【详解】解:29432æöç÷èø=---.故选:D .12.D【分析】本题考查了有理数的乘方.根据有理数的乘方,即可求解.【详解】解:∵()2864±=,∴若一个数的平方等于64,则这个数是8±,故选:D .13.D【分析】本题主要考查有理数的乘方以及有理数的乘法,熟练掌握有理数的乘方是解决本题的关键.根据有理数的乘方以及有理数的乘法解决本题.【详解】解:()201321(2)-´-14=-´4=-.故选:D .14.D【分析】本题考查了有理数乘方的定义,根据乘方的定义逐项判断即可得出答案,解决本题的关键是一定要完全理解n a 表示n 个a 相乘.【详解】解:n 是一个正整数,则10n 表示的是n 个10相乘所得的结果,它是一个()1n +位的整数,故A 、B 、C 错误,D 正确,故选:D .15.14-##0.25-【分析】本题考查了含乘方的有理数运算,分别计算乘方再算乘法即可.【详解】解:()()()33221110.2544164644æö-´-=-´-=-´=-ç÷èø,故答案为:14-.16. 827 827- 83##223【分析】本题考查有理数的乘方运算,熟练掌握有理数的乘方运算法则是解决问题的关键.【详解】解:3332283327æö==ç÷èø;()33328272133æöæö-=-´÷=÷øèø-ççè;32833=;故答案为:827;827-;83或223.17.10【分析】本题考查有理数的乘方等知识.利用有理数的乘方求出a ,b 的值,再代入计算即可求解.【详解】解:3264a b ==Q ,6a \=,4b =,10a b \+=.故答案为:10.18.2【分析】本题考查有理数的乘方,根据有理数乘方运算法则进行计算即可.【详解】解:()()22111n n +---()11=--11=+2=,故答案为:2.19.15-【分析】此题考查了有理数的运算,原式先计算乘方运算,再计算乘除运算,最后加减运算即可.【详解】解:23493( 3.2)0.434æö-+´--¸ç÷èø16927894=-+´+2748=-++15=-;20.(1)1,3(2)18m =【分析】本题考查了新定义,有理数的乘方;(1)根据有理数的乘方和对数的定义求解即可;(2)根据4216=结合对数的定义可得216m -=,进而可求m 的值.【详解】(1)解:∵166=,328=,∴6log 61=,8log 23=,故答案为:1,3;(2)∵()2log 24m -=,而4216=,∴216m -=,∴18m =.21.B【分析】根据有理数的乘方进行计算即可.【详解】解:20202021(0.125)8-´202020201888æö=´´ç÷èø8=.故选B【点睛】本题考查了有理数的乘方运算,掌握有理数的乘方运算是解题的关键.22.C【分析】根据两式结果相差2位小数点,利用乘方的意义即可求出x 的值.【详解】解:∵28.6273.96=,20.7396x =,∴220.862x =,则0.862x =±.故选C .【点睛】本题考查了有理数的乘方,熟练掌握乘方的意义是解题的关键.23.B 【分析】先把原式变形为333331222æöç÷ø´è´,从而得到3331222æöç÷ø´´è,即可求解.【详解】解:3363122æöç÷èø´333331222æö=ç´÷ø´è333331222æö=ç÷ø´è´3331222æö=ç÷ø´´è33321=´=1×8=8故选:B .【点睛】本题主要考查了有理数乘方运算,掌握有理数乘方的意义是解题的关键.24.A【分析】根据有理数的乘方运算求出x 、y 即可解答.【详解】解:∵x 、y 、z 是三个连续的正整数,∴y =x +1,∵x 2=44944=2122,∴x =212,∴y =213,∴y 2=2132=45 369,故选:A .【点睛】本题考查有理数的乘方,熟练掌握有理数的乘方运算是解答的关键.25.5±【分析】本题考查了有理数的乘方,熟练掌握乘方的意义是解题的关键.【详解】解:∵225a =,∴5a =±.故答案为:5±.26. 3± 4-【分析】本题主要考查了有理数的乘方运算,解题的关键是熟练掌握有理数乘方运算法则,准确计算.【详解】解:∵()239±=,∴3x =±,∵()334x =-,∴4x =-.故答案为:3±;4-.27.2【分析】本题主要考查了有理数的乘方运算,理解新运算是解题的关键.根据()224-=,再由新运算,即可求解.【详解】解:∵()224-=,∴()2,42-=.故答案为:2.28.2143##443【分析】本题主要考查定义新运算,有理数的乘方运算,根据对数的定义计算即可,读懂题目中定义的运算法则是解题的关键.【详解】解:2231(log 16)log 813-21443=-´,4163=-,2143=,故答案为:2143.29.8或-8【分析】先根据绝对值的性质求出a 的值,再根据乘方的运算法则求出b 的值,进而相减可得出结论.【详解】解:∵|a |=5,b 2=9,∴a =±5,b =±3,∵ab <0,∴当a =5时,b =-3,∴a -b =5+3=8;当a =-5时,b =3,∴a -b =-5-3=-8.【点睛】本题考查了绝对值的意义,有理数的乘法和乘方,熟知有理数乘方的法则是解答此题的关键.30.(1)2-(2)1-或5-【分析】(1)先将除法转化为乘法,然后根据乘法分配律进行计算;(2)根据绝对值的意义,以及乘方的意义,分别求得,x y 的值,代入即可求解.【详解】(1)解:231134624æöæö-+¸-ç÷ç÷èøèø231()(24)346=-+´-16184=-+-2=-(2)因为2x =, 所以2x =或2x =-因为29y =,所以3y =或=3y -又因为x y >,所以当2x =时,=3y -,当2x =-时,=3y -故()23x y +=+-或()23x y +=-+-所以1x y +=-或5x y +=-【点睛】本题考查了有理数的混合运算,绝对值的意义,乘方的逆运算,正确的计算是解题的关键.31.A【分析】根据含有乘方的有理数的运算法则即可求解.