2.1直线与圆的位置关系(1)-精选教学文档
《直线和圆的位置关系》教学设计--

直线和圆的位置关系(第一课时)的教学设计课题名称:直线和圆的位置关系(第一课时)教材版本:人教版义务教育课程标准实验教科书九年级上册一、教学内容分析1. 本单元主要内容及课时分配教材首先引入直线和圆的三种位置关系的定义和判定方法,接着讲述切线的判定和性质,最后,讲述切线长定理,三角形的内切圆和内心等概念.单元课时分配:24.2.2.1直线和圆的位置关系1课时;24.2.2.2切线的判定和性质1课时;24.2.2.3切线长定理1课时.2. 教材编写意图本节教材是初中几何的重要内容,它是图形领域的基础知识,是学习《圆》的重点,学习它会为后面的学习圆和圆的位置关系等知识打下坚实的“基石”。
直接关系着圆的有关知识的学习,它是以点和圆的位置关系为基础,是点到直线的距离、勾股定理等知识的具体应用。
本节教材揭示了直线和圆相交、相切、相离的内涵和本质特征,提供了三种位置关系的判定和应用,为今后学习切线的判定和性质提供了重要方法和依据;通过渗透类比、转化、数形结合的数学思想和方法,使学生用运动联系的观点更好地理解本节内容,实现了知识上的迁移,认识上的飞跃;通过本节课的学习,使学生的认识从感性到理性、由具体到抽象,由量变到质变,有助于培养学生思维的严谨性和深刻性.所以本段教材承上启下,至关重要.3.教材内容的数学核心思想(1)数形结合思想数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.本节课利用直线和圆的三种位置关系的图形,对照三个数量关系式强化理解和记忆.(2)分类思想分类讨论思想就是把研究的问题根据题目的特点和要求,分成若干类,转化成若干个小问题来解决.本节课在解决有关直线和圆的位置关系问题时,在不确定哪一种关系时,需要分类讨论.(3)类比思想类比思想是富于创造性的一种方法,它既是一种逻辑方法,也是一种科学研究的方法,在中学数学中有着广泛的应用.本节课用类比点和圆的位置关系来发现与探究直线和圆的位置关系.4. 我的思考直线和圆的位置关系是本章的重点也是难点.教师在教这一节课的教学中从实例入手,引入课题.让学生动手操作、观察、发现直线和圆的三种位置关系,根据直线和圆的公共点的个数定义直线和圆的位置关系,再从数量关系角度研究直线和圆的位置关系.最后利用直线和圆位置关系的判定和性质解题.在教学上应该抓住以下几点:(1)教师创设学生感兴趣教学情境,让学生能否准确地观察出圆相对于直线运动的过程中直线和圆的公共点个数,得出三种不同的位置关系,进而对三种位置关系定义.(2)引导学生如何利用圆心到直线距离与半径间的数量关系来准确表述直线和圆的位置关系三种位置关系.(3)启发和帮助学生利用圆心到直线的距离和半径间的数量关系判断直线和圆的位置关系以及解决有关综合性问题.二、学生分析1.学生已有知识基础、方法基础和经验基础学生在上一节学过点和圆的位置关系,对于点和圆的位置关系的定义和判断方法有一定的理解和掌握,这是学习本节课的知识技能基础,并且九年级的学生经历了不同的数学活动,积累了一定的经验,尤其是语言表达能力和解题的思维能力,都为本节课的顺利进行奠定了基础.2.学生学习该内容可能的困难(1)在知识掌握方面,各别学生对点和圆的位置关系的记忆可能存在模糊,所以在本节课的学习中穿插着一些对本部分知识的复习,以便消除这部分学生的学习障碍.(2)学生经历动手探索直线和圆的位置关系,学生应该没有问题,但对于三种关系的定义和有关名称,个别学生可能存在记忆混淆的情况,我准备让学生自习教材,教师进行课堂提问以加强这部分学生的学习效果.(3)知识运用方面,学生解决最后两个习题时,可能不知如何入手,教师首先留给学生思考的时间,当学生不知如何下手时,再启发学生,以便达到更好的学习效果.正谓:不愤不启.不悱不发.(4)在学生特征方面:抓住学生具有好动、好奇的心理特征,课堂开始创设情境,引入让学生动手探索.等学生的注意力进入最佳学习状态时,正好开始本节课的重点教学.