圆与圆的位置关系学案

合集下载

【最新】中考数学总复习学案:第37课时 直线与圆、圆与圆的位置关系

【最新】中考数学总复习学案:第37课时  直线与圆、圆与圆的位置关系

第37课时 直线与圆、圆与圆的位置关系一、选择题1. 正三角形的内切圆半径为1,那么三角形的边长为( ) A.2 B.32 C.3 D.32.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )ABC. D.3. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( ) A. 335 B. 635 C. 10D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于 ( )A.1 B.2 C. 23 D. 26 5.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题第3题图第6题图 第7题图 第8题图6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x=图象上,则阴影部分面积等于 . 14. Rt△ABC 中,9068C AC BC ∠===°,,.则△ABC 的内切圆半径r =______. 15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.第11题图 第12题图 第13题图16.已知:⊙A、⊙B、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题 18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BECE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由.19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=.(1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。

【平煤高中学案必修二】31 圆与圆的位置关系

【平煤高中学案必修二】31 圆与圆的位置关系

4.2.2 圆与圆的位置关系学习目标: (1)掌握圆与圆的位置关系的代数与几何判别方法; (2)掌握坐标法的思想,用解方程组判别位置关系或求交点坐标. 一、学前准备: 预习教材129~130P P P 的内容. 1.圆与圆之间有几种位置关系? 2. 设两圆的半径分别为12,r r ,圆心距为d , 当 时,两圆外离,当 时,两圆外切, 当 时,两圆相交,当 时,两圆内切, 当 时,两圆内含. 二、新课导学: 由两个圆的方程组成一个方程组:若方程组没有实数解,则两个圆有 个公共点,即两个圆 . 若方程组仅有一组实数解,则两个圆有 个公共点,即两个圆 . 若方程组有两组实数解,则两个圆有 个公共点,即两个圆 . 三、典型例题: 【例1】已知圆0882:221=-+++y x y x C ,圆0244:222=---+y x y x C ,试判断两圆的位置关系。

【例2】圆M :22(1)(1)8x y -+-=,圆N 的圆心为(2,2)N 且与圆M 相切,求圆N 的方程.【例3】求过点(0,6)A 且与圆C :2210100x y x y +++=切于原点的圆的方程.四、反馈练习:1.圆2220x y x +-=和22+40x y y +=的位置关系是 ( )A. 相离B. 外切C. 相交D. 内切2. 两个圆1C :222220x y x y +++-=与2C :224210x y x y +--+=的公切线有且仅有( ) A .1条 B .2条 C .3条 D .4条3. 圆1C :22()(2)9x m y -++=与圆2C :22(1)()4x y m ++-=外切,则m 的值为 ( )A.2B. -5C. 2或-5 D . 不确定4.圆2220x y x ++=和2240x y y +-=的公共弦所在直线方程为( )A.20x y -=B. 20x y +=C. 20x y -=D. 20x y +=5.若圆228x y +=和圆22440x y x y ++-=关于直线l 对称,则直线l 的方程为( )A. 0x y -=B. 0x y +=C. 20x y -+=D.20x y ++=6.若两圆2216x y +=及222(4)(3)x y r -++=在交点处的切线互相垂直,求实数r 的值.7. 求过两圆22640x y x ++-=和 226280x y y ++-=的交点,且圆心在直线 40x y --=上的圆的方程.。

