圆与圆的位置关系
圆与圆的位置关系(解析版)

第50讲:圆与圆的位置关系一、课程标准1、能根据给定圆的方程,判断圆与圆的位置关系2、能用圆与圆的关系方解决一些简单的数学问题与实际问题. 二、基础知识回顾 圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).三、自主热身、归纳总结1、圆C 1:x 2+y 2+2x =0,圆C 2:x 2+y 2+4y =0,则两圆的位置关系是( )A . 内含B . 相交C . 外切D . 外离 【答案】B【解析】圆C 1:(x +1)2+y 2=1,圆C 2:x 2+(y +2)2=22,∴C 1C 2=5,且2-1<5<2+1,∴两圆相交.故选B .2、圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为( )A . 2B . 2 2C . 3D . 23 【答案】B【解析】由⎩⎨⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22=2.由勾股定理得弦长的一半为4-2=2,∴所求弦长为2 2.故选B .3、已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A . 内含B . 相交C . 外切D . 外离 【答案】B 【解析】圆M :x 2+(y -a)2=a 2(a>0),∴⎝ ⎛⎭⎪⎫||a 22+(2)2=a 2,解得a =2,由||2-1<()0-12+()2-12<2+1得两圆相交.故选B .4、知圆C 与圆x 2+y 2+10x +10y =0相切于原点,且过点A(0,-6),则圆C 的标准方程为____. 【答案】(x +3)2+(y +3)2=18【解析】 设圆C 方程为(x -a)2+(y -b)2=r 2(r>0),则由题意得⎩⎨⎧a 2+b 2=r 2,()a +52+()b +52=()r±522,a 2+()b +62=r2解之得圆C 方程为(x +3)2+(y +3)2=18.5、半径为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为_ _ 【答案】(x±4)2+(y -6)2=36.【解析】 由题意知,圆心可设为(a ,6),半径r =6,∴()a -02+()6-32=6-1,∴a =±4,∴所求圆的方程为(x±4)2+(y -6)2=36.6、(河北省石家庄二中2019届期末)已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0与圆C 2:x 2+y 2+2x -2my +m 2-3=0,若圆C 1与圆C 2相外切,则实数m =________. 【答案】2或-5【解析】圆C 1:(x -m )2+(y +2)2=9,圆C 2:(x +1)2+(y -m )2=4,则C 1(m ,-2),r 1=3,C 2(-1,m ),r 2=2.当圆C 1与圆C 2相外切时,显然有|C 1C 2|=r 1+r 2,即m +12+m +22=5,整理得m 2+3m -10=0,解得m =-5或m =2.四、例题选讲考点一、圆与圆的位置关系例1、已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0.(1)m 取何值时两圆外切? (2)m 取何值时两圆内切?(3)求m =45时两圆的公共弦所在直线的方程和公共弦的长.【解析】 两圆的标准方程为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m ,圆心分别为M (1,3),N (5,6),半径分别为11和61-m .(1)=11+61-m ,解得m =25+1011.(2)当两圆内切时,因定圆的半径11小于两圆圆心距5,故只有61-m -11=5,解得m =25-1011. (3)当m =45时,4-11<|MN |=5<11+4,两圆相交,其两圆的公共弦所在直线方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0,即4x +3y -23=0.所以公共弦长为=. 变式1、分别求当实数k 为何值时,两圆C 1:x 2+y 2+4x -6y +12=0,C 2:x 2+y 2-2x -14y +k =0相交和相切.【解析】 将两圆的一般方程化为标准方程,得C 1:(x +2)2+(y -3)2=1,C 2:(x -1)2+(y -7)2=50-k ,则圆C 1的圆心为C 1(-2,3),半径r 1=1;圆C 2的圆心为C 2(1,7),半径r 2=50-k ,k<50.从而|C 1C 2|=(-2-1)2+(3-7)2=5. 当|50-k -1|<5<50-k +1,即4<50-k<6, 即14<k<34时,两圆相交.