同时运用直观生动的形象,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性.三、学习目标1. 知识与技能:(1)经历探索直线和圆位置关系的过程,理解直线与圆有相交、相切、相离三种位置关系.(2)探索直线和圆的位置关系中圆的半径与圆心到直线的距离间的数量关系.(3)能够利用直线和圆的位置关系和数量关系解决问题.2. 过程与方法:(1)学生经历操作、观察、发现、总结出直线和圆的位置关系的过程,培养学生观察、比较、概括的逻辑思维能力.(2)学生经历探索直线和圆的位置关系中圆心到直线的距离与圆的半径的数量关系的过程,培养学生运用数学语言表述问题的能力.(3)从运动的观点和量变到质变的观点来理解直线和圆的三种位置关系,培养学生运动变化的辩证唯物主义观点.3. 情感态度价值观:学生经过观察、实验、发现、确认等数学活动,在探索直线和圆位置关系的过程中,体会运动变化的观点,量变到质变的辩证唯物主义观点,感受数学中的美感.教学重点:探索直线和圆的位置关系,运用直线和圆的位置关系解决问题.教学难点:探索直线和圆的位置关系的表达式.创设情境引入新课(1)“长河落日圆”是唐朝诗人王维的诗句,它描述了黄昏日落时分塞外特有的景象.如果我们把太阳看成一个圆,地平线看成一条直线,那你能根据直线和圆的公共点个数想象一下,直线和圆有几种位置关系吗?这是我到宁夏沙坡头旅游拍的和王维雕像的照片,以此创设情境,让学生感兴趣.促使学生运用运动的观点观察直线和圆的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆公共点个数的变化,同时让学生感受到实际生活中存在的直线和圆的三种位置关系.5分钟探究直线和圆的三种位置关系请同学们画出一个圆,把直尺或铅笔当地平线,模拟落日的情景.你能发现直线和圆的公共点个数的变化情况吗?学生自习课本,找出直线和圆相离、相切、相交的有关定义.学生用直尺近似的画出圆的切线.教师课堂上对学生进行填表测试.直线和圆的位置关系公共点个数公共点名称直线名称d与r的关系相离相切相交通过设置数学实验让学生进行独立的探究学习,促使学生主动参与数学知识的“再发现”,培养学生动手实践能力,观察、分析、比较、抽象、概括的思维能力.学生自习课本,教师测试,加强对基础知识的理解和记忆.5分钟探索直线和圆的位置关系的数量表达式问题:(1) 能否根据基本概念来判断直线与圆的位置关系?(不准确)(2) 是否还有其他的方法来判断直线与圆的位置关系?请学生回忆如何判断点和圆的位置关系的判定方法.设⊙O的半径为r,直线l到圆心O的距离为d,则:直线l和⊙O相离 d >r直线l和⊙O相切 d =r直线l和⊙O相交d<r学生使用文字叙述以上几个数学表达式.问题设疑引导学生如何判断直线和圆的位置关系?启发学生类比点和圆的位置关系的方法有无关系式判断?从数量关系的角度来探讨直线和圆的位置关系,是让学生学会运用数形结合的数学思想解题.让学生使用文字表达一是使学生加深对知识的理解和掌握,二是为下一节学习切线的判定打下基础.10分钟五、课堂检测1.已知⊙O 的半径为5cm, 圆心O 与直线AB 的距离为d , 根据条件填写d 的范围: (1)若AB 和⊙O 相离, 则 ; (2)若AB 和⊙O 相切, 则 ; (3)若AB 和⊙O 相交,则 . 2. 如图,梯形ABCD 中,AD ∥BC ,∠D =∠C =90°,E 为DC 上一点,AE ,BE 分别平分∠DAB ,∠ABC .求证:以DC 为直径的圆与直线AB 相切.。
《直线和圆的位置关系》教学教案设计.doc

24.2.2直线和圆的位置关系(一)学习目标:1、知识与技能:使学生理解直线和圆的位置关系;初步掌握直线和圆的位置关系的数量关系。
2、过程与方法:通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。
3、情感与价值观:在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以互相转化的。
