24.2.2直线与圆的位置关系(1)
人教版九年级数学上册说课稿:24.2.2直线和圆的位置关系(一)

24.2.2 直线和圆的位置关系说课稿(一)一、说教材(一)、教材所处的地位及作用直线和圆的位置关系是人教版九年级数学第二十四章第二节的内容,是本章的重点内容之一。
圆的教学在平面几何中乃至整个中学教学都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,是在学生学习了点和圆的位置关系的基础上进行的,为后面学习圆与圆的位置关系作好铺垫,起到承上启下的作用。
(二)、教学目标1.知识与技能目标:①探索并了解直线和圆的位置关系;②根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置关系;③能够利用公共点个数和数量关系来判断直线和圆的位置关系。
2.过程与方法目标:①学生经历操作、观察、发现、总结出直线和圆的位置关系的过程,培养学生观察、比较、概括的逻辑思维能力;②学生经历探索直线和圆的位置关系中圆心到直线的距离与圆的半径的数量关系的过程,培养学生运用数学语言表述问题的能力。
3.情感态度与价值观目标:通过本节知识的操作、实验、发现、确认等数学活动,从探索直线和圆的位置关系中,体会运动变化的观点,量变到质变的辩证唯物主义观点,感受数学中的美感。
(三)、教学重点、难点根据新课程标准要求,结合教学目标,我确定了本节课教学重点是:探索并了解直线和圆的位置关系。
教学难点是:掌握直线和圆的三种位置关系与判定。
可以说,教学重点和难点得以实施,是课堂教学获得成功的关键。
(四)、教学用具为了上好这节课以及根据本节课的内容,我准备多媒体课件和一些作图工具,这些教学用具的使用,可以进一步优化课堂教学,提高教学效率。
二、说教法学法(一)教法结合学科特点及学生的情况,在本节课中我采取类比迁移法,并结合直观演示、数形结合、动手操作等多种形式的教学手段进行教学,这样不仅充分调动了学生的积极性,也让整个课堂活跃起来。
(二)学法教是为了学生更好地学,学生是课堂教学的主体,现代教育更重视在教学过程中对学生的学法指导。
我主要指导学生采用观察讨论法、分析及归纳等多种学习方法,从而真正落实到把课堂还给学生,让学生成为课堂的主角。
24.2.2 直线和圆的位置关系(1)

.A
.O .C
是否还有其他的方法判断直线与圆的 位置关系? 位置关系?
的半径为r, 到圆心O的距离为 设⊙O的半径为 ,直线 到圆心 的距离为 , 的半径为 直线l到圆心 的距离为d, 在直线和圆的不同位置关系中, 与 具有怎样 在直线和圆的不同位置关系中,d与r具有怎样 的大小关系? 的大小关系? 反过来,你能根据 与 的大小关系来确定 反过来,你能根据d与r的大小关系来确定 直线和圆的位置关系吗? 直线和圆的位置关系吗? O r d l
(二)直线与圆的位置关系(数量特征) 直线与圆的位置关系(数量特征) d表示圆心 到直线 的距离,r表示 表示圆心O到直线 的距离, 表示 表示圆心 到直线l的距离 的半径. ⊙O的半径. 的半径
O r d
l
O r d A O r d B
d>r > d=r = d<r <
直线l与⊙O相离 直线 与 相离 直线l与 直线 与⊙O相切 相切 直线l与 直线 与⊙O相交 相交
l
A
l
直线与圆的 位置关系
相交
O r d A B l
相切
O r d A
相离
O r d l
图
形
l
公共点个数 公共点名称 直线名称 圆心到直线距 离d与半径r的 关系
2个 交点 割线
1个 切点 切线
没有
d<r
d=r
d>r
AC=3cm, 例:在Rt△ABC中,∠C=900,AC=3cm, Rt△ABC中 BC=4cm, 为圆心, 为半径的圆与AB BC=4cm,以C为圆心,以R为半径的圆与AB 有怎样的位置关系?为什么? 有怎样的位置关系?为什么? A (1) R = 2cm
§24.2.2 直线和圆的位置关系(1)

l
A
. P
4.在直角坐标系中,⊙M的圆心坐标为M (m,0) ,半径为2
m=±2 如果⊙M与y轴相切,那么m应满足的条件为_______
变式1:如果⊙M与y轴相交,那么m应满足的条件为
-2<m<2 _________
变式2:如果⊙M与y轴相离,那么m应满足的条件为_
m<-2或m>2
___________.
3 o
M
4
或r>5 条 (4)当r满足4<r<5 ___________ 件时, ⊙M与坐标轴有 4 个交点
x
本节课的学习你有哪些收获与体会?