数学教案圆和圆的位置关系位置对应数学教案

数学教案圆和圆的位置关系位置对应数学教案

数学教案圆和圆的位置关系位置对应数学教案教学目标:1.学生能够正确理解和运用圆和圆的位置关系的相关术语和概念。

2.学生能够通过观察和推理,准确描述和判断圆和圆的位置关系。

3.学生能够应用所学的知识,在解决实际问题中分析和解释圆和圆的位置关系。

教学重点:1.圆和圆的位置关系的基本概念和术语。

2.圆与圆之间的相交关系和包含关系。

教学难点:学生能够准确判断和描述圆与圆的相交关系和包含关系。

教学准备:1.教师准备多个不同大小的纸圆或圆形物体。

2.教师准备相关课件或黑板。

教学过程:引入新知识:1.教师出示几个不同大小的纸圆或圆形物体,引导学生观察并描述它们之间的位置关系。

2.教师提问学生:你们观察到了什么?这些圆之间有什么样的位置关系?请描述出来。

讲解重点概念:1.教师引导学生观察和描绘不同的圆与圆之间的位置关系,如相切、相交、内切、外切等。

2.教师讲解并板书相关概念和术语,如相切、相交、内切、外切、内含、外离等。

并解释每个术语的意义和特点。

判断与应用:1.教师给学生出示多个不同的圆,让学生分组讨论并判断圆与圆的位置关系。

2.学生通过观察和推理,准确描述和判断圆与圆的位置关系,并在小组中发表自己的观点和理由。

3.学生将自己的判断和理由呈现给全班,并与其他小组进行讨论和交流。

解决实际问题:1.教师出示一些关于圆与圆的位置关系的问题,让学生运用所学的知识,分析和解决问题。

2.学生在小组中合作,共同讨论和解决问题,并将他们的解决方法和答案呈现给全班。

拓展练习:1.学生在课后完成一些相关练习题,巩固所学的知识和技能。

2.学生可以在生活中继续观察和记录圆与圆的位置关系,并尝试解释和应用它们。

课堂总结:1.教师对本节课所学的知识进行总结,并提醒学生在实践中继续应用所学的技能和方法。

2.学生可以就本节课的学习效果和困难之处进行反馈,并提出问题和建议。

教学延伸:。

人教版高中数学必修二 4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用 学案+课时训练

人教版高中数学必修二 4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用 学案+课时训练

人教版高中数学必修二第4章圆与方程4.2 直线、圆的位置关系4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用学案【学习目标】1.掌握圆与圆的位置关系及判定方法.(重点、易错点)2.能利用直线与圆的位置关系解决简单的实际问题.(难点)【要点梳理夯实基础】知识点1圆与圆位置关系的判定阅读教材P129至P130“练习”以上部分,完成下列问题.1.几何法:若两圆的半径分别为r1、r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2|0≤d<|r1-r2| ⎭⎬⎫圆C1方程圆C2方程――→消元一元二次方程⎩⎨⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含[思考辨析学练结合]两圆x2+y2=9和x2+y2-8x+6y+9=0的位置关系是()A.外离B.相交C.内切D.外切[解析]两圆x2+y2=9和x2+y2-8x+6y+9=0的圆心分别为(0,0)和(4,-3),半径分别为3和4.所以两圆的圆心距d=42+(-3)2=5.又4-3<5<3+4,故两圆相交.[答案] B知识点2 直线与圆的方程的应用阅读教材P130“练习”以下至P132“练习”以上部分,完成下列问题.用坐标方法解决平面几何问题的“三步曲”[思考辨析学练结合]一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过()A.1.4米B.3.5米C.3.6米D.2米[解析]建立如图所示的平面直角坐标系.如图,设蓬顶距地面高度为h,则A(0.8,h-3.6).半圆所在圆的方程为:x2+(y+3.6)2=3.62,把A(0.8,h-3.6)代入得0.82+h2=3.62,∴h=40.77≈3.5(米).[答案] B【合作探究析疑解难】考点1 圆与圆位置关系的判定[典例1] 当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交、相切、相离?[分析]求圆C1的半径r1→求圆C2的半径r2→求|C1C2|→利用|C1C2|与|r1-r2|和r1+r2的关系求k[解答]将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C1(-2,3),半径r1=1;圆C2的圆心为C2(1,7),半径r2=50-k(k<50).从而|C1C2|=(-2-1)2+(3-7)2=5.当1+50-k=5,k=34时,两圆外切.当|50-k-1|=5,50-k=6,k=14时,两圆内切.当|r2-r1|<|C1C2|<r2+r1,即14<k<34时,两圆相交.当1+50-k<5或|50-k-1|>5,即0≤k<14或34<k<50时,两圆相离.1.判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:(1)化成圆的标准方程,写出圆心和半径;(2)计算两圆圆心的距离d;(3)通过d,r1+r2,|r1-r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.2.应用几何法判定两圆的位置关系或求字母参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系.1.已知圆C1:x2+y2-2ax-2y+a2-15=0,圆C2:x2+y2-4ax-2y+4a2=0(a>0).试求a为何值时,两圆C1,C2的位置关系为:(1)相切;(2)相交;(3)外离;(4)内含.[解]圆C1,C2的方程,经配方后可得C1:(x-a)2+(y-1)2=16,C2:(x-2a)2+(y-1)2=1,∴圆心C 1(a,1),C 2(2a,1),半径r 1=4,r 2=1.∴|C 1C 2|=(a -2a )2+(1-1)2=a .(1)当|C 1C 2|=r 1+r 2=5,即a =5时,两圆外切;当|C 1C 2|=r 1-r 2=3,即a =3时,两圆内切.(2)当3<|C 1C 2|<5,即3<a <5时,两圆相交.(3)当|C 1C 2|>5,即a >5时,两圆外离.(4)当|C 1C 2|<3,即a <3时,两圆内含.考点2 两圆相交有关问题[典例2] 求圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在直线被圆C 3:(x -1)2+(y -1)2=254所截得的弦长. [分析] 联立圆C 1、C 2的方程――→作差得公共弦所在的直线―→圆心C 3到公共弦的距离d ―→圆的半径r ―→弦长=2r 2-d 2[解答] 设两圆的交点坐标分别为A (x 1,y 1),B (x 2,y 2),则A ,B 的坐标是方程组⎩⎨⎧x 2+y 2=1,x 2+y 2-2x -2y +1=0的解, 两式相减得x +y -1=0.因为A ,B 两点的坐标满足 x +y -1=0,所以AB 所在直线方程为x +y -1=0,即C 1,C 2的公共弦所在直线方程为x +y -1=0,圆C 3的圆心为(1,1),其到直线AB 的距离d =12,由条件知r 2-d 2=254-12=234,所以直线AB 被圆C 3截得弦长为2×232=23.1.圆系方程一般地过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x2.求两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0的公共弦所在直线的方程及公共弦长.[解] 联立两圆的方程得方程组⎩⎨⎧ x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0,两式相减得x -2y +4=0,此为两圆公共弦所在直线的方程.法一:设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎨⎧ x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎨⎧ x =-4,y =0或⎩⎨⎧x =0,y =2.所以|AB |=(-4-0)2+(0-2)2=25,即公共弦长为2 5.法二:由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心坐标为(1,-5),半径长r =52,圆心到直线x -2y +4=0的距离为d =|1-2×(-5)+4|1+(-2)2=3 5. 设公共弦长为2l ,由勾股定理得r 2=d 2+l 2,即50=(35)2+l 2,解得l =5,故公共弦长2l =2 5.