重点:使学生正确理解直线和圆的位置关系。
难点:圆心到直线的距离和圆的半径大小关系的理解。
教学过程:一、回顾旧知师:我们已经学习了点和圆,同学们想一想点和圆有哪几种位置关系?生:点在圆外、点在圆上、点在圆内。
师:怎样判断点和圆的位置关系?生:根据点到圆心的距离与圆半径大小来判断。
当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内。
二、创设情境师:我们知道了点和圆有三种位置关系,那么直线和圆有几种位置关系呢?今天我们就来研究这个问题。
“24.2.2直线和圆的位置关系(一)”教师板书课题。
三、探索新知师:下面老师先画一个圆。
师:我们把直尺的边缘看作一条直线,任意移动直尺。
同学们想一想,这一过程中直线和圆的公共点可能有多少个?生:直线和圆公共点可能有0个,1个,2个。
教师画出图形并标出公共点。
师:根据公共点的个数,我们把直线和圆位置关系分成三种,即没有公共点叫相离,唯一公共点叫相切,两个公共点叫相交。
教师板书定义。
师:我们知道要判断点和圆的位置关系可以根据点到圆心的距离与半径的大小来判断,那么要判断直线和圆的位置关系可不可以用类似的方法呢?下面请一位同学画出圆心到直线的距离d?师:看图形你发现了什么?生:我发现了直线与圆相离时,d>r;相切时,d=r;相交时,d<r。
教师板书上述数量关系。
师:这是已知了直线与圆的位置关系,得出对应的数量关系,反过来,如果已知数量关系,可不可以得出对应的位置关系呢?用这种数量关系来判断直线与圆的位置关系,关键是要知道d和r,然后比较d与r大小,从而确定位置关系。
浙教版数学九年级下册2.1《直线与圆的位置关系》教学设计1

浙教版数学九年级下册2.1《直线与圆的位置关系》教学设计1一. 教材分析《直线与圆的位置关系》是浙教版数学九年级下册第2章第1节的内容。
本节主要介绍了直线与圆的位置关系,包括相离、相切和相交三种情况,并学习了判断直线与圆位置关系的方法。
通过本节的学习,为学生后续学习圆与圆的位置关系、圆的切线等内容打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和判定有一定的了解。
但直线与圆的位置关系较为抽象,需要学生具备较强的空间想象能力和逻辑思维能力。
在导入环节,可以利用生活中的实例激发学生的学习兴趣,引导学生主动探究直线与圆的位置关系。
三. 教学目标1.理解直线与圆的位置关系,掌握判断直线与圆位置关系的方法。
2.能够运用直线与圆的位置关系解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.直线与圆的位置关系的判断方法。
2.直线与圆位置关系在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例导入,激发学生的学习兴趣。
2.启发式教学法:引导学生主动探究直线与圆的位置关系,培养学生的空间想象能力和逻辑思维能力。
3.案例教学法:通过典型例题,让学生掌握判断直线与圆位置关系的方法。
4.小组合作学习:鼓励学生相互讨论,共同解决问题。
六. 教学准备1.教学课件:制作直观生动的课件,帮助学生理解直线与圆的位置关系。
2.实例图片:准备一些生活中的实例图片,用于导入和巩固环节。
3.练习题:挑选一些典型习题,让学生在课堂上练习。
七. 教学过程1.导入(5分钟)利用生活实例,如自行车的轮子、太阳的位置等,引导学生思考直线与圆的位置关系。
展示课件,让学生初步了解直线与圆的位置关系。
2.呈现(10分钟)展示直线与圆的位置关系的图片,引导学生观察并总结出直线与圆的相离、相切和相交三种情况。
讲解判断直线与圆位置关系的方法,如圆心到直线的距离与圆的半径之间的关系。
3.操练(10分钟)让学生分组讨论,每组找一个实例,运用所学的方法判断直线与圆的位置关系。
公开课教案《直线和圆的位置关系》精品教案(市一等奖)

