直线与圆的位置关系学案
广东省江门一中(人教版)高中数学必修二 4.2.4 直线圆的关系综合 学案

一、学习目标:1、直线与圆的位置关系,圆的切线方程和弦长问题.2、能用直线与圆的位置关系解决简单的实际问题.二、课前导学:知识梳理:1、直线与圆的位置关系直线l:Ax+By+C=0与圆(x-a)2+(y-b)2=r2(r>0)的位置关系:(1)几何方法:圆心(a,b)到直线Ax+By+C=0的距离d=d<r⇔直线与圆相交;d=r⇔直线与圆相切;d>r⇔直线与圆相离..(2)代数方法:由消元得到的一元二次方程的判别式为Δ,则Δ>0⇔直线与圆相交;Δ=0⇔直线与圆相切;Δ<0⇔直线与圆相离.2.圆的切线(1)求过圆上的一点(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,再由垂直关系知切线斜率为-,由点斜式方程可求得切线方程.如果k=0或k不存在,则可直接得切线方程为x=x0或y=y0.(2)求过圆外一点(x0,y0)的圆的切线方程:①几何方法:设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0.由圆心到直线的距离等于半径,可求得k.(2)求过圆外一点(x0,y0)的圆的切线方程:①几何方法:设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0.由圆心到直线的距离等于半径,可求得k.②代数方法:设切线方程为y-y0=k(x-x0),即y=kx-kx0+y0,代入圆的方程,得到一个关于x的一元二次方程,由Δ=0,可求得k.经过圆上一点的圆的切线有且仅有一条;经过圆外一点P(x0,y0)的圆的切线有两条,因此用点斜式或斜截式直线方程求切线时,若有两解,则所求两条切线方程可得,若仅有一解,则另一条必为x=x0.(3)从圆外一点P(x1,y1)引到圆x2+y2+Dx+Ey+F=0的切线,则点P到切点的切线长d=x21+y21+Dx1+Ey1+F.三、合作探究:探究一 求圆的切线方程过点作圆的切线,首先要判断点的位置,来确定是一条切线还是两条切线.例1 过点A (4,-3)作圆C :(x -3)2+(y -1)2=1的切线,求此切线的方程.【思路点拨】 可用待定系数法求解,但千万不要忽视斜率不存在的情况.即15x +8y -36=0.(2)若切线斜率不存在,圆心C (3,1)到直线x =4的距离也为1,这时直线与圆也相切,所以另一条切线方程是x =4,综上,所求切线方程为15x +8y -36=0或x =4.【名师点评】 此题易丢掉斜率不存在的切线,注意补救.探究二 利用直线与圆的位置关系求圆方程圆所满足的条件是利用直线和圆的位置关系给出的,挖掘其位置关系,找出圆的条件.【解】 ∵(4-3)2+(-3-1)2=17>1, ∴点A 在圆外.(1)若所求直线的斜率存在,设切线斜率为k ,则切线方程为y +3=k (x -4).因为圆心C (3,1)到切线的距离等于半径1,所以|3k -1-3-4k |k 2+1=1,解得k =-158. 所以切线方程为y +3=-158(x -4),例2【名师点评】 (1)明确圆心的位置及圆的半径与两平行线间的距离之间的关系是解决本题的关键.(2)要注意应用切线的如下性质:①过切点且垂直于切线的直线必过圆心;②过圆心且垂直于切线的直线必过切点.探究三 圆的弦长及应用例3 已知直线:230l x y +-=与圆22:60C x y x y m ++-+=相交于,P Q 两点,O 为坐标原点,D 为线段PQ 的中点。
人教版数学高一-必修2学案 4.2.1直线与圆的位置关系

4.2.1直线与圆的位置关系基础梳理直线Ax+By+C=0与圆(x-a)2+(y-b)2=r2的位置关系及判断如下表所示:练习1:直线x+y=0与圆x2+y2=1的位置关系是相交.练习2:(1)直线x+y=0与圆x2+y2=2联立求解知其解为(1,-1)或(-1,1),故直线与圆的位置关系为相交.(2)直线x+y=2与圆x2+y2=2联立求解知其解为(1,1).故直线与圆的位置关系为相切.►思考应用如何求直线被圆所截得的弦长?解析:①应用圆中直角三角形:半径r,圆心到直线的距离d,弦长l具有的关系:r 2=d 2+⎝ ⎛⎭⎪⎫l 22. ②利用弦长公式:设直线l :y =kx +b ,与圆两交点(x 1,y 1),(x 2,y 2),将直线方程代入圆的方程,消元后利用根与系数的关系得弦长l =1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2].自测自评1.直线y =x +1与圆x 2+y 2=1的位置关系是(B )A .相切B .相交但直线不过圆心C .直线过圆心D .相离解析:圆心(0,0)到直线的距离为|1|12+12=12<1,且(0,0)不在直线y =x +1上,故选B .2.下列说法中正确的是(D )A .若直线与圆有两个交点,则直线与圆相切B .与半径垂直的直线与圆相切C .过半径外端的直线与圆相切D .过圆心且与切线垂直的直线过切点解析:A 为相交,B 、C 中的直线有无数条.3.直线y =x -1上的点到圆x 2+y 2+4x -2y +4=0的最近距离为(C )A .2 2B .2-1C .22-1D .14.