当1+50-k =5,即k =34时,两圆外切; 当|50-k -1|=5,即k =14时,两圆内切. ∴当k =14或k =34时,两圆相切.方法总结:(1)判断两圆的位置关系多用几何法,即用两圆圆心距与半径和或差的关系判断,一般不采用代数法.(2)求两圆公共弦长的方法是在其中一圆中,由弦心距d ,半弦长l2,半径r 所在线段构成直角三角形,利用勾股定理求解.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.考点二 圆与圆的综合问题例2、已知圆C 1:(x -a)2+(y +2)2=4与圆C 2:(x +b)2+(y +2)2=1相外切,则ab 的最大值为________.【答案】 94【解析】 由圆C 1与圆C 2相外切,可得(a +b )2+(-2+2)2=2+1=3,即(a +b)2=9,根据基本不等式可知ab≤⎝ ⎛⎭⎪⎫a +b 22=94,当且仅当a =b 时等号成立.故ab 的最大值为94.变式1、已知圆C 1:(x -a)2+(y +2)2=4与圆C 2:(x +b)2+(y +2)2=1相内切, 则 a 2+b 2的最小值为__________.【答案】 12【解析】 由圆C 1与圆C 2内切,得(a +b )2+(-2+2)2=1,即(a +b)2=1.又由基本不等式a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22,可知a 2+b 2≥(a +b )22=12,当且仅当a =b 时等号成立,故a 2+b 2的最小值为12.变式2、已知圆C 1:(x -a)2+(y +2)2=4与圆C 2:(x +b)2+(y +2)2=1相交”,则公共弦所在的直线方程为______________________. 【答案】 (2a +2b)x +3+b 2-a 2=0【解析】 由题意将圆C 1,圆C 2的方程都化为一般方程,得圆C 1:x 2+y 2-2ax +4y +a 2=0①,圆C 2:x 2+y 2+2bx +4y +b 2+3=0②, 由②-①得(2a +2b)x +3+b 2-a 2=0,即所求公共弦所在直线方程为(2a +2b)x +3+b 2-a 2=0.变式3、已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为( )A. 3B. 8C. 4D. 9 【答案】D【解析】 由题设中可知两圆相内切,其中C 1(-2a ,0),r 1=2;C 2(0,b ),r 2=1,故|C 1C 2|=a 2+4b 2,由题设可知a 2+4b 2=2-1,即a 2+4b 2=1,则1a 2+1b 2=⎝⎛⎭⎫1a 2+1b 2(a 2+4b 2)=5+4b 2a 2+a 2b2≥5+4=9.当且仅当a 2=2b 2时等号成立.故选D.变式4、 已知A ,B 是圆C 1:x 2+y 2=1上的动点,AB =3,P 是圆C 2:(x -3)2+(y -4)2=1上的动点,则|PA →+PB →|的取值范围为____. 【答案】[]7,13【解析】 设AB 的中点为E ,则其轨迹为x 2+y 2=14,|PA →+PB →|=2||PE →,由||PE →∈⎣⎡⎦⎤72,132,∴|PA →+PB →|∈[]7,13.变式5、 求圆心在直线x +y =0上,且过两圆x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0交点的圆的方程.【解析】 (方法1)(利用圆心到两交点的距离相等求圆心)将两圆的方程联立得方程组⎩⎨⎧x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0,解这个方程组求得两圆的交点坐标A(-4,0),B(0,2). 因所求圆心在直线x +y =0上,故设所求圆心坐标为(x ,-x),则它到上面的两上交点(-4,0)和(0,2)的距离相等,故有()-4-x 2+()0+x 2=x 2+()2+x 2,即4x =-12,∴x =-3,y =-x =3,从而圆心坐标是(-3,3).又r =()-4+32+32=10,故所求圆的方程为(x +3)2+(y -3)2=10.(方法2)(利用弦的垂直平分线过圆心求圆的方程)同方法1求得两交点坐标A(-4,0),B(0,2),弦AB 的垂直平分线方程为2x +y +3=0,它与直线x +y =0交点(-3,3)就是圆心,又半径r =10,故所求圆的方程为(x +3)2+(y -3)2=10.(方法3)(用待定系数法求圆的方程)同方法1求得两交点坐标为A(-4,0),B(0,2).设所求圆的方程为(x -a)2+(y -b)2=r 2,∵两点在此圆上,且圆心在x +y =0上,∴得方程组⎩⎨⎧()-4-a 2+b 2=r 2,a 2+()3-b 2=r 2,a +b =0,解之得⎩⎨⎧a =-3,b =3,r =10,故所求圆的方程为(x +3)2+(y -3)2=10.(方法4)设所求圆的方程为x 2+y 2-2x +10y -24+λ(x 2+y 2+2x +2y -8)=0(λ≠-1), 即x 2+y 2-2()1-λ1+λx +2()5+λ1+λy -8()3+λ1+λ=0.可知圆心坐标为(1-λ1+λ,-5+λ1+λ).∵圆心在直线x +y =0上,∴1-λ1+λ-5+λ1+λ=0,解得λ=-2.将λ=-2代入所设方程并化简,求圆的方程为x 2+y 2+6x -6y +8=0.方法总结:圆与圆的综合题目涉及到参数的问题,解题思路就是通过圆与圆的位置关系,寻求参数之间的关系,然后转化为函数的思想进行解决。