【详解】解:33332353(2)(2)(2)(2)(2)4222=-´=-+-+--´=-+-,故选:A .【点睛】本题主要考查乘方的意义,乘方的符号规律,掌握以上知识的是解题的关键.32.D【分析】根据有理数的乘方,以及相反数的求法,逐项判定即可.【详解】解:①211-=-,②2(1)1--=-,③311-=-,④4(1)1--=-,∴其中结果等于1-的是:①②③④.故选:D .【点睛】此题主要考查了有理数的乘方,以及相反数的求法,求一个数的相反数的方法就是在这个数的前边添加“-”.33.A【分析】根据负数的奇次幂是负数,偶次幂是正数即可解答.【详解】解:当0a <时,2023a 是负数,故①正确;20232023()a a =--,()20232023a a =--故②正确,④错误;20242024()a a =-,故③正确;综上所述,①②③正确.故选:A .【点睛】本题主要考查了有理数乘方的符号规律,掌握有理数乘方的符号规律:一个负数的奇次幂是负数,一个负数的偶次幂是正数.34.C【分析】根据已知条件可以得到这样的规律:对于由1组成的数字,当平方后最中间的数字是几,这个数字就是由几个1组成.【详解】解:根据已知条件可以得到这样的规律: 11的平方是121,中间的数字是2,111的平方是12321,中间的数字是3,…… 由此可以推断出:对于由1组成的数字,当平方后最中间的数字是几,这个数字就是由几个1组成;所以21111111的结果是1234567654321,故选C .【点睛】本题主要考查了观察式子找规律,找到对于由1组成的数字,当平方后最中间的数字是几,这个数字就是由几个1组成的规律是解题的关键.35.4mm --【分析】根据乘方去括号即可.【详解】解:44)(m m m m -=---.故答案为:4m m --.【点睛】本题主要考查了乘方,注意4()m -和4()m -的区别.36.2-【分析】1x -与22(y )+都是非负数,非负数之和为零,则每个非负数都等于0,可解出x 、y 的值代入即可.【详解】10x -³Q ,2(2)0y +≥,21(2)0x y \-++=,则有10x -=,20y +=,解得:1x =,=2y -,1(2)2x y \=-=-.故答案为:2-.【点睛】本题考查非负数的性质,几个非负数之和等于零,则每一个非负数都为0.37.1【分析】根据1-的偶次幂等于1,即可求得结果.【详解】解:()202011-=.故答案为:1.【点睛】此题考查了有理数的乘方,掌握有理数乘方的定义及计算法则是解题的关键.38.1-【分析】根据绝对值和平方式的非负性求出x 和y 的值,再根据有理数的乘方运算得出结果.【详解】解:∵10x -³,()220y +³,且()2120x y -++=,∴10x -=,20y +=,即1x =,=2y -,∴()()20212021121x y +=-=-.故答案是:1-.【点睛】本题考查绝对值和平方式的非负性,以及有理数的乘方运算,解题的关键是掌握这些知识点进行求解.39.n 为偶数时原式=12 ,n 为奇数是原式=0【详解】试题分析:分n 为奇数与偶数两种情况,求出原式的值即可.试题解析:当n 为偶数时,原式=11111104422+--=-=;当n 为奇数时,原式=111100044--+-=-=.40.(1)正(2)负(3)负(4)负【分析】根据有理数乘方的符号规律解答即可.【详解】(1)解: ∵12(6)-的指数是12,为偶数,负数的偶次幂是正数,∴12(6)-的结果为正;(2)解:∵9(0.0033)-的指数是9,为奇数,负数的奇次幂是负数,∴9(0.0033)-的结果为负;(3)解:∵85-表示的是85的相反数,正数的任何次幂都是正数,85的结果为正,所以85-的结果为负;(4)解:∵1125æö-ç÷èø的指数是11,为奇数,负数的奇次幂是负数,∴1125æö-ç÷èø的结果为负.【点睛】本题主要考查了有理数乘方的符号规律,掌握负数的偶次幂为正、奇次幂为负成为解答本题的关键.41.B【分析】此题考查了有理数的乘方,根据题意列出算式,计算即可得到结果.【详解】解:根据题意得:100.22204.8mm ´=.故选:B .42.D【分析】本题考查了乘方的意义.掌握乘方的意义是解决本题的关键.根据每分钟分裂成3个,共分裂3+t 分钟,根据乘方的意义得结论.【详解】解:根据题意得:某种细菌经过3分钟分裂,再继续分裂t 分钟后共分裂成33t +个,故选:D .43.D【分析】本题考查数字变化的规律,依次求出每次操作后纸张的厚度,发现规律即可解决问题.【详解】解:由题知,第1次操作后的厚度为:0.092mm ´;第2次操作后的厚度为:20.092mm ´;第3次操作后的厚度为:30.092mm ´;¼,所以第n 次操作后的厚度为:0.092n mm ´;当10n =时,100.0920.0920.09102492.16n mm ´=´=´=,所以第10次操作后的厚度最接近于一支中性笔的长度.故选:D .44.B【分析】本题考查了有理数的乘方,理解题意是解题的关键.根据复制粘贴呈2倍的速度增加,所以求2的幂运算.【详解】解:10210241000=>Q ,925121000=<,故选:B45.20232-【分析】本题考查有理数的混合运算,先提公因数,再计算括号内的式子,然后算乘法即可.【详解】解:2023202422-20232(12)=´-20232(1)=´-20232=-,故答案为:20232-.46.27【分析】此题主要考查正方体体积公式,根据正方体的体积公式:3V a =,如果正方体的棱长扩大到原来的3倍,那么正方体的体积就扩大到原来的27倍.据此解答.【详解】解:3333327´´==答:正方体的棱长扩大3倍,体积扩大27倍.故答案为:27.47.10910´【分析】本题主要考查了有理数乘方的应用,根据长方体体积计算公式列式计算即可.【详解】解:31043210 1.510310910´´´=´´´立方厘米,∴它的体积为10910´立方厘米,故答案为:10910´.48.256【分析】此题考查了有理数乘方的应用,熟练掌握乘方的意义是解本题的关键.