已知直线x =a(a>0)和圆(x -1)2+y 2=4相切,那么a 的值是(C )A .5B .4C .3D .2解析:∵|a -1|=2,又a>0,∴a =3.5.经过点M(2,1)作圆x 2+y 2=5的切线,则切线方程为(C )A .2x +y -5=0B .2x +y +5=0C .2x +y -5=0D .2x +y +5=0解析:设过点M 的圆的切线上任一点的坐标为(x ,y),∵点M(2,1)在圆x 2+y 2=5上,∴y -1x -2·1-02-0=-1,即2x +y -5=0.题型一 判断直线与圆的位置关系题型二 圆的切线方程题型三 直线与圆相交的问题题型四 直线与圆有关最值问题基础达标1.若PQ 是圆x 2+y 2=9的弦,PQ 的中点是(1,2),则直线PQ 的方程是(B )A .x +2y -3=0B .x +2y -5=0C .2x -y +4=0D .2x -y =0解析:结合圆的几何性质知直线PQ 过点A (1,2),且和直线OA 垂直,故其方程为:y -2=-12(x -1),整理得x +2y -5=0. 2.已知点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最大值是(D )A .6B .8C .3- 2D .3+ 2解析:直线AB 的方程是x -2 +y 2=1,∣AB ∣=22,则当△ABC 面积最大时,边AB 上的高即点C 到直线AB 的距离d 取最大值.又圆心M (1,0),半径r =1,点M 到直线的距离为322,由圆的几何性质得d 的最大值是322+1,所以△ABC 面积的最大值是12×22·⎝ ⎛⎭⎪⎫322+1=3+ 2. 3.圆x 2+y 2-4x =0在点P (1,3)处的切线方程是(D)A .x +3y -2=0B .x +3y -4=0C .x -3y +4=0D .x -3y +2=0 解析:圆心为C (2,0),则直线CP 的斜率为3-01-2=-3,又切线与直线CP 垂直,故切线斜率为33,由点斜式得切线方程:y -3=33(x -1)即x -3y +2=0.4.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为(A )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=05.已知圆C 的方程为:x 2+y 2=4.(1)求过点P (1,2)且与圆C 相切的直线l 的方程;(2)直线l 过点P (1,2),且与圆C 交于A 、B 两点,若|AB |=23,求直线l 的方程.解析:(1)显然直线l 的斜率存在,设切线方程为y -2=k (x -1), 则由|2-k |k 2+1=2得k 1=0,k 2=-43, 故所求的切线方程为y =2或4x +3y -10=0.(2)当直线l 垂直于x 轴时,此时直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),这两点的距离为23,满足题意;当直线l 不垂直于x 轴时,设其方程为y -2=k (x -1),即kx -y -k +2=0,设圆心到此直线的距离为d ,则23=24-d 2,∴d =1,∴1=|-k +2|k 2+1,∴k =34, 此时直线方程为3x -4y +5=0,综上所述,所求直线方程为3x -4y +5=0或x =1. 巩固提升6. 圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为(A )A .(x -2)2+(y -1)2=1B .(x +1)2+(y -2)2=1C .(x +2)2+(y -1)2=1D .(x -1)2+(y +2)2=17.若实数x ,y 满足(x -2)2+y 2=3,那么y x 的最大值为(D) A.12 B.33 C.32D. 3 解析:方程(x -2)2+y 2=3的曲线是以A (2,0)为圆心,以3为半径的圆,实数x ,y 是圆上的点P (x ,y )的坐标,而y x是直线OP 的斜率,由下图可知当点P 在第一象限且OP 为圆的切线时,k 最大.由⎩⎪⎨⎪⎧(x -2)2+y 2=3,y x =k ,得(1+k 2)x 2+1-4x =0, Δ=12-4k 2=0,有k =±3.∴k 最大即y x最大为 3.故选D. 8.直线y =x +b 与曲线y =1-x 2有两个公共点,则b 的取值范围是________.解析:曲线为x 2+y 2=1(y ≥0),表示单位圆的上半圆,由数形结合法,知1≤b < 2.答案:1≤b < 29.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R).(1)求证:直线l 恒过定点;(2)判断直线l 与圆C 的位置关系;(3)当m =0时,求直线l 被圆C 截得的弦长.解析:(1)直线l 的方程可化为(2x +y -7)m +x +y -4=0.∵m ∈R ,∴⎩⎨⎧2x +y -7=0,x +y -4=0,解得⎩⎨⎧x =3,y =1.∴直线l 恒过定点A (3,1).(2)圆心C (1,2),|AC |=(3-1)2+(1-2)2=5<5,∴点A 在圆C 内.从而直线l 与圆C 相交(无论m 为何实数).