考点3 直线与圆的方程的应用探究1 设村庄外围所在曲线的方程可用(x -2)2+(y +3)2=4表示,村外一小路方程可用x-y+2=0表示,你能求出从村庄外围到小路的最短距离吗?[分析]从村庄外围到小路的最短距离为圆心(2,-3)到直线x-y+2=0的距离减去圆的半径2,即|2+3+2|12+(-1)2-2=722-2.探究2已知台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,请建立适当的坐标系,用坐标法求B城市处于危险区内的时间.[分析]如图,以A为原点,以AB所在直线为x轴建立平面直角坐标系.射线AC为∠xAy的平分线,则台风中心在射线AC上移动.则点B到AC的距离为202千米,则射线AC被以B为圆心,以30千米为半径的圆截得的弦长为2302-(202)2=20(千米).所以B城市处于危险区内的时间为t=2020=1(小时).[典例3] 为了适应市场需要,某地准备建一个圆形生猪储备基地(如图4-2-1),它的附近有一条公路,从基地中心O处向东走1 km是储备基地的边界上的点A,接着向东再走7 km到达公路上的点B;从基地中心O向正北走8 km 到达公路的另一点C.现准备在储备基地的边界上选一点D,修建一条由D通往公路BC的专用线DE,求DE的最短距离.图4-2-1[分析]建立适当坐标系,求出圆O的方程和直线BC的方程,再利用直线与圆的位置关系求解.[解答]以O为坐标原点,过OB,OC的直线分别为x轴和y轴,建立平面直角坐标系,则圆O的方程为x2+y2=1,因为点B(8,0),C(0,8),所以直线BC的方程为x8+y8=1,即x+y=8.当点D选在与直线BC平行的直线(距BC较近的一条)与圆的切点处时,DE为最短距离.此时DE长的最小值为|0+0-8|2-1=(42-1) km.[方法总结]解决关于直线与圆方程实际应用问题的步骤[跟踪练习]3.一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km处,受影响的范围是半径为30 km的圆形区域,已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?[解] 以台风中心为坐标原点,以东西方向为x轴建立直角坐标系(如图),其中取10 km为单位长度,则受台风影响的圆形区域所对应的圆的方程为x2+y2=9,港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l的方程为x7+y4=1,即4x+7y-28=0.圆心(0,0)到航线4x+7y-28=0的距离d=|-28|42+72=2865,而半径r=3,∴d>r,∴直线与圆外离,所以轮船不会受到台风的影响.【学习检测巩固提高】1.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是()A.(x-3)2+(y-5)2=25 B.(x-5)2+(y+1)2=25C.(x-1)2+(y-4)2=25 D.(x-3)2+(y+2)2=25[解析]设⊙C2上任一点P(x,y),它关于(2,1)的对称点(4-x,2-y)在⊙C1上,∴(x-5)2+(y+1)2=25.[答案] B2.一辆卡车宽1.6 m,要经过一个半圆形隧道(半径为3.6 m),则这辆卡车的平顶车篷篷顶距地面高度不得超过()A.1.4 m B.3.5 m C.3.6 m D.2.0 m [解析]圆半径OA=3.6,卡车宽1.6,所以AB=0.8,所以弦心距OB= 3.62-0.82≈3.5(m).[答案] B3.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是__相交__.[解析]圆x2+y2+6x-7=0的圆心为O1(-3,0),半径r1=4,圆x2+y2+6y-27=0的圆心为O 2(0,-3),半径为r 2=6,∴|O 1O 2|=(-3-0)2+(0+3)2=32,∴r 2-r 1<|O 1O 2|<r 1+r 2,故两圆相交.4.已知实数x 、y 满足x 2+y 2=1,则y +2x +1的取值范围为__ [34,+∞) __. [解析] 如右图所示,设P (x ,y )是圆x 2+y 2=1上的点,则y +2x +1表示过P (x ,y )和Q (-1,-2)两点的直线PQ 的斜率,过点Q 作圆的两条切线QA ,QB ,由图可知QB ⊥x 轴,k QB 不存在,且k QP ≥k QA .设切线QA 的斜率为k ,则它的方程为y +2=k (x +1),由圆心到QA 的距离为1,得|k -2|k 2+1=1,解得k =34.所以y +2x +1的取值范围是[34,+∞). 5.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.[解析] 解法一:联立两圆方程⎩⎨⎧ x 2+y 2-12x -2y -13=0x 2+y 2+12x +16y -25=0, 相减得公共弦所在直线方程为4x +3y -2=0.再由⎩⎨⎧4x +3y -2=0x 2+y 2-12x -2y -13=0, 联立得两圆交点坐标(-1,2)、(5,-6).∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径为12(5+1)2+(-6-2)2=5. ∴圆C 的方程为(x -2)2+(y +2)2=25.解法二:由解法一可知公共弦所在直线方程为4x +3y -2=0.设所求圆的方程为x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ为参数).可求得圆心C (-12λ-122(1+λ),-16λ-22(1+λ)). ∵圆心C 在公共弦所在直线上,∴4·-(12λ-12)2(1+λ)+3·-(16λ-2)2(1+λ)-2=0, 解得λ=12.∴圆C 的方程为x 2+y 2-4x +4y -17=0.人教版高中数学必修二第4章 圆与方程4.2 直线、圆的位置关系4.2.2圆与圆的位置关系课时检测一、选择题1.圆x 2+y 2-2x -5=0和圆x 2+y 2+2x -4y -4=0的交点为A 、B ,则线段AB 的垂直平分线方程为( )A .x +y -1=0B .2x -y +1=0C .x -2y +1=0D .x -y +1=0[解析] 解法一:线段AB 的中垂线即两圆的连心线所在直线l ,由圆心C 1(1,0),C 2(-1,2),得l 方程为x +y -1=0.解法二:直线AB 的方程为:4x -4y +1=0,因此线段AB 的垂直平分线斜率为-1,过圆心(1,0),方程为y =-(x -1),故选A .[答案] A2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系为( )A .外离B .相交C .外切D .内切[解析] 圆O 1的圆心坐标为(1,0),半径长r 1=1;圆O 2的圆心坐标为(0,2), 半径长r 2=2;1=r 2-r 1<|O 1O 2|=5<r 1+r 2=3,即两圆相交.[答案] B3.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a 、b应满足的关系式是()A.a2-2a-2b-3=0 B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0 D.3a2+2b2+2a+2b+1=0[解析]利用公共弦始终经过圆(x+1)2+(y+1)2=4的圆心即可求得.两圆的公共弦所在直线方程为:(2a+2)x+(2b+2)y-a2-1=0,它过圆心(-1,-1),代入得a2+2a+2b+5=0.[答案] B4.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相外切,则动圆圆心的轨迹方程是()A.(x-5)2+(y+7)2=25 B.(x-5)2+(y+7)2=9C.(x-5)2+(y+7)2=15 D.(x+5)2+(y-7)2=25[解析]设动圆圆心为P(x,y),则(x-5)2+(y+7)2=4+1,∴(x-5)2+(y+7)2=25.[答案] A5.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r =()A.5B.4C.3D.2 2 [解析]设一个交点P(x0,y0),则x20+y20=16,(x0-4)2+(y0+3)2=r2,∴r2=41-8x0+6y0,∵两切线互相垂直,∴y0x0·y0+3x0-4=-1,∴3y0-4x0=-16.∴r2=41+2(3y0-4x0)=9,∴r=3.[答案] C6.半径长为6的圆与y轴相切,且与圆(x-3)2+y2=1内切,则此圆的方程为()A.(x-6)2+(y-4)2=6 B.(x-6)2+(y±4)2=6C.(x-6)2+(y-4)2=36 D.(x-6)2+(y±4)2=36[解析]半径长为6的圆与x轴相切,设圆心坐标为(a,b),则a=6,再由b2+32=5可以解得b=±4,故所求圆的方程为(x-6)2+(y±4)2=36.7.