根据题意列出算式,计算即可得到结果.【详解】解:∵第1次后可拉出2根,第2次后可拉出2222´=根,第3次后可拉出32222´´=根,…∴第8次后可拉出82256=根,,故答案为:256.49.后年该企业的利润是363万元.【分析】此题主要考查了有理数乘方的实际应用.根据今年的利润300万元,年平均增长率为10%,所以明年的利润为()300110%+,则后年该公司应缴税为()2300110%+,据此计算即可求解.【详解】解:后年该公司应缴税为()2300110%363+=(万元).答:后年该企业的利润是363万元.50.(1)4(2)32(3)2n【分析】本题考查了有理数的乘方的应用;(1)根据题意,一次分裂成2个,则2次分裂成4个.(2)根据题意,5次分裂成52个;(3)根据规律可得n 次后分裂为2n 个【详解】(1)解:依题意,一次分裂成2个,则2次分裂成4个;故答案为:4.(2)解:依题意,5次分裂成5232=个;故答案为:32.(3)解:根据规律可得n 次后分裂为2n 个故答案为:2n .51.B【分析】根据有理数幂的概念理解逐项判断即可.【详解】解:根据有理数幂的概念可得,4(3)-表示4个3-的积.故选:B .【点睛】本题考查了有理数幂的概念理解,解决此题的关键是熟悉有理数幂的概念.52.B【分析】当20x +=时,2x =-,此时2370x -=-¹,成立;当231x -=时,2x =,此时24x +=,成立;当231x -=-时,1x =,此时23x +=,不成立;本题考查了幂的分类计算,分类是解题的关键.【详解】当20x +=时,2x =-,此时2370x -=-¹,成立;当231x -=时,2x =,此时24x +=,成立;当231x -=-时,1x =,此时23x +=,不成立;故选B .53.A【分析】先根据乘方确定345125381==、,根据新定义求出53log 1253log 814==、,然后代入计算即可.【详解】解:∵345125381==、,∴53log 1253log 814==、∴53log 125log 81-=,34=-,1=-.故选:A .【点睛】本题考查新定义对数函数运算、乘方的逆运算等知识点,仔细阅读题目中的定义,找出新定义运算的实质是乘方的逆运算是解答本题的关键.54.B【分析】根据三组数的运算的规律逐个判断即可得.【详解】解:由三组数的运算得:[]333222))8((-=-==----,[]3333(3)(3)27-=--=--=-,[]3334(4)(4)64-=--=--=-,归纳类推得:当a<0时,33()a a =--,式子①错误;由三组数的运算得:3328(2)-=-=-,33327(3)--=-=,33464(4)--=-=,归纳类推得:当0a >时,33()a a -=-,式子②正确;故选:B .【点睛】本题考查了有理数乘方的应用,正确归纳类推出一般规律是解题关键.55.B【分析】本题考查了同底数幂的乘法的应用,列出等式1622x a ´=是解此题的关键.先计算出装满一瓶的细菌2n ,个,设将16个这种细菌放入同样的培养瓶中经过x 分钟就能分裂至满一瓶,则1622x n ´=,再根据1小时60=分,求解即可.【详解】解:一个细菌1分钟分裂成2个,2分钟分裂成4个,n 分钟分裂成2n 个,一个细菌经过1小时的繁殖能使瓶子充满,设将16个这种细菌放入同样的培养瓶中经过x 分钟就能分裂至满一瓶.1622x n \´=,422x n +\=,4x n\+=1Q 小时60=分,60456x \=-=,故选:B56.15【分析】根据有理数的乘方的有关定义即可解答.【详解】解:215æö-ç÷èø的底数为15.故答案为:15.【点睛】本题主要考查了有理数的乘方,熟练掌握乘方的定义是解本题的关键.求n 个相同,因数的积的运算叫乘方,乘方的结果叫做幂,在a 的n 次方中。
人教版数学七年级上册 代数式综合测试卷(word含答案)

一、初一数学代数式解答题压轴题精选(难)1.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。
【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.2.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.①这10枝钢笔的最高的售价和最低的售价各是几元?②当小亮卖完钢笔后是盈还是亏?【答案】(1)解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x∵|x|=1,∴x=±1∴当x=1时,x2﹣x=0;当x=﹣1时,x2﹣x=2(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣330×10+(﹣3)=897答:这10箱苹果的总质量是897千克.(3)解:①最高售价为6+9=15元最低售价为6﹣2.1=3.9元②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50=16.3元答:小亮卖完钢笔后盈利16.3元.【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答案;(2)首先列出加法算式,算出10箱苹果,超过的千克数或不足的千克数,然后用10乘以标准质量再加上超过或不足的千克数即可算出答案;(3)用6元的基准价加上超过基准价的最大值即可得出这10枝钢笔的最高的售价,用6元的基准价加上超过基准价的最小值即可得出这10枝钢笔的最低的售价,用这十支钢笔的总售价减去进价和为正数则小亮赚钱,和为负数则小亮亏钱。
七年级上册数学 压轴解答题试题(WORD版含答案)