(3)当m =0时,直线l 的方程为x +y -4=0,圆心C (1,2)到它的距离为d =|1+2-4|12+12=12. ∴此时直线l 被圆C 截得的弦长为2r 2-d 2=225-12=7 2.1.判断直线与圆的位置关系主要有以下两种方法.(1)判断直线l 与圆C 的方程组成的方程组的解.有两解时,相交;有一解时,相切;无解时,相离;(2)判断圆心到直线的距离d 与圆的半径r 的大小关系:当d <r 时,相交;当d =r 时,相切;当d >r 时,相离.2.设切线方程时,若设点斜式一定要注意斜率不存在的情况.3.直线与特殊圆相切,切线的求法.(1)当点(x 0,y 0)在圆x 2+y 2=r 2上时,切线方程为x 0x +y 0y =r 2;(2)若点(x 0,y 0)在圆(x -a )2+(y -b )2=r 2上,则切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2;(3)斜率为k且与圆x2+y2=r2相切的切线方程为:y=kx±r1+k2;斜率为k且与圆(x-a)2+(y-b)2=r2相切的切线方程的求法,可以设切线为y =kx+m,然后变成一般式kx-y+m=0,利用圆心到切线的距离等于半径列出方程求m.。
《直线与圆的位置关系》教学设计

《直线与圆的位置关系》教学设计一、教学内容解析《直线与圆的位置关系》是圆与方程这一章的重要内容,它是学生在初中平面几何中已学过直线与圆的三种位置关系,以及在前面几节学习了直线与圆的方程的基础上,从代数角度,运用坐标法进一步研究直线与圆的位置关系,体会数形结合思想,初步形成代数法解决几何问题的能力,并逐渐内化为学生的习惯和基本素质,为以后学习直线与圆锥曲线的知识打下基础.本节课内容共一个课时.教学过程中,让学生利用已有的知识,自主探索用坐标法去研究直线与圆的位置关系的方法,体验有关的数学思想,培养学生“用数学”以及合作学习的意识.二、教学目标设置由于本节课在初中已有涉及,教师准备“学案”先让学生提前思考,归纳出直线与圆的三种位置关系以及代数与几何的两种判定方法.通过学生的观察、分析、概括,促使学生把解析几何中用方程研究曲线的思想与初中已掌握的圆的几何性质相结合,从而把传授知识和培养能力融为一体,完成本节课的教学目标.三、学生学情分析在经历直线、圆的方程学习后,学生已经具备了一定的用方程研究几何对象的能力,因此,我在教学中通过提供的丰富的数学学习环境,创设便于观察和思考的情境,给他们提供自主探究的空间,使学生经历完整的数学学习过程,引导学生在已有数学认知结构的基础上,通过积极主动的思维而将新知识内化到自己的认知结构中去.同时为他们施展创造才华搭建一个合理的平台,使他们感知学习数学的快乐.高中数学教学的重要目标之一是提高学生的数学思维能力,通过不同形式的探究活动,让学生亲身经历知识的发生和发展过程,从中领悟解决问题的思想方法,不断提高分析和解决问题的能力,使数学学习变成一种愉快的探究活动,从中体验成功的喜悦,不断增强探究知识的欲望和热情,养成一种良好的思维品质和习惯.根据本节课的教学内容和我所教学生的实际,本节课的教学目标确定为以下三个方面:知识与技能目标:(1)理解直线与圆三种位置关系.(2)掌握用圆心到直线的距离d与圆的半径r比较,以及通过方程组解的个数判断直线与圆位置关系的方法.过程与方法目标:(1)通过对直线与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、动手实践、合作交流的学习方式.(2)强化学生用坐标法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力.情感、态度与价值观目标:通过对本节课知识的探究活动,加深学生对坐标法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质,培养学生的创新意识和科学精神.四、教学策略分析本节课以问题为载体,学生活动为主线,让学生利用已有的知识,自主探究,培养学生主动学习的习惯.通过建立数学模型、数形结合,提高学生分析问题和解决问题的能力,进一步培养学生的数学素质;通过对直线与圆的位置关系判断方法的探究,进一步提高学生的思维能力和归纳能力.在教学方法的选择上,采用教师组织引导,学生自主探究、动手实践、小组合作交流的学习方式,力求体现教师的设计者、组织者、引导者、合作者的作用,突出学生的主体地位.五、课前准备:直线与圆的位置关系学案(附后)例如图,已知直线直线与圆已知过点,求直线的方程.(课件)六、教学评价设计新课程强调学习过程的评价,因此,在对学生学习结果评价的同时,更应高度重视学生学习过程中的参与度、自信心、合作意识、独立思考的能力及学习的兴趣等.根据本节课的特点,我从以下几个方面进行教学评价:通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学.。
高中数学(直线和圆的位置关系)导学案 北师大版必修2 学案