圆与圆位置关系知识点

圆与圆位置关系知识点
在几何学中,圆与圆之间的位置关系涉及到它们的相对位置和相交情况。
以下
是一些关于圆与圆位置关系的重要知识点。
1. 内切:当一个圆完全位于另一个圆内部,并且两个圆的边界相切于一个点时,我们称这两个圆为内切圆。
内切圆的半径小于外切圆的半径。
2. 外切:当一个圆完全位于另一个圆外部,并且两个圆的边界相切于一个点时,我们称这两个圆为外切圆。
外切圆的半径大于内切圆的半径。
3. 相离:当两个圆没有任何交点且没有相切点时,我们称这两个圆为相离圆。
4. 相交:当两个圆有交点时,我们称这两个圆为相交圆。
a. 两个圆相交于两个不同的点时,我们称这种相交为普通相交。
b. 当两个圆的圆心重合且半径相等时,这两个圆相交于一条直径线,我们称
这种相交为重合相交。
5. 同心圆:当两个圆的圆心重合但半径不相等时,我们称这两个圆为同心圆。
这些是圆与圆位置关系的基本知识点,它们帮助我们理解圆的排列方式并解决
与圆相关的几何问题。
了解这些知识点可以为我们进一步学习和应用几何学提供基础。
圆和圆的位置关系

圆和圆的位置关系圆形是几何学中最基本的图形之一,它由平面上所有到一个固定点的距离相等的点组成。
当涉及到两个或多个圆时,它们的位置关系成为一个有趣而重要的话题。
本文将探讨圆与圆之间的各种位置关系,并介绍这些关系在几何学和实际生活中的应用。
1. 包含关系当一个圆完全包含另一个圆时,称为包含关系。
在这种情况下,大圆被称为外切圆,小圆被称为内切圆。
外切圆和内切圆之间的关系可以通过观察它们的半径和圆心之间的距离来确定。
如果两个圆的圆心之间的距离等于两个圆的半径之差,则为外切关系;如果距离等于两个圆的半径之和,则为内切关系。
包含关系在工程、建筑和几何学中经常被使用,例如制作不同大小的齿轮。
2. 相离关系当两个圆之间没有任何交点时,称为相离关系。
相离关系可以进一步分为两种情况:外离和内离。
对于外离关系,两个圆的圆心之间的距离大于两个圆的半径之和。
即使两个圆的边缘相接触或靠近,它们也没有任何交点。
对于内离关系,两个圆的圆心之间的距离小于两个圆的半径之差。
相离关系在可视化设计和物体的布局中经常被使用,以确保对象之间有足够的空间。
3. 相交关系当两个圆有一个或多个交点时,称为相交关系。
相交关系可以进一步分为两种情况:外交和内交。
对于外交关系,两个圆的圆心之间的距离小于两个圆的半径之和,但大于两个圆的半径之差。
这种情况下,两个圆有两个交点。
对于内交关系,两个圆的圆心之间的距离小于两个圆的半径之和,且小于两个圆的半径之差。
这种情况下,两个圆有两个交点。
相交关系在建筑设计、路径规划和汽车制造等领域中具有重要的应用。
4. 切线关系当两个圆之间只有一条公共切线时,称为切线关系。
切线是一条与圆正好相切的直线。
当两个圆互相切线时,它们的切线相互平行。
切线关系在光学、天文学和工程设计中都有着广泛的应用,例如用于设计太阳能集热器的反射面。
总结:在几何学中,两个圆之间的位置关系可以是包含关系、相离关系、相交关系或切线关系。
这些关系在工程、建筑、可视化设计和其他领域中都有重要的应用。
圆与圆的位置关系

图1扇形、圆与圆的位置关系一、圆和圆的位置关系.1、外离、外切、相交、内切、内含(包括同心圆)这五种位置关系的定义.(1)外离: 两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(2)外切: 两个圆有惟一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时, 叫做这两个圆外切.这个惟一的公共点叫做切点.(3)相交: 两个圆有两个公共点,此时叫做这个两个圆相交.(4)内切: 两个圆有惟一的公共点,并且除了这个公共点以外,一个圆上的都在另一个圆的内部时,叫做这两个圆内切.这个惟一的公共点叫做切点.(5)内含: 两个圆没有公共点, 并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.两圆同心是两圆内的一个特例. 2、相切两圆的性质:如果两个圆相切,那么切点一定在连心线上. 3、 相交两圆的性质:相交两圆的连心线垂直平分公共弦. 二、弧长及扇形的面积1、圆周长公式: 圆周长C=2πR (R 表示圆的半径)2. 