七年级上册数学压轴解答题试题(WORD版含答案)一、压轴题1.已知M,N两点在数轴上所表示的数分别为m,n,且m,n满足:|m﹣12|+(n+3)2=0(1)则m=,n=;(2)①情境:有一个玩具火车AB如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A移动到点B时,点B所对应的数为m,当点B移动到点A时,点A所对应的数为n.则玩具火车的长为个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB以每秒2个单位长度的速度向右运动,同时点P和点Q从N、M出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB运动后对应的位置为A′B′.是否存在常数k使得3PQ﹣kB′A的值与它们的运动时间无关?若存在,请求出k和这个定值;若不存在,请说明理由.2.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
如图的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1)图1是显示部分代数式的“等和格”,可得a=_______(含b的代数式表示);(2)图2是显示部分代数式的“等和格”,可得a=__________,b=__________;(3)图3是显示部分代数式的“等和格”,求b的值。
(写出具体求解过程)3.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=|x1-x2|.根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______; (2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______. 4.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.5.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式: ①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______; (2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 6.对于数轴上的,,A B C 三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”. 例如数轴上点,,A B C 所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点,A C 的“倍联点”.若数轴上点M 表示3-,点N 表示6,回答下列问题:(1)数轴上点123,,D D D 分別对应0,3. 5和11,则点_________是点,M N 的“倍联点”,点N 是________这两点的“倍联点”;(2)已知动点P 在点N 的右侧,若点N 是点,P M 的倍联点,求此时点P 表示的数.7.已知:∠AOB =140°,OC ,OM ,ON 是∠AOB 内的射线.(1)如图1所示,若OM 平分∠BOC ,ON 平分∠AOC ,求∠MON 的度数: (2)如图2所示,OD 也是∠AOB 内的射线,∠COD =15°,ON 平分∠AOD ,OM 平分∠BOC .当∠COD 绕点O 在∠AOB 内旋转时,∠MON 的位置也会变化但大小保持不变,请求出∠MON 的大小;(3)在(2)的条件下,以∠AOC =20°为起始位置(如图3),当∠COD 在∠AOB 内绕点O 以每秒3°的速度逆时针旋转t 秒,若∠AON :∠BOM =19:12,求t 的值.8.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.9.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.10.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?11.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值12.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例: 例:将0.7•化为分数形式, 由于0.70.777•=,设0.777x =,①得107.777x =,②②−①得97x =,解得79x =,于是得70.79•=.同理可得310.393•==,4131.410.4199••=+=+=.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) (类比应用) (1)4.6•= ;(2)将0.27••化为分数形式,写出推导过程; (迁移提升)(3)0.225••= ,2.018⋅⋅= ;(注0.2250.225225••=,2.018 2.01818⋅⋅=)(拓展发现)(4)若已知50.7142857=,则2.285714= .【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)m =12,n =﹣3;(2)①5;②应64岁;(3)k =6,15 【解析】 【分析】(1)由非负性可求m ,n 的值;(2)①由题意可得3AB =m ﹣n ,即可求解;②由题意列出方程组,即可求解; (3)用参数t 分别表示出PQ ,B 'A 的长度,进而用参数t 表示出3PQ ﹣kB ′A ,即可求解. 【详解】解:(1)∵|m ﹣12|+(n +3)2=0, ∴m ﹣12=0,n +3=0, ∴m =12,n =﹣3; 故答案为:12,﹣3;(2)①由题意得:3AB =m ﹣n , ∴AB =3m n-=5, ∴玩具火车的长为:5个单位长度, 故答案为:5;②能帮小明求出来,设小明今年x 岁,奶奶今年y 岁, 根据题意可得方程组为:40116y x x y x y -=+⎧⎨-=-⎩,解得:1264x y =⎧⎨=⎩, 答:奶奶今年64岁;(3)由题意可得PQ =(12+3t )﹣(﹣3﹣t )=15+4t ,B 'A =5+2t ,∵3PQ ﹣kB ′A =3(15+4t )﹣k (5+2t )=45﹣5k +(12﹣2k )t ,且3PQ ﹣kB ′A 的值与它们的运动时间无关, ∴12﹣2k =0, ∴k =6∴3PQ ﹣kB ′A =45﹣30=15 【点睛】本题主要考查数轴上的动点问题,关键是用代数式表示数轴上两点之间的距离,体现了数形结合思想和方程思想. 