按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。
2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。
从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。
本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。
2.1直线与圆的位置关系教学过程[复习引入]1、直线和圆有几种位置关系?分别是什么?2、填写下表位置关系相交相切相离公共点的个数d与r的关系公共点的名称直线的名称[探索新知]试一试:结合圆的切线的定义,经过⊙O上一点A,怎样准确画出⊙O的切线?如图,联结OA,过点A画半径OA的垂线,则直线AB为⊙O的切线,A为切点。说出有几种位置关系。并分别说出定义?填表画图,可讨论想一想:这样画图的理由是什么?此时圆心O到AB的距离等于半径,即AB为圆O的切线。
也就是说,经过半径外端,并且垂直于这条半径的的直线是圆的切线-----圆的切线判定教学过程例1:已知,如图,AB为⊙O的直径,AB=1cm,BC=2cm,AC=1cm.判断直线AC与⊙O是否相切,并说明理由。例2:如图,AB为⊙O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=90°,求证:DC是⊙O的切线。[课堂练习]1、AB是⊙O的直径,AE=AB,连结BE交⊙O于点C,CD⊥AE,垂足为D,求证:CD是⊙O的切线。2、已知直线AB经过⊙O上一点C,并且OA=OB,CA=CB,求证:直线AB是⊙O的切线。3、延长⊙O的半径OC至A,使得CA=OC,弦CB=OC,求证:AB是⊙O的切线[课堂小结]当已知直线与圆有公共点时,要证明直线与圆相切,可连接圆心与公共点,在证明连线垂直于这条直线。这是证明且显得一种方法。与老师一起完成解题过程,注意书写的规范性DOEDACBOCBAACOB布置作业见《轻巧夺冠》中考链接必做,课外拓展与提高练习选作板书设计:2.1直线与圆的位置关系 (2)经过半径外端,并且垂直于这条半径的的直线是圆的切线-----圆的切线判定例1:例2:课后自评与反思:本节课仍存在着一些不足:学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
2.1直线与圆的位置关系(1)

西向东方向航行,行驶了18海里到达B,这时岛中心P
在北偏东30°方向。若货船不改变航向,问货船会不
会进入暗礁区?
解:如图,作PH⊥AB,垂足为H.
则∠PAH=30°,∠PBH=60°
P
∴∠APB=∠PBH-∠PAB=30°
∴AB=BP=18(海里) ∴PH=BPsin∠PBH
30° 60°
=18sin60°
注意:在实际应用中,常采用第二种方法判定.
∴直线l与⊙O相交
∵d=r
∴直线l与⊙O相切
试一试
3、在△ABC中,∠ACB=90°,AC=3cm,BC=4cm,设 ⊙C的半径为r,请根据r的下列值,判断直线AB与⊙C 的位置关系,并说明理由。
B
(1)r =2厘米
(2)r =2.4厘米
4cm
(3)r =3厘米
C
3cm
A
试一试
3、在△ABC中,∠ACB=90°,AC=3cm,BC=4cm,设⊙C的半径为 r,请根据r的下列值,判断直线AB与⊙C的位置关系,并说明理 由。 (1) r = 2cm (2)r =2.4cm (3) r =3cm
l
r
o
d
l
o
rd
l
结合图形,如何由数量关系判定直线与圆的位置关系?
设圆心到直线的距离为d,圆的半径为r:
当 d>r 时,直线与圆的位置关系是相离
当 d= 当 dr<r
时,直线与圆的位置关系是相切 时,直线与圆的位置关系是相交
观察 讨论
如果已知直线l与圆的位置关系分别是相离、相切、相交
时,圆心O到直线l的距离d与圆的半径r有什么关系?