已知M 是圆C :(x -1)2+y 2=1上的点,N 是圆C ′:(x -4)2+(y -4)2=82上的点,则|MN |的最小值为( )A .4B .42-1C .22-2D .2[解析] ∵|CC ′|=5<R -r =7,∴圆C 内含于圆C ′,则|MN |的最小值为R -|CC ′|-r =2.[答案] D8.过圆x 2+y 2=4外一点M (4,-1)引圆的两条切线,则经过两切点的直线方程为( )A .4x -y -4=0B .4x +y -4=0C .4x +y +4=0D .4x -y +4=0[解析] 以线段OM 为直径的圆的方程为x 2+y 2-4x +y =0,经过两切点的直线就是两圆的公共弦所在的直线,将两圆的方程相减得4x -y -4=0,这就是经过两切点的直线方程.[答案] A9.已知两圆相交于两点A (1,3),B (m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值是( )A .-1B .2C .3D .0 [解析] 两点A ,B 关于直线x -y +c =0对称,k AB =-4m -1=-1. ∴m =5,线段AB 的中点(3,1)在直线x -y +c =0上,∴c =-2,∴m +c =3.[答案] C10.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 由题知圆M :x 2+(y -a )2=a 2,圆心(0,a )到直线x +y =0的距离d =a 2,所以2a 2-a 22=22,解得a =2.圆M 、圆N 的圆心距|MN |=2,两圆半径之差为1、半径之和为3,故两圆相交.二、填空题11.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=.[解析]两个圆的方程作差,可以得到公共弦的直线方程为y=1a,圆心(0,0)到直线y=1a的距离d=|1a|,于是由(232)2+|1a|2=22,解得a=1.[答案] 112.圆C1:(x-m)2+(y+2)2=9与圆C2:(x+1)2+(y-m)2=4外切,则m的值为________.[解析]C1(m,-2),r1=3,C2(-1,m),r2=2,由题意得|C1C2|=5,即(m+1)2+(m+2)2=25,解得m=2或m=-5.[答案]2或-513.若点A(a,b)在圆x2+y2=4上,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是.[解析]∵点A(a,b)在圆x2+y2=4上,∴a2+b2=4.又圆x2+(y-b)2=1的圆心C1(0,b),半径r1=1,圆(x-a)2+y2=1的圆心C2(a,0),半径r2=1,则d=|C1C2|=a2+b2=4=2,∴d=r1+r2.∴两圆外切.[答案]外切14.与直线x+y-2=0和圆x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是.[解析]已知圆的标准方程为(x-6)2+(y-6)2=18,则过圆心(6,6)且与直线x+y -2=0垂直的方程为x-y=0.方程x-y=0分别与直线x+y-2=0和已知圆联立得交点坐标分别为(1,1)和(3,3)或(-3,-3).由题意知所求圆在已知直线和已知圆之间,故所求圆的圆心为(2,2),半径为2,即圆的标准方程为(x-2)2+(y-2)2=2.[答案](x-2)2+(y-2)2=215.判断下列两圆的位置关系.(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0;(3)C1:x2+y2-4x-6y+9=0,C2:x2+y2+12x+6y-19=0;(4)C1:x2+y2+2x-2y-2=0,C2:x2+y2-4x-6y-3=0. [解析](1)∵C1:(x-1)2+y2=4,C2:(x-2)2+(y+1)2=2.∴圆C1的圆心坐标为(1,0),半径r1=2,圆C2的圆心坐标为(2,-1),半径r2=2,d=|C1C2|=(2-1)2+(-1)2= 2.∵r1+r2=2+2,r1-r2=2-2,∴r1-r2<d<r1+r2,两圆相交.(2)∵C1:x2+(y-1)2=1,C2:(x-3)2+y2=9,∴圆C1的圆心坐标为(0,1),r1=1,圆C2的圆心坐标为(3,0),r2=3,d=|C1C2|=3+1=2.∵r2-r1=2,∴d=r2-r1,两圆内切.(3)∵C1:(x-2)2+(y-3)2=4,C2:(x+6)2+(y+3)2=64.∴圆C1的圆心坐标为(2,3),半径r1=2,圆C2的圆心坐标为(-6,-3),半径r2=8,∴|C1C2|=(2+6)2+(3+3)2=10=r1+r2,∴两圆外切.(4)C1:(x+1)2+(y-1)2=4,C2:(x-2)2+(y-3)2=16,∴圆C1的圆心坐标为(-1,1),半径r1=2,圆C2的圆心坐标为(2,3),半径r2=4,∴|C1C2|=(2+1)2+(3-1)2=13.∵|r1-r2|<|C1C2|<r1+r2,∴两圆相交.16.求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点且圆心在直线x -y -4=0上的圆的方程.[解] 法一:解方程组⎩⎨⎧x 2+y 2+6x -4=0,x 2+y 2+6y -28=0, 得两圆的交点A (-1,3),B (-6,-2).设所求圆的圆心为(a ,b ),因为圆心在直线x -y -4=0上,故b =a -4. 则有(a +1)2+(a -4-3)2 =(a +6)2+(a -4+2)2,解得a =12,故圆心为⎝ ⎛⎭⎪⎫12,-72, 半径为⎝ ⎛⎭⎪⎫12+12+⎝ ⎛⎭⎪⎫-72-32=892. 故圆的方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +722=892,即x 2+y 2-x +7y -32=0. 法二:∵圆x 2+y 2+6y -28=0的圆心(0,-3)不在直线x -y -4=0上,故可设所求圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0(λ≠-1),其圆心为⎝ ⎛⎭⎪⎫-31+λ,-3λ1+λ,代入x -y -4=0,求得λ=-7. 故所求圆的方程为x 2+y 2-x +7y -32=0.17.已知圆M :x 2+y 2-2mx -2ny +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0交于A 、B 两点,且这两点平分圆N 的圆周,求圆心M 的轨迹方程.[解析] 两圆方程相减,得公共弦AB 所在的直线方程为2(m +1)x +2(n +1)y -m 2-1=0,由于A 、B 两点平分圆N 的圆周,所以A 、B 为圆N 直径的两个端点,即直线AB 过圆N 的圆心N ,而N (-1,-1),所以-2(m +1)-2(n +1)-m 2-1=0,即m 2+2m +2n +5=0,即(m +1)2=-2(n +2)(n ≤-2),由于圆M 的圆心M (m ,n ),从而可知圆心M 的轨迹方程为(x +1)2=-2(y +2)(y ≤-2).18.已知圆O :x 2+y 2=1和定点A (2,1),由圆O 外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,|PQ |=|P A |成立,如图.(1)求a,b间的关系;(2)求|PQ|的最小值.[解析](1)连接OQ,OP,则△OQP为直角三角形,又|PQ|=|P A|,所以|OP|2=|OQ|2+|PQ|2=1+|P A|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.(2)由(1)知,P在直线l:2x+y-3=0上,所以|PQ|min=|P A|min,为A到直线l的距离,所以|PQ|min=|2×2+1-3|22+12=255.人教版高中数学必修二第4章圆与方程4.2 直线、圆的位置关系4.2.3直线与圆的方程的应用课时检测一、选择题1.已知实数x、y满足x2+y2-2x+4y-20=0,则x2+y2的最小值是() A.30-105B.5-5C.5D.25[解析]x2+y2为圆上一点到原点的距离.圆心到原点的距离d=5,半径为5,所以最小值为(5-5)2=30-10 5.[答案] A2.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A、B,则线段AB 的垂直平分线方程为()A.x+y-1=0 B.2x-y+1=0 C.x-2y+1=0 D.x-y+1=0[解析]所求直线即两圆圆心(1,0)、(-1,2)连线所在直线,故由y-02-0=x-1-1-1,得x+y-1=0.[答案] A3.方程y=-4-x2对应的曲线是()[解析]由方程y=-4-x2得x2+y2=4(y≤0),它表示的图形是圆x2+y2=4在x轴上和以下的部分.