第10课时直线和圆的位置关系1.理解直线与圆的位置关系的种类.2.利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离.3.会用方程思想(判别式法)或点到直线的距离来判断直线与圆的位置关系.一艘船在沿直线返回港口的途中,接到台风预报:台风中心位于船正西70千米处,受影响的X围是半径为30千米的圆形区域.已知港口位于台风中心正北40千米处,如果这艘船不改变航线,那么它是否会受到台风影响?这个问题可归结为直线和圆是否有公共点的问题,也是我们这节课研究的对象.问题1:直线与圆的位置关系有三种:、、.判断直线与圆的位置关系有两种方法:(1)代数法:联立直线方程与圆的方程消去x或y整理成一元二次方程后,计算判别式Δ,当判别式Δ<0时,直线和圆;当判别式Δ=0时,直线和圆 ;当判别式Δ>0时,直线和圆.(2)几何法:利用圆心到直线的距离d和圆半径r的大小关系:d<r⇒,d=r⇒,d>r⇒.问题2:过一定点是否都存在圆的切线?如果存在,如何求圆的切线方程?(1)若点在圆内,此时直线和圆相交,不存在圆的切线.(2)若点在圆上,则过该点的切线只有,切线方程求法如下:①直接法,先求该点与圆心的连线的直线的斜率,再利用垂直关系求出切线斜率,最后用点斜式求出切线方程.②设元法,先设出切线方程(注意斜率不存在时的讨论),再利用圆心到切线的距离等于半径,求出所设参数.③公式法,设A(x0,y0)是圆(x-a)2+(y-b)2=r2上的一点,则过点A的切线方程为:(x-a)(x0-a)+(y-b)·(y0-b)=r2,特别地,当圆心在原点时,即:A(x0,y0)是圆x2+y2=r2上一点,则过点A的切线方程为:.(3)若点在圆外,则过该点的切线有,切线方程求法如下:首先分析斜率不存在是否满足条件,再分析斜率存在时:设斜率为k,写出切线方程,利用圆心到切线的距离等于半径求出斜率,从而求出切线方程.问题3:计算直线被圆截得的弦长的常用方法(1)几何法:运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数法:运用韦达定理及两点距离公式有|AB|= .问题4:用直线与圆的知识解决实际问题的步骤(1)仔细审题,理解题意;(2)引入,建立;(3)用直线与圆的知识解决已建立的数学模型;(4)用结果解释.1.直线3x+4y=5与圆x2+y2=16的位置关系是( ).2.自点A(-1,4)作圆(x-2)2+(y-3)2=1的切线,则切线长为().A. B.3 C.3.若直线y=kx+2与圆(x-2)2+(y-3)2=1有两个不同的交点,则k的取值X围是.4.过原点作圆x2+y2-2x-2y+1=0的切线,求切线方程.圆的切线方程已知圆的方程是x2+y2=r2,求经过圆上一点M(x0,y0)的切线方程.求圆的弦长求直线x-y+2=0被圆x2+y2=4截得的弦长.利用圆的方程求最值已知实数x,y满足(x-2)2+y2=4,求3x2+4y2的最值.求过点P(4,5)的圆(x-2)2+y2=4的切线方程.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.当直线l与圆C相交于A,B两点,且AB=2时,求直线l的方程.已知点P(x,y)在圆x2+(y-1)2=1上运动,则的最大值为;最小值为.1.直线y=x+1与圆x2+y2=1的位置关系是().2.圆C:x2+y2-4x=0在点P(1,)处的切线方程为().A.x+y-2=0B.x+y-4=0C.x-y+4=0D.x-y+2=03.直线x-y+m=0与圆x2+y2-2x-2=0相切,则实数m等于.4.已知圆x2+y2=8内一点P(-1,2),过点P的直线l的倾斜角为135°,直线l交圆于A、B两点,求AB的长.(2012年·卷) 直线y=x被圆x2+(y-2)2=4截得的弦长为.考题变式(我来改编):第10课时直线和圆的位置关系知识体系梳理问题1:相交相切相离(1)相离相切相交(2)相交相切相离问题2:(2)一条③x0x+y0y=r2(3)两条问题3:(2)·|x A-x B|=问题4:(2)数学符号数学模型(4)实际问题基础学习交流1.A∵d==1<4,∴直线与圆的位置关系是相交.2.B因为过圆外一点作圆的切线,两条切线长相等,故切线长为=3,或2-(-1)=3.3.(0,)依题意有<1,解得0<k<,∴k的取值X围是(0,).4.解:已知圆的标准方程为(x-1)2+(y-1)2=1,所以圆与坐标轴相切,所以切线方程为x=0或y=0.重点难点探究探究一: 【解析】(法一)当点M不在坐标轴上时,设切线的斜率为k,半径OM的斜率为k1,∵圆的切线垂直于过切点的半径,∴k=-.∵k1=,∴k=-.∴经过点M的切线方程是y-y0=-(x-x0),整理得x0x+y0y=+.又∵点M(x0,y0)在圆上,∴+=r2.∴所求的切线方程是x0x+y0y=r2.当点M在坐标轴上时,可以验证上面的方程同样适用.(法二)设P(x,y)为所求切线上的任意一点,当P与M不重合时,△OPM为直角三角形,OP为斜边,∴OP2=OM2+MP2,即x2+y2=++(x-x0)2+(y-y0)2,整理得x0x+y0y=r2.可以验证,当P与M重合时同样适合上式,故所求的切线方程是x0x+y0y=r2.(法三)设P(x,y)为所求切线上的任意一点(M与P不重合),当点M不在坐标轴上时,由OM⊥MP得k OM· k MP=-1,即·=-1,整理得x0x+y0y=r2.可以验证,当点M在坐标轴上时,同样适合上式;当P与M重合时亦适合上式.故所求的切线方程是x0x+y0y=r2.【小结】(1)求圆的切线方程一般有三种方法:①设切线斜率,利用判别式,但过程冗长,计算复杂,易出错,通常不采用此法,但该法却是判断直线和曲线相切的通法,以后会经常用到;②设切线斜率,利用圆心到直线的距离等于半径;③设切点,利用过圆心和切点的直线与切线垂直.