解:过C作CD⊥AB,垂足为D,则
浙教版数学九年级下册《2.1 直线与圆的位置关系》教案1

浙教版数学九年级下册《2.1 直线与圆的位置关系》教案1一. 教材分析浙教版数学九年级下册《2.1 直线与圆的位置关系》这一节主要介绍了直线与圆的位置关系,包括相离、相切和相交三种情况。
学生通过学习这一节内容,能够理解直线与圆的位置关系的概念,掌握判断直线与圆位置关系的方法,并能运用到实际问题中。
二. 学情分析九年级的学生已经学习了直线、圆的基本知识,对图形的几何关系有一定的理解。
但是,对于直线与圆的位置关系的理解和运用还需要加强。
因此,在教学过程中,教师需要通过具体例题和实际问题,引导学生理解和掌握直线与圆的位置关系。
三. 教学目标1.理解直线与圆的位置关系的概念,包括相离、相切和相交。
2.掌握判断直线与圆位置关系的方法。
3.能够运用直线与圆的位置关系解决实际问题。
四. 教学重难点1.重点:直线与圆的位置关系的概念和判断方法。
2.难点:直线与圆的位置关系的运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过具体例题和实际问题,引导学生理解和掌握直线与圆的位置关系,再通过小组合作,让学生运用所学知识解决实际问题。
六. 教学准备1.教学PPT。
2.相关例题和实际问题。
3.小组合作学习材料。
七. 教学过程1.导入(5分钟)通过PPT展示直线与圆的图片,引导学生思考直线与圆的位置关系。
2.呈现(15分钟)介绍直线与圆的位置关系的概念,包括相离、相切和相交。
讲解判断直线与圆位置关系的方法。
3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导。
4.巩固(10分钟)让学生分组讨论,分享各自完成的练习题的解题思路和方法。
教师点评并总结。
5.拓展(10分钟)让学生运用所学知识,解决实际问题。
教师提供相关案例,学生分组讨论并给出解决方案。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。
7.家庭作业(5分钟)布置相关练习题,让学生回家巩固所学知识。
8.板书(5分钟)教师在黑板上板书本节课的重点知识点,方便学生复习。
《直线与圆的位置关系》(精选5篇)

《直线与圆的位置关系》(精选5篇)《直线与圆的位置关系》篇1一、教学目标知识与技能:使学生从具体的事例中认知和理解直线与圆的三种位置关系并能概括其定义,会用定义来判断直线与圆的位置关系,通过类比点与圆的位置关系及观察、实验等活动探究直线与圆的位置关系的数量关系及其运用。
过程与方法:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。
情感态度与价值观:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。
二、教学重、难点重点:理解直线与圆的相交、相离、相切三种位置关系;难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。
三、教学设计问题设计意图师生活动1.初中学过的平面几何中,直线与圆的位置关系有几类?2. 图形中的圆与直线的位置都是一样的吗?启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课.师:让学生之间进行讨论、交流,引导学生观察图形,导入新课.生:看图,并说出自己的看法.2.直线与圆的位置关系有哪几种呢?得出直线与圆的位置关系的几何特征与种类.师:引导学生利用类比、归纳的思想,总结直线与圆的位置关系的种类,进一步深化“数形结合”的数学思想.问题设计意图师生活动生:观察图形,利用类比的方法,归纳直线与圆的位置关系.3.在初中,我们怎样判断直线与圆的位置关系呢?如何用直线与圆的方程判断它们之间的位置关系呢?使学生回忆初中的数学知识,培养抽象概括能力.师:引导学生回忆初中判断直线与圆的位置关系的思想过程.生:回忆直线与圆的位置关系的判断过程.4.你能说出判断直线与圆的位置关系的两种方法吗?抽象判断直线与圆的位置关系的思路与方法.师:引导学生从几何的角度说明判断方法和通过直线与圆的方程说明判断方法.生:利用图形,寻找两种方法的数学思想.5.你能两种判断直线与圆的位置关系的数学思想解决例1的问题吗?