2.(1)-b;(2) :a=-2,b=2;(3)9. 【解析】 【分析】(1)由每行、每列的3个代数式的和相等,列出关系式,即可确定a 与b 的关系; (2)由第一行与第三列、对角线上与第二行的和相等,可得a 与b 的值; (3)根据“等和格"的定义列方程,然后整理代入,即可求出b 的值. 【详解】解:(1)由题意得:-2a+a=3b+2a ,即a=-b ; 故答案为:-b ; (2)由题意得:2322283a a b aa ab b -+=+⎧⎨-+=-+⎩解得:22a b =-⎧⎨=⎩故答案为:a=-2,b=2(3)由题意得:2222223a a a a a a a ++-=+++,即:23a a +=-22223322a a a b a a a a +++=++++,可得:2223b a a =--+;()2232(3)39b a a =-+=⨯-+=+故答案为9. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是充分利用“每行,每列及对角线上的3个数(或代数式)的和都相等"列出等式. 3.(1) 12, 12; (2) -8或12;(3) 11,-9. 【解析】 【分析】(1)代入两点间的距离公式即可求得AB 的长;依据点M 在A 、B 之间,结合数轴即可得出所求的结果即为A 、B 之间的距离,进而可得结果;(2)由(1)的结果可确定点M 不在A 、B 之间,再分两种情况讨论,化简绝对值即可求出结果;(3)由|m +4|+n =6可确定n 的取值范围,进而可对第2个等式进行化简,从而可得n 与m 的关系,再代回到第1个等式即得关于m 的绝对值方程,再分两种情况化简绝对值求解方程即可. 【详解】解:(1)因为点A 、B 表示的数分别是﹣4、8,所以AB =()84--=12, 因为点M 在A 、B 之间,所以|m +4|+|m ﹣8|=AM +BM =AB =12, 故答案为:12,12;(2)由(1)知,点M 在A 、B 之间时|m +4|+|m -8|=12,不符合题意; 当点M 在点A 左边,即m <﹣4时,﹣m ﹣4﹣m +8=20,解得m =﹣8; 当点M 在点B 右边,即m >8时,m +4+m ﹣8=20,解得m =12; 综上所述,m 的值为﹣8或12;(3)因为46m n ++=,所以460m n +=-≥,所以6n ≤,所以88n n -=-, 所以828n m -+=,所以20n m =-,因为46m n ++=,所以4206m m ++-=,即4260m m ++-=, 当m +4≥0,即m ≥﹣4时,4260m m ++-=,解得:m =11,此时n =-9; 当m +4<0,即m <﹣4时,4260m m --+-=,此时m 的值不存在. 综上,m =11,n =-9. 故答案为:11,﹣9. 【点睛】此题考查了数轴的有关知识、绝对值的化简和一元一次方程的求解,第(3)小题有难度,正确理解两点之间的距离、熟练进行绝对值的化简、灵活应用数形结合和分类讨论的数学思想是解题的关键.4.(1)3.(2)存在.x 的值为3.(3)不变,为2. 【解析】 【分析】(1)根据非负数的性质和数轴上两点间距离即可求解;(2)分两种情况讨论,根据数轴上两点间的距离公式列方程即可求解;(3)先确定运动t 秒后,A 、B 、C 三点对应的数,再根据数轴上两点间的距离公式列方程即可求解. 【详解】解:(1)∵点A 、B 是数轴上的两个点,它们分别表示的数是2-和1 ∴A,B 两点之间的距离是1-(-2)=3. 故答案为3.(2)存在.理由如下: ①若P 点在A 、B 之间, x+2+1-x=7,此方程不成立; ②若P 点在B 点右侧, x+2+x-1=7,解得x=3. 答:存在.x 的值为3.(3)BC AB -的值不随运动时间t (秒)的变化而改变,为定值,是2.理由如下: 运动t 秒后,A 点表示的数为-2-t,B 点表示的数为1+2t,C 点表示的数为6+5t. 所以AB=1+2t-(-2-t)=3+3t. BC=6+5t-(1+2t)=5+3t. 所以BC-AB=5+3t-3-3t=2. 【点睛】本题考查了一元一次方程、数轴、非负数、两点之间的距离,解决本题的关键是数轴上动点的运动情况. 5.(1)①7+21;②10.82- ;③22.8 3.23+-;(2)9;(3)10012004. 【解析】 【分析】(1)根据绝对值的性质:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值是0即可得出结论;(2)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可; (3)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可. 【详解】解:(1)①|7+21|=21+7; 故答案为:21+7;②110.80.822-+=-; 故答案为:10.82-; ③23.2 2.83--=22.83.23+- 故答案为:22.83.23+-; (2)原式=1111924233202033-++- =9 (3)原式 =11111111 (23344520032004)-+-+-++- =1122004- =10012004【点睛】此题考查了有理数的加减混合运算,此题的难点把互为相反的两个数相加,使运算简便.做题时,要注意多观察各项之间的关系. 6.(1)1D ;2D ,3D (2)点P 表示的数为24或212. 【解析】 【分析】(1)分别计算D 1,D 2,D 3三点与M,N 的距离,再根据新定义的概念得到答案; (2)设点P 表示的数为x ,分以下情况列方程求解:①2NP NM =;②2NP NM =.