[答案] A4.y=|x|的图象和圆x2+y2=4所围成的较小的面积是()A.π4B.3π4C.3π2D.π[解析]数形结合,所求面积是圆x2+y2=4面积的1 4.[答案] D5.方程1-x2=x+k有惟一解,则实数k的范围是()A.k=-2B.k∈(-2,2)C.k∈[-1,1)D.k=2或-1≤k<1[解析]由题意知,直线y=x+k与半圆x2+y2=1(y≥0只有一个交点.结合图形易得-1≤k<1或k= 2.[答案] D6.点P是直线2x+y+10=0上的动点,直线P A、PB分别与圆x2+y2=4相切于A、B两点,则四边形P AOB(O为坐标原点)的面积的最小值等于()A .24B .16C .8D .4[解析] ∵四边形P AOB 的面积S =2×12|P A |×|OA |=2OP 2-OA 2=2OP 2-4,∴当直线OP 垂直直线2x +y +10=0时,其面积S 最小.[答案] C7.已知圆C 的方程是x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值为( )A .9B .14C .14-65D .14+6 5[解析] 圆C 的标准方程为(x +2)2+(y -1)2=9,圆心为C (-2,1),半径为3.|OC |=5,圆上一点(x ,y )到原点的距离的最大值为3+5,x 2+y 2表示圆上的一点(x ,y )到原点的距离的平方,最大值为(3+5)2=14+6 5.[答案] D8.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0与圆C :x 2+y 2+2x =b 2-1(b >0)的位置关系是“平行相交”,则实数b 的取值范围为( )A .(2,322)B .(0,322)C .(0,2)D .(2,322)∪(322,+∞)[解析] 圆C 的标准方程为(x +1)2+y 2=b 2.由两直线平行,可得a (a +1)-6=0,解得a =2或a =-3.当a =2时,直线l 1与l 2重合,舍去;当a =-3时,l 1:x -y -2=0,l 2:x -y +3=0.由l 1与圆C 相切,得b =|-1-2|2=322,由l 2与圆C 相切,得b =|-1+3|2= 2.当l 1、l 2与圆C 都外离时,b < 2.所以,当l 1、l 2与圆C “平行相交”时,b 满足⎩⎨⎧ b ≥2b ≠2,b ≠322,故实数b 的取值范围是(2,322)∪(322,+∞).[答案] D9.已知圆的方程为x2+y2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.106B.206C.306D.40 6 [解析]圆心坐标是(3,4),半径是5,圆心到点(3,5)的距离为1,根据题意最短弦BD和最长弦(即圆的直径)AC垂直,故最短弦的长为252-12=46,所以四边形ABCD的面积为12×AC×BD=12×10×46=20 6.[答案] B10.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为()A.4π5B.3π4C.(6-25)πD.5π4[解析]原点O到直线2x+y-4=0的距离为d,则d=45,点C到直线2x+y-4=0的距离是圆的半径r,由题知C是AB的中点,又以斜边为直径的圆过直角顶点,则在直角△AOB中,圆C过原点O,即|OC|=r,所以2r≥d,所以r最小为25,面积最小为4π5,故选A.[答案] A二、填空题11.已知两圆x2+y2=10和(x-1)2+(y-3)2=20相交于A、B两点,则直线AB 的方程是________.[解析] 过两圆交点的直线就是两圆公共弦所在直线,因此该直线方程为:x2+y2-10-[(x-1)2+(y-3)2-20]=0,即x+3y=0.[答案]x+3y=012.已知M={(x,y)|y=9-x2,y≠0},N={(x,y)|y=x+b},若M∩N≠∅,则实数b的取值范围是.[解析] 数形结合法,注意y =9-x 2,y ≠0等价于x 2+y 2=9(y >0),它表示的图形是圆x 2+y 2=9在x 轴之上的部分(如图所示).结合图形不难求得,当-3<b ≤32时,直线y =x +b 与半圆x 2+y 2=9(y >0)有公共点.[答案] (-3,32]13.某公司有A 、B 两个景点,位于一条小路(直道)的同侧,分别距小路 2 km 和2 2 km ,且A 、B 景点间相距2 km ,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于 .[解析] 所选观景点应使对两景点的视角最大.由平面几何知识,该点应是过A 、B 两点的圆与小路所在的直线相切时的切点,以小路所在直线为x 轴,过B 点与x 轴垂直的直线为y 轴上建立直角坐标系.由题意,得A (2,2)、B (0,22),设圆的方程为(x -a )2+(y -b )2=b 2.由A 、B 在圆上,得⎩⎨⎧ a =0b =2,或⎩⎨⎧a =42b =52,由实际意义知⎩⎨⎧ a =0b =2.∴圆的方程为x 2+(y -2)2=2,切点为(0,0),∴观景点应设在B 景点在小路的投影处.[答案] B 景点在小路的投影处14.设集合A ={(x ,y )|(x -4)2+y 2=1},B ={(x ,y )|(x -t )2+(y -at +2)2=1},若存在实数t ,使得A ∩B ≠∅,则实数a 的取值范围是 .[解析] 首先集合A 、B 实际上是圆上的点的集合,即A 、B 表示两个圆,A ∩B ≠∅说明这两个圆相交或相切(有公共点),由于两圆半径都是1,因此两圆圆心距不大于半径之和2,即(t -4)2+(at -2)2≤2,整理成关于t 的不等式:(a 2+1)t 2-4(a +2)t +16≤0,据题意此不等式有实解,因此其判别式不小于零,即Δ=16(a +2)2-4(a 2+1)×16≥0,解得0≤a ≤43. [答案] [0,43]三、解答题15.为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.[解析] 以O 为坐标原点,过OB 、OC 的直线分别为x 轴和y 轴,建立平面直角坐标系,则圆O 的方程为x 2+y 2=1,因为点B (8,0)、C (0,8),所以直线BC 的方程为x 8+y 8=1,即x +y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆相切所成切点处时,DE 为最短距离,此时DE 的最小值为|0+0-8|2-1=(42-1)km. 16.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP 是6 m ,在建造时,每隔3 m 需用一个支柱支撑,求支柱A 2P 2的长.(精确到0.01 m)[解析] 如图,以线段AB 所在的直线为x 轴,线段AB 的中点O 为坐标原点建立平面直角坐标系,那么点A 、B 、P 的坐标分别为(-18,0)、(18,0)、(0,6).设圆拱所在的圆的方程是x 2+y 2+Dx +Ey +F =0.因为A 、B 、P 在此圆上,故有⎩⎨⎧ 182-18D +F =0182+18D +F =062+6E +F =0,解得⎩⎨⎧ D =0E =48F =-324.故圆拱所在的圆的方程是x 2+y 2+48y -324=0.将点P 2的横坐标x =6代入上式,解得y =-24+12 6.答:支柱A 2P 2的长约为126-24 m.17.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发,径直驶向位于海监船正北30 km的B处岛屿,速度为28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)[解析]如图,以O为原点,东西方向为x轴建立直角坐标系,则A(40,0),B(0,30),圆O方程x2+y2=252.直线AB方程:x40+y30=1,即3x+4y-120=0.设O到AB距离为d,则d=|-120|5=24<25,所以外籍轮船能被海监船监测到.设监测时间为t,则t=2252-24228=12(h)答:外籍轮船能被海监船监测到,时间是0.5 h.18.已知隧道的截面是半径为4.0 m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m、高为3 m的货车能不能驶入这个隧道?假设货车的最大宽度为a m,那么要正常驶入该隧道,货车的限高为多少?[解析]以某一截面半圆的圆心为坐标原点,半圆的直径AB所在的直线为x轴,建立如图所示的平面直角坐标系,那么半圆的方程为:x2+y2=16(y≥0).将x=2.7代入,得y=16-2.72=8.71<3,所以,在离中心线2.7 m处,隧道的高度低于货车的高度,因此,货车不能驶入这个隧道.将x=a代入x2+y2=16(y≥0)得y=16-a2.所以,货车要正常驶入这个隧道,最大高度(即限高)为16-a2m.。