前两种方法要验证斜率是否存在.(2)过圆外一点可作圆的两条切线.探究二:【解析】(法一)直线x-y+2=0和圆x2+y2=4的公共点坐标就是方程组的解.根据x-y+2=0得y=x+2,代入x2+y2=4得x2+x=0,解得或∴公共点坐标为(-,1)和(0,2),直线x-y+2=0被圆x2+y2=4截得的弦长为=2.(法二)如图,设直线x-y+2=0与圆x2+y2=4交于A,B两点,弦AB的中点为M,则OM⊥AB(O为坐标原点),所以OM==,所以AB=2AM=2=2=2.【小结】在本题的两种方法中,前一种方法是代数法,后一种方法是几何法.在处理与直线和圆相交形成的弦的有关问题时,我们经常用到如下解法:(1)设弦的两个端点坐标分别为(x1,y1)、(x2,y2),代入圆的方程后寻求坐标与弦的关系,然后加以求解;(2)涉及圆的弦长问题时,为了简化运算,常利用垂径定理或半弦长、弦心距及半径构成的直角三角形进行运算.探究三:【解析】由(x-2)2+y2=4得y2=4x-x2,所以3x2+4y2=3x2+4(4x-x2)=-x2+16x=-(x-8)2+64,故3x2+4y2在x=8时有最大值64,没有最小值.[问题]在圆的方程中变量x的取值X围是R吗?[结论]将x=8代入圆方程(x-2)2+y2=4,得y2=-32,矛盾,所以上述解法是错误的.因为y2=4-(x-2)2≥0,所以x的取值X围不是R.于是,正确解答如下:由(x-2)2+y2=4得y2=4x-x2≥0,得0≤x≤4,所以3x2+4y2=3x2+4(4x-x2)=-x2+16x=-(x-8)2+64(0≤x≤4),所以当x=y=0时,3x2+4y2取得最小值0;当x=4,y=0时,3x2+4y2取得最大值48.【小结】确定圆的一般方程x2+y2+Dx+Ey+F=0中的变量的取值X围的方法:先配方,再根据平方项非负来确定.圆的方程中变量的X围一般是以隐含条件的形式出现在试题中,因此在解题时注意挖掘出这个隐含条件.思维拓展应用应用一:把点P(4,5)代入(x-2)2+y2=4,得(4-2)2+52=29>4,即点P在圆(x-2)2+y2=4外.设切线斜率为k,则切线方程为y-5=k(x-4),即kx-y+5-4k=0,又圆心坐标为(2,0),r=2,由圆心到切线的距离等于半径,得=2,解得k=.将k代入所设方程得此时切线方程为21x-20y+16=0.当直线的斜率不存在时,还有一条切线是x=4.因此切线方程为x=4或21x-20y+16=0.应用二:将圆C的方程x2+y2-8y+12=0配方后得到标准方程x2+(y-4)2=4,则此圆的圆心为C(0,4),半径为2.(法一)过圆心C作CD⊥AB交AB于点D,则根据题意和圆的性质,得即:+2=4.解得a=-7或a=-1.即直线l的方程为7x-y+14=0或x-y+2=0.(法二)联立方程组消去y,得(a2+1)x2+4(a2+2a)x+4(a2+4a+3)=0.Δ=-16(4a+3)>0,即a<-,设此方程的两根分别为x1,x2,由韦达定理知x1+x2=-,x1x2=.由AB=2=,可求出a=-7或a=-1,所以直线l的方程是7x-y+14=0或x-y+2=0.应用三:-因为表示的几何意义是圆上的动点与(2,1)连线的斜率,所以设=k,即kx-y+1-2k=0,当直线与圆相切时,斜率k取最大值或最小值,此时=1,解得k=±.所以的最大值为 ,最小值为-.基础智能检测1.B因为圆心(0,0)到直线x-y+1=0的距离d=<1,故直线与圆相交,又(0,0)不在直线上,所以直线不过圆心.2.D因为点P在圆C上,k PC=-,所以切线的斜率为,所以切线方程为y-=(x-1),即x-y+2=0.3.-3或由题设知圆心坐标为(1,0),因为直线与圆相切,所以d==r=,解得m=或-3.4.解:k AB=-1,直线AB的方程为y-2=-(x+1),即x+y-1=0.故圆心(0,0)到AB的距离d==,从而弦长|AB|=2 =.全新视角拓展2本题考查直线和圆的位置关系以及简单的平面几何知识.(法一)几何法:圆心到直线的距离为d==,圆的半径r=2,所以弦长为l=2×=2=2;(法二)代数法:联立直线和圆的方程消去y可得x2-2x=0,所以直线和圆的两个交点坐标分别为(2,2),(0,0),弦长为=2.。
新教材高中数学第二章直线和圆的方程5-1直线与圆的位置关系学案新人教A版选择性必修第一册

直线与圆的位置关系【学习目标】1.直线与圆的三种位置关系代数法:由⎩⎪⎨⎪⎧Ax +By +C =0,x -a2+y -b2=r2消元得到一元二次方程的判别式Δ【小试牛刀】1.若直线与圆有公共点,则直线与圆相交.( )2.如果直线与圆组成的方程组有解,则直线和圆相交或相切.( )3.若圆心到直线的距离大于半径,则直线与圆的方程联立消元后得到的一元二次方程无解.( )4.过半径外端的直线与圆相切.( )【经典例题】题型一直线与圆的位置关系 直线与圆位置关系判断的三种方法(1)几何法:由圆心到直线的距离d 与圆的半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系判断,但有一定的局限性,必须是过定点的直线系.例1 已知直线方程mx -y -m -1=0,圆的方程x 2+y 2-4x -2y +1=0.