弧长公式: 弧长180R n l π= (R 表示圆的半径, n 表示弧所对的圆心角的度数)3、扇形定义:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.4、弓形定义:由弦及其所对的弧组成的图形叫做弓形. 弓形弧的中点到弦的距离叫做弓形高. 5、圆的面积公式.2R S π= (R 表示圆的半径) 6、扇形的面积公式:扇形的面积3602R n S π=扇形 (R 表示圆的半径, n 表示弧所对的圆心角的度数)※弓形的面积公式:(如图5) (1)当弓形所含的弧是劣弧时, 三角形扇形弓形S S S -= (2)当弓形所含的弧是优弧时, 三角形扇形弓形S S S += (3)当弓形所含的弧是半圆时, 扇形弓形S R S ==221π提高试题1、如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( )A. (4+cm B. 9 cmC. D.cm第1题 第2题2、如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为( )A .22B .2C .1D .23、已知两圆的半径为R,r 分别是方程X 2-5X+6=0两根,两圆的圆心距为1,两圆的位置关系是( ) A.外离 B.外切 C.内切 D.相交4、已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 ( )A .8πB .9πC .10πD .11π 5、一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 ( ).A .1B .34C .12D .136、 现有一个圆心角为,半径为的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为( )A .B .C .D .7、如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连接DP ,DP 交AC 于点Q .若QO=PQ ,则QA QC的值为( ) (A )132-(B )32(C )23+(D )23+8、已知锐角△ABC 的顶点A 到垂心H 的距离等于它的外接圆的半径,则∠A 的度数是( ) (A )30° (B )45° (C )60° (D )75°9、如图,已知平行四边形ABCD ,过A 、B 、C 三点的圆交AD 于E ,且与CD 相切。
圆与圆的位置关系

圆与圆的位置关系知识要点:1.圆与圆的位置关系设两圆半径为R和r,圆心距为d,则两圆的位置关系如下:2.分切线定义:和两个圆都相切的直线叫做两圆的公切线。
当两圆在公切线同旁时,这样的公切线叫做外公切线;当两圆在公切线两旁时,这样的公切线叫做内公切线。
公切线长:公切线上的两个切点间的距离叫做公切线的长。
定理:两圆的两条外分切线长相等,两圆的两条内公切线长也相等。
外公切线的长为;内公切线的长为。
3.相交两圆的性质定理:相交两圆的连心线垂直平分两圆的公共弦。
4.相切两圆的性质定理:相切两圆的连心线经过切点。
1.圆和圆的位置关系(设两圆半径分别为R和r,同心距为d)(1)两圆外离d>R+r;(2)两圆外切d=R+r;(3)两圆相交R-r<d<R+r;(4)两圆内切d=R-r;(5)两圆内含d<R-r。
(同心圆(6)是一种内含的特例)2.有关性质:(1)连心线:通过两圆圆心的直线。
如果两个圆相切,那么切点一定在连心线上。
(2)公共弦:相交两圆的连心线垂直平分两圆的公共弦。
(3)公切线:和两个圆都相切的直线,叫做两圆的公切线。
两个圆在公切线同旁两个圆在公切线两旁3.已知两圆半径分别为R、r,同心距为d,填定下表:名称公共点数圆心距半径关系公切线条数内外外离d=R+r相交d=R-r内含一星级题:1.如果两圆有且只有两条公切线,那么这两圆的位置关系是()A.外离 B.外切 C.相交 D.内含2.如果两圆半径分别为3㎝和5㎝,圆心距为2㎝,则两个圆的位置关系为()。
A.外离 B.外切 C.相交 D.内切3.已知⊙O1和⊙O2内切,它们的半径分别为2㎝和3㎝,则两圆圆心距O1O2= ㎝。
4.半径分别为3㎝和4㎝的两圆外切,那么这两圆的圆心距为㎝。
5.已知半径为R的两个等圆的圆心距为d,那么当两圆外切时,d与R满足的关系式是。
6.已知两圆半径分别为5㎝和2㎝,它们的圆心距为7㎝,则两圆位置关系为。
7.已知:两圆⊙O1与⊙O2的圆心距O1O2=5㎝,两圆的半径分别为㎝和㎝,则这两圆的位置关系是。
圆和圆的位置关系

两 圆 内切 d l— =r r _ l l 两 圆 内含 ̄ d l一2 = <r r. v 1 I
例王 () 1 已知OO 和OO 的半径分别为 3 m和 6 m, 。 c 两圆 c
如 图( 两 网 内切. , 切点 分别为 A 和 A. 3 相 交 如果 两 厕有两 个公 共点 , 叫两 圆相交 .