新教材人教A版选择性必修第一册 2.5.2 圆与圆的位置关系 学案

新教材人教A版选择性必修第一册 2.5.2 圆与圆的位置关系 学案

2.5.2圆与圆的位置关系素养目标·定方向课程标准学法解读1.了解圆与圆的位置关系.2.掌握圆与圆的位置关系的判断方法.3.能用圆与圆的位置关系解决一些简单问题.1.掌握圆与圆的位置关系及判定方法.(数学抽象)2.能根据圆的方程判断圆与圆的位置关系.(数学运算)3.能综合应用圆与圆的位置关系解决问题.(逻辑推理)必备知识·探新知知识点两圆的位置关系及其判定(1)几何法:若两圆的半径分别为r1,r2,两圆连心线的长为d,则两圆的位置关系如下:位置关系外离外切相交内切内含图示d与r1,r2的关系d>__r1+r2__d=__r1+r2____|r1-r2|__<d<__r1+r2__d=__|r1-r2|__d<__|r1-r2|__C1:x2+y2+D1x+E1y+F1=0(D21+E21-4F1>0),C2:x2+y2+D2x+E2y+F2=0(D22+E22-4F2>0),联立方程得⎩⎪⎨⎪⎧x2+y2+D1x+E1y+F1=0,x2+y2+D2x+E2y+F2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数2组1组0组两圆的公共点个数2个1个0个两圆的位置关系__相交____外切或内切____外离或内含__两圆的位置关系?提示:不能.已知两圆只有一个交点只能得出两圆内切或外切.关键能力·攻重难题型探究题型一判断两圆的位置关系典例1已知圆C1:x2+y2-2ax-2y+a2-15=0(a>0),圆C2:x2+y2-4ax -2y+4a2=0(a>0).试求a为何值时,两圆C1,C2的位置关系为:(1)相切;(2)相交;(3)外离;(4)内含?[分析]先求出圆心距,与两半径的和或差比较求出a的值.[解析]圆C1,C2的方程,经配方后可得C1:(x-a)2+(y-1)2=16,C2:(x-2a)2+(y-1)2=1,∴圆心C1(a,1),C2(2a,1),半径r1=4,r2=1.∴|C1C2|=(a-2a)2+(1-1)2=a.(1)当|C1C2|=r1+r2=5,即a=5时,两圆外切;当|C1C2|=r1-r2=3,即a=3时,两圆内切.(2)当3<|C1C2|<5,即3<a<5时,两圆相交.(3)当|C1C2|>5,即a>5时,两圆外离.(4)当|C1C2|<3,即0<a<3时,两圆内含.[规律方法]判断两圆的位置关系的两种方法(1)几何法:利用两圆半径的和或差与圆心距作比较,得到两圆的位置关系.(2)代数法:把两圆位置关系的判定完全转化为代数问题,转化为方程组的解的组数问题.【对点训练】❶(1)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为(B) A.内切B.相交C.外切D.相离(2)到点A(-1,2),B(3,-1)的距离分别为3和1的直线有__4__条.[解析](1)两圆的圆心分别为(-2,0),(2,1),半径分别为r=2,R=3,两圆的圆心距为(-2-2)2+(0-1)2=17,则R-r<17<R+r,所以两圆相交,选B.(2)到点A(-1,2)的距离为3的直线是以A为圆心,3为半径的圆的切线;同理,到B的距离为1的直线是以B为圆心,半径为1的圆的切线,所以满足题设条件的直线是这两圆的公切线,而这两圆的圆心距|AB|=(3+1)2+(-1-2)2=5.半径之和为3+1=4,因为5>4,所以圆A和圆B外离,因此它们的公切线有4条.题型二两圆相切问题典例2求与圆x2+y2-2x=0外切且与直线x+3y=0相切于点M(3,-3)的圆的方程.[分析]设圆的方程,利用两圆外切和直线与圆相切建立方程组求得.[解析]设所求圆的方程为(x-a)2+(y-b)2=r2(r>0),由题知所求圆与圆x2+y2-2x=0外切,则(a-1)2+b2=r+1.①又所求圆过点M的切线为直线x+3y=0,故b+3a-3=3.②|a+3b|2=r.③解由①②②组成的方程组得a=4,b=0,r=2或a=0,b=-43,r=6.故所求圆的方程为(x-4)2+y2=4或x2+(y+43)2=36.[规律方法]处理两圆相切问题的两个步骤(1)定性,即必须准确把握是内切还是外切,若只是告诉相切,则必须考虑分两圆内切还是外切两种情况讨论.(2)转化思想,即将两圆相切的问题转化为两圆的圆心距等于两圆半径之差的绝对值(内切时)或两圆半径之和(外切时).【对点训练】❷已知圆O1:x2+y2-82x-82y+48=0,圆O2过点A(0,-4),若圆O2与圆O1相切于点B(22,22),求圆O2的方程.[解析]圆O1的方程变为(x-42)2+(y-42)2=16,所以圆心O1(42,42),因为圆O2与圆O1相切于点B(22,22),所以圆O2的圆心在直线y=x上,不妨设为(a,a),因为圆O2过点A(0,-4),所以圆O2与圆O1外切,因为圆O2过B(22,22),所以a2+(a +4)2=2(a-22)2,所以a=0,所以圆O2的方程为x2+y2=16.题型三两圆相交问题角度1与弦长相关的问题典例3已知两圆x2+y2-2x+10y-24=0和x2+y2+2x+2y-8=0.(1)试判断两圆的位置关系;(2)求公共弦所在的直线方程;(3)求公共弦的长度.[解析] (1)将两圆方程配方化为标准方程,C 1:(x -1)2+(y +5)2=50,C 2:(x +1)2+(y +1)2=10.则圆C 1的圆心为(1,-5),半径r 1=52; 圆C 2的圆心为(-1,-1),半径r 2=10.又|C 1C 2|=25,r 1+r 2=52+10,r 1-r 2=52-10.∴r 1-r 2<|C 1C 2|<r 1+r 2,∴两圆相交.(2)将两圆方程相减,得公共弦所在直线方程为x -2y +4=0.(3)解法一:两方程联立,得方程组⎩⎪⎨⎪⎧x 2+y 2-2x +10y -24=0 ①x 2+y 2+2x +2y -8=0 ② 两式相减得x =2y -4 ③,把③代入②得y 2-2y =0,∴y 1=0,y 2=2.∴⎩⎪⎨⎪⎧ x 1=-4,y 1=0,或⎩⎪⎨⎪⎧x 2=0,y 2=2. ∴交点坐标为(-4,0)和(0,2).∴两圆的公共弦长为(-4-0)2+(0-2)2=25.解法二:两方程联立,得方程组⎩⎪⎨⎪⎧x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0, 两式相减得x -2y +4=0,即两圆相交弦所在直线的方程;由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心为C 1(1,-5),半径r 1=52.圆心C 1到直线x -2y +4=0的距离d =|1-2×(-5)+4|1+(-2)2=35, ∴两圆的公共弦长为2r 2-d 2=250-45=25.角度2 圆与圆位置关系的应用典例4 已知圆C 满足:圆心在直线x +y =0上,且过圆C 1:x 2+y 2-2x +10y -24=0与圆C 2:x 2+y 2+2x +2y -8=0的交点A ,B .(1)求弦AB 所在的直线方程和圆C 的方程;(2)过点M (-4,1)的直线l 被圆C 截得的弦长为6,求直线l 的方程.[解析] (1)由题意:圆C 1:x 2+y 2-2x +10y -24=0与圆C 2:x 2+y 2+2x +2y -8=0的交点A (-4,0),B (0,2).两式相减得:4x -8y +16=0,即x -2y +4=0,所以弦AB 所在的直线方程为x -2y +4=0.圆心在直线x +y =0上,设圆心为(a ,-a ),那么它到两交点A ,B 的距离相等,故有(a +4)2+a 2=a 2+(2+a )2,可得:a =-3,即圆心(-3,3),r 2=10,圆C 的方程为(x +3)2+(y -3)2=10.(2)当k 存在时,设直线l 的方程为y -1=k (x +4),即kx -y +1+4k =0,直线l 被圆C截得的弦长为6,即9=r 2-d 2,所以d 2=1.即|-3k -3+1+4k |k 2+1=1,可得:k =34,所以直线l 的方程为3x -4y +16=0;当k 不存在时,直线l 的方程为x +4=0.直线l 被圆C 截得的弦长为6,符合题意.故所求直线l 的方程为x +4=0或3x -4y +16=0.[规律方法] 求两圆公共弦长的方法1.代数法:求交点的坐标,利用两点间的距离公式求出公共弦长.2.几何法:利用圆的半径、公共弦的一半、圆心到弦的垂线段构成的直角三角形,根据勾股定理求出公共弦长.【对点训练】❸ 已知圆C 1:x 2+y 2=1与圆C 2:(x -4)2+(y -4)2=R 2(R >0).(1)R 为何值时,圆C 1与圆C 2外切;(2)在(1)的条件下,设切点为P ,过P 作直线l 与圆C 1相交于E 点,若|PE |=2,求直线l 的方程.[解析] (1)由已知圆的方程可得:C 1(0,0),C 2(4,4),则|C 1C 2|=42=R +1,所以R =42-1.(2)因为C 1(0,0),C 2(4,4),所以P 为直线C 1C 2与圆C 1的交点,在第一象限.联立⎩⎪⎨⎪⎧y =x ,x 2+y 2=1,得P ⎝⎛⎭⎫22,22 . 当直线斜率存在时,设直线l 的斜率为k ,所以l :kx -y +22(1-k )=0,则圆心C 1到直线l 的距离d =12-⎝⎛⎭⎫222=⎪⎪⎪⎪-22k +221+k 2,解得:k =0,此时直线方程为y =22.当直线斜率不存在时直线方程为x =22也满足条件,故所求直线l 的方程为y =22或x =22.易错警示两圆的位置有关系考虑不全面致错典例5求半径为4,与圆(x-2)2+(y-1)2=9相切,且和直线y=0相切的圆的方程.[错解]由题意知,所求圆的圆心为C(a,4),半径为4,故可设所求圆的方程为(x-a)2+(y-4)2=16.已知圆(x-2)2+(y-1)2=9的圆心为A(2,1),半径为3.由两圆相切,则|CA|=4+3=7,∴(a-2)2+(4-1)2=72,解得a=2±210,故所求圆的方程为(x-2-210)2+(y-4)2=16或(x-2+210)2+(y-4)2=16.[辨析]两圆相切可为内切和外切,不要遗漏.[正解]设所求圆C的方程为(x-a)2+(y-b)2=r2.由圆C与直线y=0相切且半径为4,则圆心C的坐标为C1(a,4)或C2(a,-4).已知圆(x-2)2+(y-1)2=9的圆心A的坐标为(2,1),半径为3.由两圆相切,则|CA|=4+3=7或|CA|=4-3=1.①当圆心为C1(a,4)时,(a-2)2+(4-1)2=72或(a-2)2+(4-1)2=12(无解),故可得a=2±210,故所求圆的方程为(x-2-210)2+(y-4)2=16或(x-2+210)2+(y-4)2=16.②当圆心为C2(a,-4)时,(a-2)2+(-4-1)2=72或(a-2)2+(-4-1)2=12(无解),解得a=2±26.故所求圆的方程为(x-2-26)2+(y+4)2=16或(x-2+26)2+(y+4)2=16.综上所述,所求圆的方程为(x-2-210)2+(y-4)2=16或(x-2+210)2+(y-4)2=16或(x-2-26)2+(y+4)2=16或(x-2+26)2+(y+4)2=16.[误区警示]两圆相切包括外切与内切,外切时,圆心距等于两圆半径之和,内切时,圆心距等于两圆半径差的绝对值.在题目没有说明是内切还是外切时,要分两种情况进行讨论.解决两圆相切问题,常用几何法.。