当m 为何值时,圆与直线: (1)有两个公共点; (2)只有一个公共点; (3)没有公共点.[跟踪训练]1已知直线l :x -2y +5=0与圆C :(x -7)2+(y -1)2=36,判断直线l 与圆C 的位置关系.题型二圆的切线方程 (1)点在圆上时求过圆上一点(x 0,y 0)的圆的切线方程:先求切点与圆心连线的斜率k ,再由垂直关系得切线的斜率为-1k,由点斜式可得切线方程.如果斜率为零或不存在,则由图形可直接得切线方程y =y 0或x =x 0. (2)点在圆外时①几何法:设切线方程为y -y 0=k (x -x 0).由圆心到直线的距离等于半径,可求得k ,也就得切线方程. ②代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程联立,消去y 后得到关于x 的一元二次方程,由Δ=0求出k ,可得切线方程.提醒:切线的斜率不存在的情况,不要漏解.例2 (1)求过圆x 2+y 2-2x -4y =0上一点P (3,3)的切线方程。
江苏省徐州市丰县创新外国语学校苏科版数学九年级上册学案2.5 直线与圆的位置关系

2.5直线与圆的位置关系第1课时【学习目标】1.经历探索直线与圆的位置关系的过程;2.理解直线与圆的三种位置关系——相交、相切、相离;3.能利用圆心到直线的距离d与圆的半径r之间的数量关系判别直线与圆的位置关系.【学习重点】用“圆心到直线的距离与圆半径之间的数量关系”描述“直线与圆的位置关系”的方法.【学习难点】直线和圆相切:“直线和圆有唯一公共点”的含义.【自主先学】活动一:1.回忆:(1)点和圆有哪几种位置关系?(2)怎样判定点和圆的位置关系?(数量关系——位置关系)2.通过观察三幅太阳升起的照片,你猜想直线和圆的位置关系有哪几种?活动二:操作交流:在纸上画一个圆,上下移动直尺.把直尺看作直线,在移动的过程中观察直线与圆的位置关系发生了怎样的变化?活动三:探究直线与圆的位置关系的数量特征直线与圆的位置关系能否像点与圆的位置关系一样,也可以用数量关系来刻画它们的三种位置关系呢?【交流展示】例1 在△ABC 中,∠A =45°,AC =4,以C 为圆心,r 为半径的圆与直线AB 有怎样的位置关系?为什么? (1)r =2;(2)r =(3)r =3.例2 已知:如图示,∠AOB =300,M 为OB 上一点,以M 为圆心,5cm 长为半径作圆,若M 在OB 上运动,问:①当OM 满足 时,⊙M 与OA 相离? ②当OM 满足 时,⊙M 与OA 相切? ③当OM 满足 时,⊙M 与OA 相交? 【拓展延伸】在平面直角坐标系中有一点A (-3,-4),以点A 为圆心,r 长为半径时,思考:随着r 的变化,⊙A 与坐标轴交点的变化情况.【检测反馈】1.已知⊙O 的直径为10cm ,点O 到直线l 的距离为d : (1)若直线l 与⊙O 相切,则d =____;(2)若d =4cm ,则直线l 与⊙O 有_____个公共点; (3)若d =6cm ,则直线l 与⊙O 的位置关系是________.2.在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,以C 为圆心,r 为半径的圆与AB 有怎样的位置关系?为什么?(1)r =2cm ;(2)r =2.4cm ;(3)r =3cm . 【小结反思】本节课我学到的知识点有:MBO A·2.5 直线与圆的位置关系第2课时【学习目标】1.探索切线判定,能判定一条直线是否为圆的切线; 2.理解“圆的切线垂直于过切点的半径”的性质;3.通过探索切线的判定和性质的过程,培养学生的逆向思维能力,渗透反证法思想. 【学习重点】直线与圆相切的判定方法与圆的切线的性质的应用. 【学习难点】对用“反证法”推理切线性质的理解. 【自主先学】 活动一:1.已知圆的半径等于5厘米,圆心到直线l 的距离是:(1)4厘米;(2)5厘米;(3)6厘米.直线l 和圆分别有几个公共点? 分别说出直线l 与圆的位置关系. 2.你有哪些方法可以判定直线与圆相切? 活动二:1.过圆上一点画一条圆的切线,并与你的同学交流你的想法.2.请你将上面发现的结论进行归纳总结. 3.请你总结一下:切线的判定有哪些方法?活动三1.如图,直线l 与⊙O 相切于点A ,OA 是过切点的半径,直线l 与半径OA 是否一定垂直?你能说明理由吗?2.请你将上面发现的结论进行归纳总结. 【交流展示】例1 如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,∠CAD =∠ABC .判断直线AD 与⊙O 的位置O AlOA关系,并说明理由.例2如图,AB是⊙O的直径,弦AD平分∠ABC,过点D的切线交AC于点E,DE与AC有怎样的位置关系?为什么?从中你有什么启发?【拓展延伸】1.如果AB不是直径,其余条件不变,上面的结论还成立吗?2.如图:在△ABC中AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB 的延长线于E,垂足为F.求证:直线DE是⊙O的切线.【检测反馈】1.如图,O 是∠ABC 的平分线上的一点,OD ⊥BC 于D ,以O 为圆心、OD 为半径的圆与AB 相切吗?为什么?2.如图,AB 是⊙O 的直径,∠ABC =45°,AB =AC .判断直线AC 与⊙O 的位置关系,并说明理由.