一、知识上:
1、直线与圆的三种位置关系:相交、相切和相离。 2、直线与圆的位置关系的判定和性质:
(1)定义:直线与圆的公共点的个数; (2)判定:圆心到直线的距离d与圆的半径r之间的大小关系。
在纸上画一条直线,把硬币的边缘看作 圆,在纸上移动硬币.观察直线和圆位 置关系可以分几种?你的分类标准又是 什么?并把各种位置关系画出来.
直线和圆的位置有下列三种情况:
(根据直线与圆的公共点的个数来分)
O.
直线和圆没有公共点,叫做直线和圆相离。
l
O.
A
直线和圆有唯一公共点,叫做直线和圆相切。
.
l
切点 切线
O.
E F
直线和圆有两个公共点,叫做直线和圆相交。
l
割线
用数学的眼光看生活
用数学的眼光看生活
(1)过⊙O内一点P作直线l,则直线l 与圆的 位置关系是 相交 ;
(2)过⊙O上一点P作直线l ,则直线l 与圆的 位置关系是 相交 或相切 ; (思考问题可要全面了哦! (3)过⊙O外一点P作直线l ,则直线l 与圆的 位置关系是 相交 或相切 或相离 ;
24.2.2 直线和圆的位置关系——相交、相切、相离

直线和圆有两个 直线和圆有唯一
公共点时,叫做 公共点时,叫做 直线和圆相交. 直线和圆相切.
这条直线叫做 圆的割线,公 共点叫直线和 圆的交点.
这条直线叫做圆 的切线,这个点 叫做切点.
直线和圆没有公 共点时,叫做直 线和圆相离.
直线与圆的位置关系判定定理
设点O到直 线的距离 为d,⊙O的 半径为r
ห้องสมุดไป่ตู้
总结
(1)直线和圆的位置关系的应用过程实质是一种数 形结合思想的转化过程,它始终是“数”:圆心 到直线的距离与圆的半径大小,与“形”:直线 和圆的位置关系之间的相互转化. (2)圆心到直线的距离通常用勾股定理与面积相等 法求出.
巩固练习2:
1.已知直线l与半径为r的⊙O相交,且点O到直线l的距 离为6,则r的取值范围是( )
0 d r 直线与O相交
d r 直线与O相切 d r 直线与O相离
例1.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4cm,
以点C为圆心,2cm为半径作圆,则⊙C与AB的位置关系是
( B)
A.相离
B.相切
C.相交 D.相切或相交
例2.如图,四边形ABCD中,∠A=∠B=90°,E为AB上 一点,且DE、CE分别平分∠ADC和∠BCD,判断以AB为直 径的圆与CD有怎样的位置关系?试证明你的结论.
直线与圆的位置关系性质定理
设点O到直 线的距离 为d,⊙O的 半径为r
直线与O相交 0 d r
直线与O相切 d r 直线与O相离 d r
例3.在Rt△ABC中,AC=3cm,BC=4cm,∠ACB=90°.若 以点C为圆心,r为半径的圆与直线AB不相离,求r的取值 范围.