20-(教学案)2.2.3圆与圆的位置关系(2)

20-(教学案)2.2.3圆与圆的位置关系(2)

一个变元的二次方 2、方法二(方程法) :将圆与圆的方程联立成方程组 程,判别式为△,则 △<0 方程组无解 直线和圆外离; △=0 方程组仅有一解 直线和圆相切; △>0 方程组有两组不同解 直线和圆相交
消元
典例探究 例 1 已知圆 C1:x2+y2+2x+8y-8=0,圆 C2:x2+y2-4x-4y-2=0,判断两圆的位置关系.
课题 学习目标 教学重点、 难点 教学方法 学习要点及自主学习导引
2.2.3 圆与圆的位置关系(2) 1. 掌握圆与圆位置关系的判定 2. 圆系方程的掌握 教学重点:圆与圆的位置关系 教学难点:圆系方程
编号
20
学习心得
1、两个圆的位置关系有外离、外切、相交、内切、内含 如何判断圆与圆的位置关系 方法一(几何法) :设两圆连心的距离为 d ,两圆的半径为 R、r,则 ①两圆外离 没有公共点 ②两圆外切 有唯一的公共点 有两个公共点 ③两圆相交 ④两圆内切 有唯一的公共点 ⑤两圆内含 没有公共点
1
变式 2:求以圆 C1 : x2 y 2 12x 2 y 13 0 和圆 C2 : x2 y 2 12x
16 y 25 0 公共弦为直径的圆的方程.
变式 3:已知圆 C1:x2+y2+2x-6y+1=0,圆 C2:x2+y2-4x+2y-11=0,求两圆的公共弦所 在的直线方程及公共弦长.
例 3、已知两圆 C1 : x y 6 y 0 , C2 : x 2 3
2 2
ห้องสมุดไป่ตู้


2
y 1 1 .
2
(1)求证两圆外切,且 x 轴是它们的一条外公切线; (2)求出它的另一条外公切线方程.