【小结反思】本节课我学到的知识点有: 2.5 直线与圆的位置关系第3课时【学习目标】1.会过圆上一点画圆的切线; 2.会作三角形的内切圆; 3.理解三角形内切圆的有关概念;DO CBAB AC4.通过探究作三角形的内切圆的过程,归纳内心的性质,进一步提高学生的归纳和作图的能力.【学习重点】掌握三角形内切圆的画法、理解三角形内切圆的有关概念.【学习难点】作已知三角形的内切圆.【自主先学】活动一:1.如图是一块三角形木料,木工师傅要从中裁下一块圆形用料,怎样才能使裁下来的圆的面积尽可能大?2.你发现这个圆有什么特征?活动二:1.三角形内切圆的定义:与的圆叫做三角形的内切圆,这个三角形叫做圆的三角形.2.说出右图的内切圆和外切三角形.活动三:1.作三角形的内切圆:已知:△ABC.求作:⊙O,使它与△ABC的3边都相切.作法:①作∠ABC、∠ACB的平分线BM和CN,交点为I.②过点I作ID⊥BC,垂足为D.③以I为圆心,ID为半径作⊙I,⊙I就是所求的圆.2.三角形 叫做三角形的内心. 3.请你思考一下:内心有哪些性质?①三角形的内心是 的交点; ②三角形的内心到 的距离相等; ③三角形的内心一定在三角形的 . 【交流展示】例1 如图,⊙O 是△ABC 的内切圆,切点分别为D 、E 、F ,∠B =60°, ∠C =70°,求∠EDF 的度数.例2 已知:点I 是△ABC 的内心,AI 的延长线交外接圆于D .则DB 与DI 相等吗?为什么?【拓展延伸】例1中∠A 与∠EDF 有什么关系? 【检测反馈】1.下列说法中,正确的是( )A .垂直于半径的直线一定是这个圆的切线;B .圆有且只有一个外切三角形;C .三角形有且只有一个内切圆;• • ODF E ••CB AD.三角形的内心到三角形的3个顶点的距离相等.2.如图,⊙I切△ABC的边分别为D、E、F,∠B=80°,∠C=60°,M是⌒DEF上的动点(与D、E 不重合),∠DMF的大小一定吗?若一定,求出∠DMF的大小;若不一定,请说明理由.【小结反思】本节课我学到的知识点有:2.5直线与圆的位置关系第4课时【学习目标】1.了解切线长的概念;2.经历探索切线长性质的过程,并运用这个性质解决问题.【学习重点】掌握切线长的性质.【学习难点】运用切线长的性质解决问题.【自主先学】活动一经过平面上一个已知点,作已知圆的切线会有怎样的情形?画图分析1.点在圆内;2.点在圆上;3.点在圆外.活动二:1.在经过圆外一点的切线上,这一点和 之间的线段的 叫做这点到圆的切线长. 2.说说切线与切线长的区别与联系. 活动三操作探究:1.如图,若从⊙O 外的一点引两条切线P A 、PB ,切点分别是A 、B ,连接OA 、OB 、O P ,你能发现什么结论?并证明你所发现的结论.2.性质:从圆外一点引圆的两条切线,它们的 相等,这点和 的 连线平分 的夹角. 【交流展示】例1 如图,在以点O 为圆心的两个同心圆中,大圆的弦AB 、AC 分别与小圆相切于点D 、E .AB 与AC 相等吗?为什么?例2 如图,P A 、PB 是⊙O 的切线,切点分别是A 、B ,直线EF 也是⊙O 的切线,切点为C,交P A 、PB 于点E 、F .①已知P A =12cm ,求△PEF 的周长; ②已知∠P =40°,求∠EOF 的度数.FEOPC BA【拓展延伸】1.例1中如果AB 、AC 是任意两条与小圆相切的弦,那么AB 与AC 相等吗?2.如图,△ABC 中,∠C =90º ,且AC =6,BC =8,它的内切圆O 分别与边AB 、BC 、CA 相切于点D 、E 、F ,求⊙O 的半径r .【检测反馈】1.如图,AB 、AC 、BD 是⊙O 的切线,切点分别为P 、C 、D .如果AB =5,AC =3.则BD 的长为 . 2.如图,P 是⊙O 外一点,PO 交⊙O 于点C ,PC =OC ,P A 、PB 是⊙O 的切线,切点分别为A 、B .如果⊙O 的半径为5,则切线长为 ,两条切线的夹角为 °.3.如图,如图AB 是⊙O 的直径,C 为圆上任意一点,过C 的切线分别与过A 、B 两点的切线交于P 、Q ,则∠POQ 的度数为__ __°;若AP =2,BQ =5,则⊙O 的半径为 .F E O DC A。
2.5.1 直线与圆的位置关系 学案(含解析)

2.5.1 直线与圆的位置关系学案(含解析)第二章直线和圆的方程2.5.1 直线与圆的位置关系学案学习目标1.能根据给定直线、圆的方程,判断直线与圆的位置关系.2.能用直线和圆的方程解决一些简单的数学问题和实际问题.3.逐步理解用代数方法处理几何问题的基本思想和方法.知识汇总1.直线与圆的位置关系:(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点.2.在平面直角坐标系中,要判断直线与圆的位置关系,可以联立它们的方程,通过判定方程组的解的个数,得出直线与圆的公共点的个数,进而判断直线与圆的位置关系.若相交,可以由方程组解得两交点坐标,利用两点间的距离公式求得弦长.习题检测1.对任意的实数k,直线与圆的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心2.若直线l与圆相切于点,则直线l的方程为( )A. B.C. D.3.若直线与圆没有公共点,则实数m的取值范围是( )A. B.或C.或D.4.