④
如 图⑧ , 圆相交 . 两 综 _ 按 两圆公共 点个 数可 以将 两圆位置关 系细 分 为五种 : L,
① 两 刚外离 :
() 圆相交 ; 2两
.
. .
,
2.
讨诊
内切 时 := r, 即 5 1 r dl l R— =3 1 一.
解得 r 8 =.
三 相切两圃的性质
() 1 相切 两 圆是 以两 圆心 连 线为 对称 轴 的轴 对称 图形 .
() 2 相切 两 圆 的切点 一定 在 连心 线上 .
_
P
共 点 叫 切点. 除公 共 点外 , 个 圆上其 他 点都 在 另 一个 圆 的外 部 , 一
叫两 圆外 切 . 除公 共 点外 , 一个 圆上 其他 点 都在 另一 个 圆 的 内部 ,
另一个 吲上 的其 他点都 在这个 圆的外 部 , 叫两 圆内切.
⑧
如 图③ . 圆外切 . 两
如图, = , 为直径的圆与一个以5 P 3以 Q 为半径的圆
相 切 于点 Pi 方 形 A C 的顶 点 A, . E BD B在 大 圆上 , 圆在 正方 形 外 小 部, 与 C 且 D切 于点 Q 求 A 的长. . B 解
圆与圆的位置关系
圆与圆的位置关系圆与圆之间的位置关系在几何学中占据着重要的地位。
研究圆与圆的位置关系,可以帮助我们解决许多实际问题,比如在建筑设计中确定柱子的位置,或者在交通规划中确定车辆行驶的路线等等。
下面我将介绍几种常见的圆与圆的位置关系。
1. 相离当两个圆没有任何部分重叠时,它们被称为相离。
这意味着两个圆之间没有共同的点。
在平面几何中,我们可以用一个圆心到另一个圆心的距离来判断两个圆是否相离。
如果这个距离大于两个圆的半径之和,那么它们是相离的。
2. 外切如果两个圆之间有且仅有一个公共切点,并且两个圆的切点直接与它们的圆心连线垂直,那么它们被称为外切。
在外切的情况下,两个圆的半径之和等于它们的切点到圆心的距离。
3. 相交当两个圆有部分重叠时,它们被称为相交。
在相交的情况下,两个圆有两个公共切点。
这样的位置关系在很多实际问题中都有应用,比如在某个半径固定的圆内部找到与之相切的另一个半径未知的圆。
在判断两个圆是否相交时,我们需要比较它们的圆心到圆心的距离与两个圆的半径之和。
4. 内切当两个圆的半径不同,但是其中一个圆完全位于另一个圆的内部,并且切点处的切线与两个圆的半径垂直时,它们被称为内切。
在内切的情况下,两个圆的半径之差等于它们的切点到圆心的距离。
5. 同心圆如果两个圆的圆心重合,那么它们被称为同心圆。
同心圆的半径可以不同,但是它们不会相交或相切。
在实际问题中,我们可以利用这些位置关系来解决一些几何难题。
通过观察两个圆的位置关系,我们可以计算圆心的坐标、切点的位置以及两个圆的半径之比等等。
这些计算有助于我们更好地理解圆与圆之间的关系,为我们解决其他几何问题提供了一种思路。
总结起来,圆与圆之间有五种常见的位置关系:相离、外切、相交、内切和同心圆。
通过对这些位置关系的研究,我们可以解决许多实际问题,同时也能够加深对几何学的理解。
无论是在建筑设计中确定位置,还是在日常生活中解决其他难题,几何学的知识都能够帮助我们找到最佳的解决方案。
判断两圆位置关系的方法