体会判断直线与圆的位置关系的思想方法,关注量与量之间的关系.师:指导学生阅读教科书上的例1.生:阅读科书上的例1,并完成教科书第128页的练习题2.6.通过学习教科书的例1,你能总结一下判断直线与圆的位置关系的步骤吗?使学生熟悉判断直线与圆的位置关系的基本步骤.师;分析例1,并展示解答过程;启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有总结思考的时间.生:交流自己总结的步骤.师:展示解题步骤.7.通过学习教科书上的例2,你能说明例2中体现出来的数学思想方法吗?进一步深化“数形结合”的数学思想.师:指导学生阅读并完成教科书上的例2,启发学生利用“数形结合”的数学思想解决问题.问题设计意图师生活动8.通过例2的学习,你发现了什么?明确弦长的运算方法.师:引导并启发学生探索直线与圆的相交弦的求法.生:通过分析、抽象、归纳,得出相交弦长的运算方法.9.完成教科书第128页的练习题1、2、3、4.巩固所学过的知识,进一步理解和掌握直线与圆的位置关系.师:引导学生完成练习题.生:互相讨论、交流,完成练习题.10.课堂小结:教师提出下列问题让学生思考:(1)通过直线与圆的位置关系的判断,你学到了什么?(2)判断直线与圆的位置关系有几种方法?它们的特点是什么?(3)如何求出直线与圆的相交弦长?作业:习题4.2a组:1、3.《直线与圆的位置关系》篇2教材:华东师大版实验教材九年级上册一、教材分析:1、教材的地位和作用圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。
直线与圆的位置关系(第1课时) 教案 说课稿 课件 教学反思

24.2.2直线与圆的位置关系(第1课时)实验中学孙士洋【教学任务分析】【教学环节安排】【当堂达标自测题】一、填空题.1.如图24.2.2.1-3,PA切⊙O于点A,该圆的半径为3,PO=5,则PA的长等于_____.图24.2.2.1-3图24.2.2.1-4图24.2.2.1-52.如图24.2.2.1-4,⊙O的半径为5,PA切⊙O•于点A,•∠APO=•30•°,•则切线长PA•为______.3.如图24.2.2.1-5,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=______.二、选择题4.如图24.2.2.1-6,直线AB切⊙O于点C,∠OAC=∠OBC,则下列结论错误的是()图24.2.2.1-6A.OC是△ABO中AB边上的高 B.OC所在直线是△ABO的对称轴C.OC是∠AOB的平分线 D.AC>BC5.⊙O的半径是6,点O到直线a的距离为5,则直线a与⊙O的位置关系为()A.相离B.相切C.相交D.内含6.下列判断正确的是()①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,•则直线与圆相交.A.①②③B.①②C.②③D.③三、解答题7.如图24.2.2.1-7所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切?图24.2.2.1-7 8.如图24.2.2.1-8,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB•的延长线于点D,∠ACD=120°,BD=10.(1)求证:CA=CD;(2)求⊙O的半径.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1第1课时直线与圆的位置关系一、选择题1.如图K-46-1,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是()图K-46-1A.相离B.相交C.相切D.以上三种情况均有可能2.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是()A.0<r<6 B.r=6C.r>6 D.r≥63.在Rt△ABC中,∠C=90°,AC=3 cm,BC=4 cm,以点C为圆心,r为半径作圆,若⊙C与直线AB相切,则r的值为()A.2 cm B.2.4 cmC.3 cm D.4 cm4.