直线和圆的位置关系

《24.2.2直线和圆的位置关系》说课稿尊敬的各位评委、各位老师,大家好!今天我说课的题目是《直线和圆的位置关系》,是人教版义务教育教科书九年级上册数学第二十四章圆第2节的内容,下面我将从教材分析、学情分析、教法学法、教学过程、设计说明这五个方面对本节课进行说明。
一、教材分析1.教材的地位和作用圆的教学在平面几何乃至整个中学教学中都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它既是初中几何的综合运用,又是在学习了点和圆的位置关系的基础上进行的,为后面学习圆的切线以及高中学习圆作铺垫,在今后的解题及几何证明中,将起到重要的作用。
2.教学目标根据学生已有的认知基础及教材的地位和作用,我将本节课的教学目标定为:(1)理解直线和圆的三种位置关系,会用两种方法判断直线和圆的位置关系。
(2)渗透类比、转化、数形结合的数学思想和方法,培养学生的逻辑思维能力和视图能力。
(3)让学生感受到实际生活与数学的密切联系,激发学生学习数学的兴趣。
3.教学重、难点重点:理解直线和圆的相交、相切、相离三种位置关系;会判断直线和圆的三种位置关系。
难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线和圆的位置关系。
二、学情分析直线和圆的位置关系属于几何课程,在七、八年级的几何学习基础上,九年级学生有了一定的分析能力、归纳能力以及数学思想。
九年级学生对图形很敏感,学生观察、操作、猜想等能力较强,但是归纳运用数学的意识、思想还比较薄弱,思维的严密性、灵活性都有待于加强,自主探究与合作学习的能力也需进一步加强。
三、教学方法分析复习点和圆的位置关系,引导学生用类比的方法来研究直线和圆的位置关系,在直线和圆的位置关系的判定的过程中,将采取观察、类比、实验、探究为主的教学方法。
另外,在教学中,运用多媒体辅助教学,进行动态和直观的演示,激发学生的学习兴趣;通过圆心到直线的距离d 和半径r这两个数量之间的关系来研究直线和圆的位置关系,体现数形结合的思想,较为复杂的问题能简单化。
新人教版九上24.2.2(1)直线和圆的位置关系

l
A
. B
lC
.
相离 0 d>r
相切 1 d=r
相交 2 d< r
公共点的个数
圆心到直线的距离 d 与半径 r的关系
公共点的名称 直线名称
切点
切线
交点
割线
思考:
在⊙O中,经过半径OA的 外端点A作直线l⊥OA, 直线l和⊙O有什么位置 关系?
3.在Rt△ABC中,∠B=90°,∠A的平分线交BC于 D,以D为圆心,DB长为半径作⊙D.试说明:AC A 是⊙D的切线.
F
E
B
D
C
1.定义法:和圆有且只有一个公共点的直线是圆的切线.
2.数量法(d=r):和圆心距离等于半径的直线是圆的切线.
3.判定定理:经过半径外端且垂直于这条半径的直线是
解决问题4: 已知⊙A的直径为6,点A的坐标为 相离 (-3,-4),则x轴与⊙A的位置关系是______, y轴 与⊙A的位置关系是______. y 相切
思考:
求圆心A到x轴、 y轴的距离各是多少?
4
B O x
A.(-3,-4) 3
C
小结: 直线与圆的位置关系判定方法:
图形 直线与圆的 位置关系
点击页面即可演示
回忆旧知
1.点和圆的位置关系有几种? (1)d<r (2)d=r (3)d>r 点在圆内 点在圆上 点 在圆外
2.“大漠孤烟直,________” 是唐朝诗人王维的 长河落日圆 诗句.它描述了黄昏日落时分塞外特有的景象. 如果我们把太阳看成一个圆,地平线看成一条 直线,那你能根据直线与圆的公共点的个数想 象一下,直线和圆的位置关系有几种?