两圆位置关系的判定方法圆和圆的位置关系有五种:外离、外切、相交、内切、内含.如何判断两圆的位置关系呢?可试用以下三种方法:1、利用定义,即用两圆公共点(交点)的个数来判定两圆的位置关系.公共点的个数0 1 2两圆位置关系外离或内含外切或内切相交因为这个方法较易理解,所以不再举例.2、利用圆心距与两圆半径之间的关系来判断两圆的位置关系:d为圆心距,R与r 分别是两圆的半径,则有以下关系:两圆外切<=>d=R+r;两圆外离<=>d>R+r;两圆内含<=>d<R-r(R>r).两圆相交:<=>R-r<d<R+r两圆内切<=>d=R-r(R>r)举两个例子帮助同学们理解一下:例题1:设⊙O1和⊙O2的半径分别为R、r,圆心距为d,当R=6cm,r=3cm,d=5cm时,⊙O1和⊙O2的位置关系是怎样的?当R=5cm,r=2cm,d=3cm时,⊙O1和⊙O2的位置关系是怎样的?分析:本题主要是考查根据圆心距判定两圆的位置关系,对第①问有R-r<d<R+r,所以两圆相交,对第②问有d=R-r,所以两圆相切.例题2:已知两圆的半径分别为R和r(R>r),圆心距为 d ,若关于x的方程x2-2rx+(R-d)2=0有两个相等的实数根,那么两圆的位置关系为()A、外切B、内切C、外离D、外切或内切分析:这是一道与方程相联系的小综合题,解本题的关键是关于x的方程的判别式等于0,找出d、R、r三者的数量关系,再确定两圆的位置关系.根据题意,得r2-(R-d)2=0,即(r+R-d)(r-R+d)=0,所以d=R+r或d=R-r.,所以答案应该选D.公切线条数 4 3 2 1 0两圆位置关系外离外切相交内切内含例题1:如果两圆的公切线有且只有一条,那么这两个圆的位置关系是()A、相交B、外离C、内切D、外切分析:只要掌握了上表中列出的对应关系,可以马上判断出此两圆的位置关系是内切,所以应该选C.你掌握住了吗?试做以下练习:一、填空:1、如果两个半径不相等的圆有两个公共点,那么这两个圆的位置关系是___,且这两个圆的公切线有___条.2、若两圆的公切线的条数是4条,则两圆的位置关系是____.3、若两圆的半径分别为4cm和2cm,一条外公切线长为4cm,则两圆的位置关系是___.4、在平面直角坐标系中,分别以点A(0,3)与B(4,0)为圆心,以8与3为半径作⊙A和⊙B,则这两个圆的位置关系为____.二、选择:5、若两圆没有公共点,则两圆的位置关系是()A、外离B、内含C、外切D、外离或内含6、已知⊙O1和⊙O2的半径分别为4cm和3cm,圆心距O1O2=5cm,则⊙O1和⊙O2的公切线的条数为()A、1条B、2条C、3条D、4条7、若两圆的直径分别是18+t,18-t(0<t<18),两圆的圆心距d=t,则两圆的位置关系为()A、外切B、内切C、外离D、相交答案:1、相交;2.2、外离;3、相交;4、内切;5、D;6、B;7、B.。
圆与圆的位置关系
圆与圆的位置关系圆与圆的位置关系是数学中的一个重要概念。
在几何学中,圆通常由中心和半径来定义。
当两个或多个圆相互交叠、相切或不相交时,它们之间的位置关系将会有所不同。
首先,让我们考虑两个圆的相对位置。
当两个圆有一个公共点时,它们被称为相切。
相切的两个圆可以有外切和内切两种情况。
外切是指两个圆的内部不相交,但圆的外侧相接或外切。
内切是指两个圆的内部不相交,但其中一个圆可完全包含在另一个圆的内部。
在相切的情况下,两个圆的位置关系可以用中心之间的距离来描述。
当两个圆外切时,它们的中心之间的距离等于两个圆的半径之和。
当两个圆内切时,它们的中心之间的距离等于两个圆的半径之差。
如果两个圆的中心之间的距离大于两个圆的半径之和,那么这两个圆是相离的。
相离的圆没有公共点,它们之间没有交叠。
除了相切和相离的情况,两个圆还可以相交。
圆的相交分为内部交和外部交两种情况。
内部交是指两个圆的某些部分重叠在一起,而外部交是指两个圆互不包含,但它们之间有交集。