如图K-46-2,在△ABC中,AB=3,AC=4,BC=5,D,E分别是AC,AB的中点,则以DE为直径的圆与BC的位置关系是()A.相切B.相交C.相离D.无法确定图K-46-25.如图K-46-3,已知点A,B在半径为1的⊙O上,∠AOB=60°,延长OB至点C,过点C作直线OA的垂线记为l,则下列说法正确的是()图K-46-3A.当BC等于0.5时,l与⊙O相离B.当BC等于2时,l与⊙O相切C .当BC 等于1时,l 与⊙O 相交D .当BC 不为1时,l 与⊙O 不相切二、填空题6.若⊙O 的半径为r ,点O 到直线l 的距离为d ,且8-2r +||d -4=0,则直线l 与⊙O 有________个公共点.图K -46-47.如图K -46-4所示,已知∠AOB =45°,以点M 为圆心,2 cm 为半径作⊙M ,若点M 在OB 边上运动,则当OM =________cm 时,⊙M 与射线OA 相切.8.在△ABC 中,AB =AC =5,BC =6,以点A 为圆心,4为半径作的⊙A 与直线BC 的位置关系是________.9.在△ABO 中,若OA =OB =2,⊙O 的半径为1,当∠AOB =________时,直线AB 与⊙O 相切;当∠AOB 满足________时,直线AB 与⊙O 相交;当∠AOB 满足________时,直线AB 与⊙O 相离.链接学习手册例1归纳总结10.如图K -46-5,给定一个半径为2的圆,圆心O 到水平直线l 的距离为d ,即OM =d .我们把圆上到直线l 的距离等于1的点的个数记为m .如d =0时,l 为经过圆心O 的一条直线,此时圆上有四个到直线l 的距离等于1的点,即m =4,由此可知:图K -46-5(1)当d =3时,m =________;(2)当m =2时,d 的取值范围是________.三、解答题11.设⊙O 的半径为r ,圆心O 到直线l 的距离为d .根据下列条件判断直线l 与⊙O 的位置关系:(1)d =5,r =4;(2)d =73,r =6; (3)d =2 2,r =4sin45°.12.如图K -46-6,在Rt △ABC 中,∠C =90°,AC =6 cm ,BC =8 cm ,以点C 为圆心,r 为半径画圆.若⊙C 与斜边..AB 只有一个公共点,求r 的取值范围.图K -46-613.如图K -46-7,已知⊙O 与BC 相切,点C 不是切点,AO ⊥OC ,∠OAC =∠ABO ,且AC =BO ,判断直线AB 与⊙O 的位置关系,并说明理由.图K -46-714.如图K -46-8,在四边形ABCD 中,∠A =∠B =90°,AD ∥BC ,E 为AB 上的一点,DE 平分∠ADC ,CE 平分∠BCD ,以AB 为直径的圆与边CD 有怎样的位置关系?图K -46-815.如图K -46-9所示,要在某林场东西方向的两地之间修一条公路MN ,已知点C 周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60°方向上.请判断公路MN 是否会穿过原始森林保护区,并说明理由.(参考数据:3≈1.732)图K -46-916阅读学习已知点P (x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b |1+k 2计算. 例如:求点P (-1,2)到直线y =3x +7的距离.解:因为直线y =3x +7,其中k =3,b =7,所以点P (-1,2)到直线y =3x +7的距离为:d =|kx 0-y 0+b |1+k 2=|3×(-1)-2+7|1+32=210=105. 根据以上材料,解答下列问题:(1)求点P (1,-1)到直线y =x -1的距离;(2)已知⊙Q 的圆心Q 的坐标为(0,5),半径r 为2,判断⊙Q 与直线y =3x +9的位置关系,并说明理由.1.[解析] C 过点C 作CD ⊥AO 于点D ,∵∠O =30°,OC =6,∴DC =3,∴以点C 为圆心,半径为3的圆与OA 的位置关系是相切.故选C .2.[答案] C3.[答案] B4.[解析] B 过点A 作AM ⊥BC 于点M ,交DE 于点N ,∴AM ·BC =AC·AB ,∴AM =3×45=2.4. ∵D ,E 分别是AC ,AB 的中点,∴DE ∥BC ,DE =12BC =2.5, ∴AN =MN =12AM =1.2. ∵以DE 为直径的圆的半径为1.25,1.25>1.2,∴以DE 为直径的圆与BC 的位置关系是相交.5.