人教版数学九年级上册24.2.2《直线与圆的位置关系》教案1

人教版数学九年级上册24.2.2《直线与圆的位置关系》教案1一. 教材分析《直线与圆的位置关系》是人教版数学九年级上册第24章第二节的内容,本节课主要探讨直线与圆的位置关系,包括相离、相切和相交三种情况。
通过学习,学生能够理解直线与圆的位置关系,并掌握判定方法,为后续解决实际问题奠定基础。
二. 学情分析九年级的学生已经掌握了初中阶段的基本几何知识,对图形的认识和操作能力较强。
但是,对于直线与圆的位置关系的理解和运用还需加强。
因此,在教学过程中,教师需要注重引导学生通过观察、思考、操作、交流等活动,自主探索和发现直线与圆的位置关系,提高他们的几何思维能力。
三. 教学目标1.知识与技能:使学生理解直线与圆的位置关系,掌握判定方法,能运用直线与圆的位置关系解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的几何思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:直线与圆的位置关系的判定及其应用。
2.难点:直线与圆的位置关系的理解及运用。
五. 教学方法1.引导发现法:教师引导学生观察、操作、思考,发现直线与圆的位置关系。
2.合作交流法:学生分组讨论,分享学习心得,共同解决问题。
3.实践应用法:教师设计具有实际意义的题目,让学生运用所学知识解决。
六. 教学准备1.课件:制作直线与圆的位置关系的动画演示。
2.学具:为学生准备直线、圆的教具,便于操作和观察。
3.例题:挑选一些典型的例题,用于讲解和练习。
七. 教学过程1.导入(5分钟)教师通过展示课件,引导学生观察直线与圆的图形,提问:直线与圆有哪些位置关系?学生回答:相离、相切、相交。
2.呈现(10分钟)教师讲解直线与圆的位置关系的判定方法,并通过动画演示,让学生直观地理解直线与圆的位置关系。
3.操练(10分钟)学生分组讨论,分享学习心得,共同解决问题。
教师巡回指导,解答学生的疑问。
24.2点、直线、圆和圆的位置关系(第1课时)

24.2点、直线、圆和圆的位置关系(第1课时)一、学习目标:1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P 在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r及其运用。
2.理解不在同一直线上的三个点确定一个圆并掌握它的运用。
3.了解三角形的外接圆和三角形外心的概念。
4.了解反证法的证明思想。
二、学习重点、难点:1. 重点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用。
2. 难点:讲授反证法的证明思路。
三、学习过程:(一)温故知新:1.圆的两种定义是什么?2.圆形成后圆上这些点到圆心的距离如何?3.如果在圆外有一点呢?圆内呢?请你画图想一想.(二)自主学习:自学教材P90-----P92,思考下列问题:1.点与圆的三种位置关系:(圆的半径r,点P与圆心的距离为d)点P在圆外⇔;点P在圆上⇔;点P在圆内⇔;2.自己作圆:(思考)(1)作经过已知点A的圆,这样的圆能作出多少个?(2)经过A、B两点作圆,这样的圆能作出多少个?它们的圆心分布有什么特点?(3)经过A、B、C三点作圆,有哪些情况?三点应符合什么条件才能作圆?3.什么叫三角形的外接圆?三角形的外心及性质?4.教材是如何用反证法证明过同一直线上的三点不能作圆?反证法的证明思路是什么?(三)合作探究:例1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.(圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心).(四)巩固练习:(五)达标训练1.下列说法:①三点确定一个圆;②三角形有且只有一个外接圆; ③圆有且只有一个内接三角形;④三角形的外心是各边垂直平分线的交点;⑤三角形的外心到三角形三边的距离相等;⑥等腰三角形的外心一定在这个三角形内,其中正确的个数有(•)A.1 B.2 C.3 D.42.Rt △ABC 中,∠C=90°,AC=2,BC=4,如果以点A 为圆心,AC 为半径作⊙A ,•那么斜边中点D 与⊙O 的位置关系是( )A .点D 在⊙A 外B .点D 在⊙A 上C .点D 在⊙A 内 D .无法确定 AC B DB ACD O(第2题图) (第3题图)3.如图,△ABC 内接于⊙O ,AB 是直径,BC=4,AC=3,CD 平分∠ACB ,则弦AD 长为( )A .522B .52C .2D .3 4.经过一点P 可以作_______个圆;经过两点P 、Q 可以作________•个圆,•圆心在_________上;经过不在同一直线上的三个点可以作________个圆,•圆心是________的交点.5.在平面内,⊙O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与⊙O 的位置关系是 .6.直角三角形的外心是______的中点,锐角三角形外心在三角形______,钝角三角形外心在三角形_________.(六)拓展创新1.已知△ABC 的三边长分别为6cm 、8cm 、10cm ,则这个三角形的外接圆的面积为__________cm2.(结果用含π的代数式表示)2.如图,通过防治“非典”,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图所示,A 、B 、C •为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,•要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址. B A C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.2与圆有关的位置关系(第二课时)
24.2.2直线与圆的位置关系(1)
◆随堂检测
1.已知圆的半径等于5厘米,圆心到直线l 的距离是:
(1)4厘米;(2)5厘米;(3)6厘米.
直线l 和圆分别有几个公共点?分别说出直线l 与圆的位置关系.