当两个圆相交时,我们可以通过观察它们的半径以及它们的中心之间的距离来判断它们的位置关系。
如果两个圆的中心之间的距离小于两个圆的半径之和但大于两个圆的半径之差,那么它们的位置关系是内部交。
如果两个圆的中心之间的距离大于两个圆的半径之和,那么它们的位置关系是外部交。
除了两个圆的位置关系,我们还可以考虑三个或更多圆的位置关系。
当有三个圆相互相交,它们的位置关系可以是外切、内切、相交或不相交。
如果三个圆的相交点都在一个平面上,则它们相互相交。
如果三个圆有一个公共外切点,则它们相互外切。
如果其中一个圆完全包含在另外两个圆内部,则它们相互内切。
总之,圆与圆的位置关系在数学中起着重要的作用。
通过观察圆之间的位置关系,我们可以推导出诸如圆的长度、面积等属性,从而加深对几何学的理解。
理解圆与圆的位置关系还有助于解决实际生活中的问题,例如在建筑、工程设计中准确测量和定位点的位置。
通过研究和探索圆与圆的位置关系,我们可以解决很多实际问题,并深入理解几何学的原理和概念。
圆与圆的位置的关系
两圆位置关系的性质与判定:
位
0
性R―质r
R+r
d置
关
系
同 心 圆
判内 定
内 含
切 相 交
外 切外
离
数 字 化
例题1:已知⊙O1、⊙O2 的半径为R、r, 圆心距d=5,R=2. (1)若⊙O1与⊙O2外切,求r; (2)若r=7,⊙O1与⊙O2有怎样的位置 关系? (3)若r=4,⊙O1与⊙O2有怎样的位置 关系?
个圆上的点都在另一个圆的内部时,叫两圆内切.
特例
内含:两圆无公共点,并且一个圆上的点都在
另一个圆的内部时,叫两圆内含.
外离
外切
相交
内切 内含(同心圆)
圆 与
分门别类
相离
圆
的 位
相切
置 相交 关
系
外离 内含 外切
内切
连心线:过两圆心的直线 圆心距:两圆心之间的距离
T. . . 01 02
. T. .
01
02
说明:相切两圆的连心线必经过切点。
观察与思考
相交
外切
外离
探究:在五种位置关系中,两圆的圆心距d与两 圆的半径R、r( R>r )间有什么关系?
内切
内含
同心圆(内含的一种)
r dR
Q O
RQ rO
d
外离
d﹥ R+r
内含
d﹤ R-r
d
Q O
外切 d= R+r
Q
O
d
内切 d= R-r
两圆相交时,d与两圆半径R、r之间的关系 又是怎样的呢? R-r﹤ d﹤ R+r
在A处的一棵树上,拴羊的绳长为3m.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两个圆有两个公共点时,叫 做这两个圆 相交
两个圆没有公共点,并且一个圆上 的点都在另一个圆的内部时,叫做这 两个圆 内含
两圆同心是两圆内含的一种特例
圆 和 圆 的 位 置 关 系
外离 内含 外切 内切 相交
没 有 公 共 点
相 离
一 个 公 共 点 两 个 公 共 点
相 切
相 交
思考:如何判断两圆的位置关系?
小结:判断两圆位置关系
几何方法
两圆心坐标及半径 (配方法)
代数方法
( x a1 )2 ( y b1 )2 r12 2 2 2 ( x a ) ( y b ) r 2 2 2
消去y(或x)
圆心距d (两点间距离公式)
px 2 qx r 0
比较d和r1,r2的 大小,下结论
练1
判断两圆位置关系(限时训练) 1. C1:(x+2)2+(y-2)2=13 C2:(x-4)2+(y+2)2=13
外切 2.C1:x2+y2+2x-6y-26=0 C2:x2+y2-4x+2y-4=0 相交
我们已得出第2题两圆是相交的,你能求出交点吗? 请回顾直线与圆相交时是怎样求交点的?