【详解】解:(1)D 1M=3,D 1N=6,2D 1M=D 1N ,故D 1符合题意; D 2M=6.5,D 2N=2.5,故D 2不符合题意; D 3M=14,D 3N=5,故D 3不符合题意; 因此点D 1是点,M N 的“倍联点”. 又2D 2N= D 3N ,∴点N 是D 2,D 3的“倍联点”. 故答案为:D 1;D 2,D 3. (2)设点P 表示的数为x , 第一种情况:当2NP NM =时, 则62[6(3)]x -=⨯--, 解得24x =.第二种情况:当2NP NM =时, 则2(6)6(3)x -=--, 解得:212x =. 综上所述,点P 表示的数为24或212. 【点睛】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义的概念是解题的关键. 7.(1)∠MON 的度数为70°.(2)∠MON 的度数为62.5°.(3)t 的值为20. 【解析】 【分析】(1)根据角平分线的性质以及角的和差倍关系转化求出角的度数; (2)根据角平分线的性质可以求得:∠MON =12(∠AOB +∠COD )﹣∠COD ,代入数据即可求得;(3)由题意得∠AON =12(20°+3t +15°),∠BOM =12(140°﹣20°﹣3t ),由此列出方程即可求解. 【详解】(1)∵ON 平分∠AOC ,OM 平分∠BOC ,∴∠CON =12∠AOC ,∠COM =12∠BOC ∠MON =∠CON +∠COM=12(∠AOC +∠BOC ) =12∠AOB 又∠AOB =140°∴∠MON=70°答:∠MON的度数为70°.(2)∵OM平分∠BOC,ON平分∠AOD,∴∠COM=12∠BOC,∠DON=12∠AOD即∠MON=∠COM+∠DON﹣∠COD=12∠BOC+12∠AOD﹣∠COD=12(∠BOC+∠AOD)﹣∠COD.=12(∠BOC+∠AOC+∠COD)﹣∠COD=12(∠AOB+∠COD)﹣∠COD=12(140°+15°)﹣15°=62.5°答:∠MON的度数为62.5°.(3)∠AON=12(20°+3t+15°),∠BOM=12(140°﹣20°﹣3t)又∠AON:∠BOM=19:12,12(35°+3t)=19(120°﹣3t)得t=20答:t的值为20.【点睛】本题考查了与角平分线有关的计算,根据角平分线的定义得出所求角与已知角的关系转化,然后根据已知条件求解是解决问题的关键.8.(1)35°;(2)∠AOE﹣∠BOF的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.9.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=,∴COE AOC AOE ∠∠∠=- =1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+=()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.10.(1)10.5°或14°或28°或31.5°;(2)74或218或212或634【解析】【分析】(1)分4种情况,根据奇分线定义即可求解;(2)分4种情况,根据奇分线定义得到方程求解即可.【详解】解:(1)如图1,∵∠MPN=42°,∵当PQ 是∠MPN 的3等分线时,∴∠MPQ=13∠MPN=13×42°=14° 或∠MPQ=23∠MPN=23×42°=28° ∵当PQ 是∠MPN 的4等分线时,∴∠MPQ=14∠MPN==14×42°=10.5°或∠MPQ=34∠MPN=34×42°=31.5°;∠MPQ=10.5°或14°或28°或31.5°;(2)依题意有①当3×8t=42时,解得t=74;②当2×8t=42时,解得t=218;③当8t=2×42时,解得t=212.④当8t=3×42时,解得:t=634,故当t为74或218或212或634时,射线PN是∠EPM的“奇分线”.【点睛】本题考查了旋转的性质,新定义奇分线,以及学生的阅读理解能力及知识的迁移能力.理解“奇分线”的定义是解题的关键.11.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.12.(1)143;(2)311;(3)25111,11155;(4)167【解析】【分析】(1)根据阅读材料的解答过程,循环部只有一位数时,用循环部的数除以9即为分数,进而求出答案.(2)循环部有两位数时,参照阅读材料的解答过程,可先乘以100,再与原数相减,即求得答案.(3)循环部有三位小数时,用循环部的3位数除以999;对于2.018,可先求0.18对应的分数,再除以10得0.018,再加上2得答案.(4)观察0.714285与2.285714,循环部的数字顺序是一样的,先求把0.714285×1000,把小数循环部变成与2.285714相同,再减712把整数部分凑相等,即求出答案.【详解】解:(1)612214 4.6=4+0.6=4+=+=9333故答案为:14 3(2)设x=0.272727…,①∴100x=27.272727…,②②-①得:99x=27解得:x=27 99∴x=3 11∴3 0.27=11(3)22525 0.225==999111∵182 0.18=0.181818=9911∴211 0.0181818==111055∴1111 2.018=2+0.018=2+=5555故答案为:25111,11155(4)5 0.714285=7∴等号两边同时乘以1000得:5000 714.285714=7∴500016 2.285714=714.28571-712=-712=77故答案为:16 7【点睛】本题考查了有理数运算、比较大小,一元一次方程的解法.解题关键是,正确理解题意的解答过程并转化运用到循环部数字不一样的情况计算.。
人教版七年级上册数学 第一章 有理数 单元测试卷(Word版,含答案)