圆与圆的位置关系

圆与圆的位置关系

圆与圆的位置关系引入新课1、两个圆的位置关系有 、 、 、 、 。

2、怎样进行判断呢?需要哪些步骤呢?第一步:第二步:第三步:例1 判断下列两圆的位置关系:(1)1)3()2(22=-++y x 与16)5()2(22=-+-y x ;(2)07622=-++x y x 与027622=-++y y x .变式题:已知圆1C :2224x y mx y +-++250m -=,圆2C :2222x y x my +-- +230m -=,m 为何值时,(1)圆1C 与圆2C 相外切?(2)圆1C 与圆2C 相内含?例2 求过点)60( ,A 且与圆01010:22=+++y x y x C 切于原点的圆的方程.变式训练:求过点)14(- ,A 且与圆0562:22=+-++y x y x C 切于点)21( ,Q 的圆的方程.例 3 已知圆C 的方程是4)1(22=-+y x ,圆1C 的圆心为)1,2(-,若圆C 与圆1C 交与B A ,两点,且22=AB ,求圆1C 的方程。

例 4 圆1C :22122130x y x y +---=和圆2C :221216250x y x y +++-=相交于,P Q 两点,求直线PQ 的方程及公共弦PQ 的长.变式题1:已知一圆经过圆1C 与圆2C 的交点,并且有最小面积,求此圆的方程.点评:圆系方程经过220,0x y Dx Ey F Ax By C ++++=++=与交点的圆方程为22()0x y Dx Ey F Ax By C λ+++++++=经过011122=+++++F y E x D y x 与022222=++++F y E x D y x 交点的圆系方程为: 变式题2:求过直线x + y + 4 = 0与圆x 2 + y 2 + 4x – 2y – 4 = 0的交点且与y = x 相切的圆的方程.变式题3: 求过两圆x 2 + y 2 + 6x – 4 = 0求x 2 + y 2 + 6y – 28 = 0的交点,且圆心在直线x – y – 4 = 0上的圆的方程.跟踪训练1、圆0122:221=+-++y x y x C 与圆0442:222=-+-+y x y x C 的位置关系是 .2、圆0124:221=-++y y x C 与圆04:222=-+x y x C 的公共弦所在直线方程为 、公共弦长3、已知动圆0264222=-+--+m my mx y x 恒过定点P ,则点P 的坐标是4、已知圆m y x =+22与圆0118622=--++y x y x 相交,则实数m 的取值范围是 .5、若圆422=+y x 和圆044422=+-++y x y x 关于直线l 对称,则直线l 的方程为6、已知以)34( -,C 为圆心的圆与圆122=+y x 相切,求圆C 的方程.7、已知一圆经过直线042:=++y x l 与圆0142:22=+-++y x y x C 的两个交点,并且有最小面积,求此圆的方程.。

圆和圆的位置关系

圆和圆的位置关系

《圆和圆的位置关系》说课稿武安市实验中学牛风军各位领导,各位同仁大家好!今天我说课的题目是:圆和圆的位置关系。

本节内容是学生在已经掌握“点和圆的位置关系”、“直线和圆的位置关系”后,学生在已获得一定的探究方法的基础上,进一步探究两圆的位置关系。

它是圆一章中一种重要的位置关系。

根据本节的教学内容及学生现有的实际水平和认知能力,我把两圆相对运动产生“交点个数”的形成过程及两圆的半径与圆心距的数量关系作为教学重点;教学难点是通过学生动手操作和互相交流探索出两圆圆心距d,半径R和r数量关系的过程。

由于时间关系,我重点就本节课如何设计的,为什么这样设计?我说一下:我针对九年级学生的心理特点和认知能力水平,在本节课的教学中,我以学生为中心,尽量给学生充分自主探究,主动获取知识、合作交流的时间。

通过教师的引导,启发调动学生的积极性,让学生在课堂上真正的动起来、学起来,主动参与到整个教学活动中来。

为此我设计了以下几个环节:温故知新、点明主旨——创设情景、感受新知——自主探究、实践新知——合作交流、归纳总结——应用拓展,体验成功——总结新知、布置作业、一、温故知新、点明主旨(2分)此环节复习:1、点和圆的位置关系2、直线和圆的位置关系。

从而引出导入新课:今天我们要学习的内容是圆和圆的位置关系,设计意图:本环节一方面复习前面学习的知识,另一方面为下一步运用类比的思想探究圆与圆位置做好铺垫。

二、创设情景、感受新知(2分)播放:“日食”过程(多媒体)师:月亮与太阳的轮廓看作两个圆形,那么这两个圆形有哪几种位置关系?设计意图:以学生有所体验的和容易理解的现实问题为素材,只有这样才能激发学生习的兴趣与动机,加深学生对身边处处有数学的体会。

引起学生对圆和圆之间的几种位置关系的注意,从而激发学生对探究两圆位置关系的兴趣。

播放“日食”过程后,教师用自制的圆形纸片代替月亮与太阳模拟“日食”过程从而引出下一环节。

三、自主探究、实践新知(6分)本环节是学生自己看书、自己动手、自己探究、独立思考解决问题的时间,但教师必须提出明确的要求,在这里设计了四个问题:1、圆和圆的位置关系有几种?2、从公共点个数来如何定义两圆的位置关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2.2 圆与圆的位置关系(学案)
姓名:
一、复习引入:圆与圆的位置关系
设两圆1C 与2C 的半径分别为R r ,,圆心距为12=C C d 。

(二)自主探究:如何根据圆的方程,判断它们之间的位置关系? 类比回顾:
典例(教材P129页例3)已知圆2212880C x y x y +++-=:,
2224420C x y x y +---=:,试判断圆1C 与圆2C 的位置关系?
(三)形成方法:
典例变式1:判定圆221210240C x y x y ++--=:,222440C x y x y +--=:的位置关系?
(四)问题再探:
思考1:在典例中,设两圆相交于A 、B 两点,如何求相交弦AB 的直线方程?你有什么发现?
思考2:在典例中,怎么求公共弦AB 的长?
(五)提升练习:
典例变式2:已知圆2212880C x y x y +++-=:,
2222108410(0)C x y x y r r +---+=>:,当r 为何值时,两圆的位置关系为外切?
相交?内含?
(六)课堂小结:
绵中精品小练习及两个思考探究题:
探究1:对比直线的交点系方程,当圆2211110C x y D x E y F ++++=:与圆
2222220C x y D x E y F ++++=:相交时,方程
()2222111222+0x y D x E y F x y D x E y F λ++++++++=可以表示什么曲线?
探究2:已知两圆2211110C x y D x E y F ++++=:与2222220C x y D x E y F ++++=: 当1C 与2C 相交时,直线()()()1212120l D D x E E y F F -+-+-=:表示两圆的公共弦方程。

那么,当两圆相切或是相离时,直线l 是否有一定的几何特征呢?。

相关文档
最新文档