若直线被圆所截得的弦长为,则实数a的值为( )A.0或4B.0或3C.或6D.或5.一束光线从点射出,经x轴反射后与圆相切,则反射光线所在直线的斜率为( )A.或B.或C.或D.或6.(多选)已知圆,则( ).A.圆M可能过原点B.圆心M在直线上C.圆M与直线相切D.圆M被直线所戴得的弦长为7.过点且与圆相切的直线的方程为__________________.8.如图所示是一座圆拱桥,当水面在如图所示的位置时,拱桥顶部离水面2m,水面宽12m,若水面下降1m,则水面的宽为_______________m.9.已知圆,直线.(1)求证:不论m取什么实数,直线l与圆恒有两个不同的交点;(2)若直线l被圆C截得的弦长最小,求此时l的方程.10.已知点,直线及圆.(1)求过点M的圆的切线方程;(2)若直线与圆相切,求a的值;(3)若直线与圆相交于A,B两点,且弦AB的长为,求a的值.答案以及解析1.答案:C解析:直线恒过定点,由定点在圆内,知直线与圆一定相交.又直线不过圆心,所以位置关系是相交但直线不过圆心,故选C.2.答案:D解析:由题意,得点P在圆上,且点P与圆心的连线的斜率是,则切线l的斜率是,则切线方程为,即为.故选D.3.答案:B解析:圆的圆心为,半径为2,由题意得,圆心到直线的距离,或.故选B.4.答案:A解析:由圆的方程,可知圆心坐标为,半径.又直线被圆截得的弦长为,所以圆心到直线的距离.又,所以,解得或.故选A.5.答案:C解析:圆的方程可化为,易知关于x轴对称的点为,如图所示,易知反射光线所在直线的斜率存在,设为k,其方程为,即,依题意得,圆心到反射光线所在直线的距离,化简得,解得或.故选C.6.答案:ABD解析:圆,圆心为,半径为1,若圆M过原点,则,解得或,故A 正确;因为,所以圆心M在直线上,故B正确;圆心到直线的距离,故圆M与直线相离,故C错误;圆心到直线的距离,所以圆M被直线截得的弦长,故D正确.故选ABD.7.答案:或解析:易知点在圆外,当切线的斜率存在时,设国的切线方程为,由圆心到切线的距离等于半径,得,所以切线方程为.当切线的斜率不存在时,切线方程为.综上,所求直线的方程为或.8.答案:解析:如图,建立平面直角坐标系,设初始水面在AB处,则由已知得,设圆C的半径长为,则,故圆C 的方程为,将代入,得,所以圆C的方程为.① 当水面下降1m到时,设.将代入①式,得,所以水面下降1m后,水面宽为m.9.解析:(1)将直线l的方程改写成,因为,所以,解得,,可知直线l恒过定点,因为圆心,半径,易得,因此点A必在圆C内,故直线l与圆恒有两个不同的交点.(2)由图形位置关系可知,当弦长最小时,必有,因为,则,从而,得,故直线l的方程为.10.解析:(1)由题意得,圆心,半径.当直线的斜率不存在时,方程为.由圆心到直线的距离知,此时,直线与圆相切.当直线的斜率存在时,设方程为,即.由题意知圆心到直线的距离,解得,方程为.故过点M的圆的切线方程为或.(2)由题意得,圆心到直线的距离为,解得或.(3)圆心到直线的距离为,,解得.2。
《直线和圆的位置关系》公开课

.Or
dA
B
l
H
相离
.O r
d
.
C
.Dl
相切
1、直线和圆相交
d< r
2、直线和圆相切
d= r
3、直线和圆相离
d> r
d
.Or
.F
E
l
相交
?
小结:
判定直线 与圆的位置关系的方法有__两__种:
(1)根据定义,由_直__线___与__圆__的__公__共__点__的 个数来判断; (2)根据数量关系:由_圆__心__到__直__线__的__距__离d __与__半__径__r __的大小关系来判断。
已知圆的半径是8cm,如果直线与圆心的距离分别是
(1)6cm ; (2) 8cm ;
(3) 10cm
那么直线与圆分别是什么位置关系?请画出基本图形
并写出过程。
8cm
O· d=6cm
AM B ∵r=8cm,d=6cm。 ∴ r >d ∴直线AB与⊙M相交.
8cm
O·
d=8cm
N ∵r=8cm,d=8cm。 ∴ r =d ∴直线AB与⊙M相切.
直线与圆的位置关系(一)
小组讨论要求:
1、各组的组长必须安排好每次讨论的主 要发言人,并且该同学必须站起来,组织全 组同学讨论。
2、每次讨论分为以下几个环节: (1)独立思考3—5分钟。 (2)讨论1分钟。 (3)完善过程1分钟。
展示要求
①各小组必须充分讨论,展示人展示小组的观点。 ②展示人及时到位,规范快速。 ③其他同学讨论完毕坐下立即修改,不浪费 一分钟,并观察展示内容,准备质疑与补充。
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4.2.1 直线与圆的位置关系
班级姓名
一、知识回顾
1.平面几何中,直线与圆的位置关系有哪几种?
2.在初中,我们怎样判断直线与圆的位置关系?
二、新知探究
用直线与圆的方程判断直线与圆的位置关系
例1 如图,已知直线l:3x+y-6=0和圆心为C的圆x2+y2-2y-4=0,判断直线l与圆的位置关系;如果相交,求它们交点的坐标.
变式:试解引言中的问题.即判断直线: 4x+7y-28=0与圆O:无公共点.
例2 已知过点M (–3,–3)的直线被圆C: x2+y2+4y-21=0所截得的弦长为,求直线的方程.
三、反馈练习
1.已知直线相切,求圆的方程.
2. 判断直线
3.已知直线. 试判断直线与有无公
共点,有几个公共点.。