[解析] D A .∵BC =0.5,∴OC =OB +CB =1.5.∵∠AOB =60°,∴∠ACO =30°,AO =12OC =0.75<1,∴l 与⊙O 相交,故A 错误; B .∵BC =2,∴OC =OB +CB =3.∵∠AOB =60°,∴∠ACO =30°,AO =12OC =1.5>1,∴l 与⊙O 相离,故B 错误;C .∵BC =1,∴OC =OB +CB =2.∵∠AOB =60°,∴∠ACO =30°,AO =12OC =1,∴l 与⊙O 相切,故C 错误;D .∵BC ≠1,∴OC =OB +CB ≠2.∵∠AOB =60°,∴∠ACO =30°,AO =12OC ≠1,∴l 与⊙O 不相切,故D 正确.故选D .6.[答案] 17.[答案] 2 2[解析] 过点M 作MD ⊥OA ,垂足为D.由于⊙M 与OA 相切,故MD =2 cm .因为∠BOA =45°,所以OD =MD =2 cm ,所以OM =22+22=2 2(cm ).8.[答案] 相切9.[答案] 120° 120°<∠AOB <180° 0°<∠AOB <120°[解析] 通过画草图,过点O 作OC ⊥AB 于点C ,由直线AB 与⊙O 相切,可得OC =1,不难求得∠AOC =60°,故∠AOB =120°;另两种情况也不难确定.10.(1)1 (2)1<d <311.解:(1)∵d>r ,∴直线l 与⊙O 相离.(2)∵d<r ,∴直线l 与⊙O 相交.(3)∵d =r =2 2,∴直线l 与⊙O 相切.12.解:如图所示,过点C 作CD ⊥AB 于点D.在Rt △ABC 中,∠ACB =90°,AC =6 cm ,BC =8 cm ,∴AB =AC 2+BC 2=62+82=10(cm ).∵S △ABC =12AB·CD =12AC·BC , ∴AB ·CD =AC·BC ,∴10×CD =6×8,∴CD =4.8 cm .观察图知,当⊙C 的半径r =4.8 cm 时,⊙C 与斜边AB 只有一个公共点;当6 cm <r ≤8 cm 时,⊙C 与斜边AB 只有一个公共点,∴当⊙C 与斜边AB 只有一个公共点时,半径r 的取值范围是r =4.8 cm 或6 cm <r ≤8 cm .13.解:相离.理由:如图,延长BA 至点D ,使得BD =OA ,连结OD.在△OAC 与△DBO 中,⎩⎨⎧AC =BO ,∠OAC =∠DBO ,OA =BD ,∴△OAC ≌△DBO(SAS),∴OC =OD ,∠AOC =∠ODB.∵AO ⊥OC ,∴∠ODB =90°.∵⊙O 与BC 相切,点C 不是切点,∴OC >半径,∴OD >半径,∴直线AB 与⊙O 的位置关系是相离.14.解:如图,过点E 作EF ⊥CD 于点F.∵DE 平分∠ADC ,CE 平分∠BCD ,∠A =∠B =90°,∴EA =EF =EB =12AB , ∴以AB 为直径的圆,即⊙E 的圆心E 到直线CD 的距离等于半径,∴以AB 为直径的圆与边CD 相切.15.[解析] 过点C 作CH ⊥MN ,比较CH 的长与200米的大小即可,即判断直线MN 与以点C 为圆心,200米为半径的圆的位置关系.解:公路MN 不会穿过原始森林保护区.理由如下:如图所示,过点C 作CH ⊥AB 于点H.设CH =x 米,由已知得∠HAC =45°,∠HBC =30°.在Rt △ACH 中,AH =CH =x 米.在Rt △HBC 中,tan ∠HBC =CH BH, ∴BH =CH tan 30°=x 33=3x(米). 又∵AH +BH =AB ,∴x +3x =600, 解得x =6001+3≈220(米)>200米, 故公路MN 不会穿过原始森林保护区.15解:(1)因为直线y =x -1,其中k =1,b =-1,所以点P(1,-1)到直线y =x -1的距离为:d =||kx 0-y 0+b 1+k 2=||1×1-(-1)+(-1)1+12=12=22. (2)⊙Q 与直线y =3x +9相切.理由如下:圆心Q(0,5)到直线y =3x +9的距离为:d =||3×0-5+91+(3)2=42=2. 因为⊙Q 的半径r 为2,即d =r ,所以⊙Q 与直线y =3x +9相切.。