2.已知圆的半径等于10厘米,直线和圆只有一个公共点,则圆心到直线的距离是________.
3.如图,直线AB 与⊙O 相切于点A ,⊙O 的半径为2,若∠O BA =30°,则OB 的长为( )
A
..4 C
..2
4.如图,已知直线AB 经过⊙O 上的点A ,并且AB =OA ,∠OBA=45︒,直线AB 是⊙O 的切线吗?为什么?
◆典例分析
如图,直线AB 、CD 相交于点O,∠AOC=30,半径为1cm 的⊙P 的圆心在射线OA 上,开始时,PO=6cm ,如果⊙P 以1cm/秒的速度沿由A 向B 的方向移动,那么当⊙P 的运动时间t (秒)满足什么条件时,⊙P 与直线CD 相交?
分析:本题求t 为何值时⊙P 与直线CD 相交,则可以先求出t 为何值时⊙P 与CD 相切.要注意考虑到⊙P 的圆心在射线OA 上,不能把⊙P 在射线OA 上运动当做在直线AB 上运动.
解:如图,当⊙P 运动到⊙P ’时,⊙P 与CD 相切.
作P ’E ⊥CD 于E.∵⊙P 半径为1㎝.
∴PE=1.又∠AOC=30°,P ’E ⊥CD,∴PO=2,∴t=4.
当⊙P 的圆心运动到点O 上时,⊙P 与CD 相交.
∴t=6.综上可知,4<t ≤6.
◆课下作业
●拓展提高
1.如图,以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若大圆半径为10cm ,小圆半径为6cm ,则弦AB 的长为_______cm .
2.如图,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有______个.
3.如图,线段AB 经过圆心O ,交⊙O 于点A 、C ,∠BAD =∠B =30︒,边BD 交圆于点D .BD 是⊙O 的切线吗?为什么?
4.Rt△ABC 中,9068C AC BC ∠===°,,.求△ABC 的内切圆半径r .
5.如图,△ABC 内接于半圆,AB 是直径,过A 作直线MN ,若∠MAC=∠ABC.
(1)求证:MN 是半圆的切线;
(2)设D 是弧AC 的中点,连结BD 交AC 于G ,过D 作DE⊥AB 于E ,交AC 于F .
求证:FD =FG .
●体验中考
1.(2009年,青海)如图,PA 是⊙O 的切线,切点为A,PA =32,∠APO =30°,则O ⊙的半径长为______.
2.(2009年,邵阳市)如图AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连结BC 交圆0于点D,连结AD,若∠ABC =450,则下列结论正确的是( )
A .AD =21
BC B.AD =21
AC C.AC >AB D.AD
>DC
参考答案:
◆随堂检测
1.(1)有2个公共点,直线与圆相交;
(2)有1个公共点,直线与圆相切;
(3)有0个公共点,直线与圆相离.
2.10厘米.
3.B.
4.解:直线AB 是⊙O 的切线.理由如下:
∵AB =OA ,∠OBA=45︒,∴∠OAB=90︒,
∴由切线的判定定理可得.
◆课下作业
●拓展提高
1.16. 连结OC 、OA.
2.3.
3.解:BD 是⊙O 的切线.理由如下:连结OD,可证∠ODB =90︒.
4.解:由勾股定理得:AB =10,
由三角形的内切圆的有关知识可得:681022
r +-==. 5.证明(1):∵AB 是直径,∴∠ACB=90º,∴∠CAB+∠ABC=90º. ∵∠MAC=∠ABC ,∴∠MAC+∠CAB=90º,即MA⊥AB .
∴MN 是半圆的切线.
(2)∵D 是弧AC 的中点,∴∠DBC=∠ABD.
∵AB 是直径,∴∠CBG+∠CGB=90º,∵DE⊥AB,∴∠FDG+∠ABD =90º. ∵∠DBC=∠ABD ,∴∠FDG=∠CGB=∠FGD ,∴FD=FG.
●体验中考
1.2. 连结OA.
2.A ∵AB 是⊙O 的直径,AC 与⊙O 切于A 点且∠ABC =450, ∴Rt △ABC 、Rt △ABD 和Rt △ADC 都是等腰直角三角形.∴只有AD =21BC 成立.故选A.。