人教版七年级上册数学 第一章 有理数 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 如图,表示正确的数轴的是( ) A. B.C. D. 2. -1的相反数是( )A . 1B . -1C . 0D . -123. 下列四个数中,最小的数是( ) A . -12 B . 0C . -1D . 14. 据统计,近十年中国累积节能1 570 000万吨标准煤,1 570 000这个数用科学记数法表示为( ) A . 0.157×107 B . 1.57×106C . 1.57×107D . 1.57×1085. 下列说法不正确的是( )A . 最大的负整数为-1B . 最小的正整数为1C . 最小的整数是0D . 相反数等于它本身的数是06. 某旅游景点11月5日的最低气温为-2 ℃,最高气温为8 ℃,那么该景点这天的温差是( ) A . 4 ℃ B . 6 ℃C . 8 ℃D . 10 ℃7. 某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损):则这个周共盈利( )A .715元B .630元C .635元D .605元8. 如果一对有理数a ,b 使等式a -b =a ·b +1成立,那么这对有理数a ,b 叫做“共生有理数对”,记为(a ,b ).根据上述定义,下列四对有理数中不是“共生有理数对”的是( )A .3,12B .2,13C .5,23D .-2,-139. 有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是( )A .m +n <0B .m -n >0C .mn >0D .m n<010. 细胞分裂按照一分为二,二分为四,四分为八……如此规律进行.例如:1个细胞分裂10次可以得到细胞的个数为210=1 024个,估计1个细胞分裂40次所得细胞的个数为( ) A .七位数 B .十二位数C .十三位数D .十四位数二、填空题(每题4分,共28分)11.||-2 022的倒数是________.12. 如果||a -1+(b +2)2=0,那么(a +b )2 021的值是________.13. 放学静校,值周班的小明同学负责一条东西走向楼道巡视工作.记向东为正,小明巡视过程如下:+5,-3,-1,+7,-9,+4(单位:米),则小明这次巡视共走了________米.14. 如图是一个计算程序,若输入a 的值为-1,则输出的结果应为________.15. 某高山上的温度从山脚处开始每升高100米,就降低0.6 ℃.若山脚处温度是28 ℃,则山上500米处的温度是______℃.16. 已知||a =5,||b =3,则(a +b )(a -b )=________.17. 有一组数据:25,47,811,1619,3235,….请你根据此规律,写出第n 个数是________.。
人教版七年级数学上册 代数式易错题(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15﹪,并可用本金和利润再投资其他商品,到月末又可获利10﹪;如果月末出售可获利30﹪,但要付出仓储费用700元.(1)若商场投资元,分别用含的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?【答案】(1)由题意可得:该商月初出售时的利润为:15%x+(1+15%)×10%x=0.265(元);该商月末出售时的利润为:30%x-700=(0.3x-700)(元);(2)当x=40000时,该商月初出售时的利润为:0.265×40000=10600(元),该商月末出售时的利润为:0.3×40000-700=11300(元),∵11300>10600,∴选择月末出售这种方式,即若商场投资40000元,选择月末销售方式获利较多,此时获利11300元.【解析】【分析】(1)根据题意列代数式表示出月初出售和月末出售两种销售方式获得的利润即可;(2)将x=40000分别代入(1)中的代数式求值,通过比较,即可得解。
2.从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)②.以上表中的价格均不包括1元/吨的污水处理费(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.【答案】(1)解:该用户12月份应缴水费是15×2.2+5×3.3+20=69.5(元)(2)解:①m≤15吨时,所缴水费为2.2m元,②15<m≤25吨时,所缴水费为2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③m>25吨时,所缴水费为2.2×15+3.3×(25﹣15)+(m﹣25)×4.4=(4.4m﹣110)元.【解析】【分析】(1)该用户12月份应缴水费三两部分构成:不超过15吨的水费+超过15吨不超过25吨的9吨的水费+20吨的污水处理费,列代数式求解即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册12月反馈练习题(有答案)
以下是查字典数学网为您推荐的七年级数学上册12月反馈练习题(有答案),希望本篇文章对您学习有所帮助。
七年级数学上册12月反馈练习题(有答案)
一、精心选一选(每小题2分,共20分)
1.下列方程中,属于一元一次方程的是 ()
A. B. C. D.
2.下列说法中,正确的是 ( )
A.正数和负数统称为有理数
B.任何有理数均有倒数
C.绝对值相等的两个数相等
D.任何有理数的绝对值一定是非负数
3.下列各式的运算:① ,② ,③ ,④ ,其中错误的有 ()
A.1个
B.2个
C.3个
D.4个
4.几个同学在日历竖列上圈出了三个数,算出它们的和,其中错误的一个是 ( )
A.28
B.33
C.45
D.57
5.下列各图经过折叠不能围成一个正方体的是 ( )