圆与圆位置关系的判断方法
内切
2. C1:x2+y2+2x+8y-8=0 C2:x2+y2-4x-4y-2=0
相交
比较两种方法的优缺点:
几何方法: 直观,容易理解,但不能求出交点坐标。 代数方法:
只能判断交点个数,并不能准确的判断位 置关系(有一个交点时不能判断内切还是 外切,无交点时不能判断内含还是外离)。 优点是可以求出公共点。
0 : 相交 0 :内切或外切 0 : 相离或内含
我们把通过联立圆与圆的方程求解的个数来判断圆 与圆位置关系的方法叫做代数方法。
代数方法判断两圆位置关系的步骤:
把两个圆的方程联立方程组; 两式相减消去二次项; 将所得x(y)代入一个圆的方程消元得到一个一 元二次方程; 求一元二次方程的△,通过△来判断两圆位置关 系。
练2
利用两种方法判断两圆位置关系,若相交求交点 1. C1:(x+2)2+(y-2)2=1 C1:(x+2)2+(y-5)2=16
例1
已知圆C1:x2+y2+2x+8y-8=0, 圆C2:x2+y2-4x-4y-2=0, 判断圆C1与圆C2的位置关系. 若相交,求两圆 的公共弦所在的直线方程.
X+2y-1=0
例2
已知一个圆的圆心为M(2,1),且与圆C:x2 +y2-3x=0相交于A、B两点,若圆心M到直线 AB的距离为 ,求圆的方程.圆与圆的位置关系
复习
直线与圆有哪些位置关系? 相交,相切,相离
如何判断?
几何法,代数法
直线与圆位置关系的判断方法
几何法:通过比较圆心到直线距离与半径的大小来 判断圆与直线的位置关系。 直线与圆相交 当d< r时, 当d= r时, 直线与圆相切 当d> r时, 直线与圆相离 代数法:通过联立直线与圆的方程求解的个数来判 断圆与直线的位置关系。 直线与圆相交 当有两个实数解时,
5
A DC B M
(x-2)2+(y-1)2=6
例3
求半径为 3 2 ,且与圆C: x2+y2+10x+10y=0 切于原点的圆的方程。
(x-3)2+(y-3)2=18
或
(x+3)2+(y+3)2=18
例4
已知圆C1:x2+y2-10x-10y=0 与圆C2: x2+y2+6x+2y-40=0 相交于A,B两点,求公共弦AB的长.
当只有一个实数解时, 直线与圆相切 当没有实数解时, 直线与圆相离
两个圆没有公共点,并且每个圆上的点 都在另一个圆的外部时,叫做这两个圆外离
两个圆有唯一的公共点,并且除了 这个公共点以外,每个圆上的点都在另 一个圆的外部时,叫做这两个圆外切 这个唯一的公共点叫做切点
两个圆有唯一的公共点,并且 除了这个公共点以外,一个圆上的 点都在另一个圆的内部时,叫做这 两个圆内切 这个唯一公共点叫做 切点 外切和内切统称为相切
圆心距:两圆心之间的距离
外离
o1 R d
r o2
d>R+r
内含
O1 O2
O
d r
R
d<R-r (R>r)
外切
o1
T
R d r
o2
d=R+r
内切
o 2 o1
T
r
R
d
d=R-r (R>r)
相交
o1 R r
d
o2
R-r<d<R+r (R>r)
小结
判断圆与圆位置关系(几何法)
圆C1:(x-a)2+(y-b)2=r12(r1>0) 圆C2:(x-c)2+(y-d)2=r22(r2>0)
知识探究:相交圆的交线方程
思考1: 已知两圆
C1:x2+y2+D1x+E1y+F1=0, C2:x2+y2+D2x+E2y+F2=0, 那么方程 x2+y2+D1x+E1y+F1-(x2+y2+D2x+E2y+F2)=0
表示的图形是什么?
直 线
知识探究:相交圆的交线方程
思考2: 已知两圆
C1:x2+y2+D1x+E1y+F1=0 C2:x2+y2+D2x+E2y+F2=0相交, M(x0,y0)为一个交点,
那么点M(x0,y0)在直线
(D1-D2)x+(E1-E2)y+F1-F2=0上吗?
知识探究:相交圆的交线方程
结论:已知两圆
C1:x2+y2+D1x+E1y+F1=0,
C2:x2+y2+D2x+E2y+F2=0相交,
则直线(D1-D2)x+(E1-E2)y+F1-F2=0
为两圆的公共弦所在的直线方程。
利用圆心距d与|r1+r2|和| r1-r2 |的大小关系判断:
当d> |r1+r2|时, 两圆外离 当d= |r1+r2|时, 两圆外切 当 | r1-r2 | <d< |r1+r2|时, 两圆相交 当d= | r1-r2 |时, 两圆内切 当d< | r1-r2 |时, 两圆内含
18