A. B. C. D.
6.已知某些多面体的平面展开图如图所示,其中是三棱柱的有 ( )
A.1个
B.2个
C.3个
D.4个
7.把在各个面上写有同样顺序的数字1~6的五个正方体木
块排成一排(如图所示),那么与数字6相对的面上写的数字是 ( )
A.2
B.3
C.5
D.以上都不对
8.设●、■、▲分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架也平衡,那么?处应放■的个数为
A.5个
B.4个
C.3个
D.2个
9.已知代数式x2+x+1的值是8,那么代数式4x2+4x+9的值是 ( )
A.32
B.25
C.37
D.0
10.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是 ( )
A.2
B.2或10
C.2.5 D .2或2.5
二、细心填一填(第11小题每空1分,其余每空2分,共26分)
11.直接写出计算结果:
(1) , (2) , (3) =______,
(4) ___ _, (5) _____,(6) 。
12.2019年4月10日4时47分,我国第八颗北斗导航卫星发射成功,标志着北斗区域卫星导航系统的基本系统建成,
打破了欧美对该领域的垄断.据中科院详细估算,该系统到2020 年有望形成价值400000000000元的产业,用科学记数法表示为元.
13.已知 + =0,则 , 。
14.若x=2是方程的解,则的值是。
15.若与是同类项, 则。
16.一个正方体的表面展开图如右图所示,则原正方体中的★所在面的对面所标的字是__
17.一张桌子上重叠摆放了若干枚面值一元的硬币,从三个不同方向看它得到的平面图形如下:那么桌上共有
__________枚硬币。
18.一张桌子有一张桌面和四条腿拼装而成,若做一张桌面需要木材0.03m3,做一条腿需要木材0.002m3.现在做这一批桌子,恰好用去木材3.8m3,共做多少张桌子?(只要列出方程)解:设共做x张桌子,所列方程为。
19.某家具的标价是132元,若以8折售出,仍可获利10%,则该家具的进价是 _元。
20.按如图所示的程序计算,若开始输入的x的值为24,我们发现第一次得到的结果为12,第2次得到的结果为6,,第2019次得到的结果为
三、认真答一答(本大题共54分,可不要忘记写解答步骤哦!)
21.计算:(每小题3分,共6分)
22.先化简,再求值:(4分)
,其中 .
23.解方程: (每小题3分,共9分)
(1) (2) (3)
24.(4分)根据要求完成下列题目:
(1)图中有块小正方体;
(2)请在下面方格纸中分别画出它的主视图,左视图和俯视图.
25.(5分)小明每天早上要在7∶50之前到距家500米的学校上学.一天,小明以60米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文书.于是,小明爸爸立即开摩托车以160米/分的速度去追小明,并且在途中追上他.小明爸爸追上小明用了多少分钟?
26.(5分)一项工程,甲单独完成需要9天,乙单独完成需要12天.若甲、乙先做3天后,甲因故离开,问还需多少天能完成这项工程?
27.(6分)有一天,从事蔬菜经营的老张带着他的儿子张聪去批发市场购买蔬菜.他们花50元共购进40kg的土豆和青椒.老张为了让张聪体验经营生活,递给他一张经营价格表(如下表),让他专门销售这两个品种的蔬菜.张聪经过努力成功地销售了这两种蔬菜.张聪今天共赚了多少钱?
28.(7分)在五一期间,小明、小亮等同学随家长一同到某公
园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题: (1)小明他们一共去了几个成人,几个学生?
(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.
29.(8分)将连续的奇数1,3,5,7,,排成如图所示的数表,用十字框任意框出5个数。
探究规律一:
设十字框中间的奇数为,则框中五个奇
数之和用含的代数式表示为 .
结论:这说明能被十字框框中的五个奇数之和
一定是自然数的奇数倍,这个自然数是 .
探究规律二:
落在十字框中间且又是第二列的奇数是15,27,39则这一列数可以用代数式表示为,同样,落在十字框中间且又是第四列的奇数可表示为 .
运用规律:
1.已知被十字框框中的五个奇数之和为6035,则十字框中间的奇数是 .这个奇数落在从左往右第列.
2.被十字框框中的五个奇数之和可能是485吗?说说你的理由。
七年级数学反馈练习卷答案2019.12
出卷人:钱二珏
一. 精心选一选
1.C
2.D
3.B
4.A
5.D
6.B
7.C
8.A
9.C 10.D
二.细心填一填
11.-12,-2,-6, ,8,1 12. 13.4,-2 14.0 15.9 16.海
17.11 18. 19.96 20.1
由题意得:60(x+5)=160x, (3分)
解得,x=3(分钟), (4分)
60500米,
所以,小明爸爸追上小明用了4分钟. (5分)
26.解:设完成整个工程还需要x天,根据题意得: (1分) , (3分)
解得:x= 5, (4分)
答:完成整个工程还需要5 天. (5分)
27.解:设土豆有x千克,则青椒有(40-x)千克 (1分)
由题意得:0.9x+1.6(40-x)=50 (3分)
解得:x=20. (4分)
总利润=(1.2-0.9)20+(2.2-1.6)20=18(元) (5分)
答:张聪今天共赚了18元. (6分)
29.5a, 5, 12m+7, 1207, 四 (5分)
不可能是485。
(6分)
理由:中间的奇数为: (7分)
97在第一列, (8分) 所以不可能。