1.1.2 弧度制2 课件(人教A版必修4)

合集下载

高中数学人教A版必修4课件:1.1.2弧度制

高中数学人教A版必修4课件:1.1.2弧度制
180
答案: 5 r ad
8
r5 a d.
8
(2)因为1rad=( 1 8 0 °),

所以- 5 rad=-( 5 ×
12
12
答案:-75°
)°1=8 0-75°.

2.(1) 1 π9 =6π+ .
3
3
(2)-315°=- 7 = -2π+ .
4
4
【方法技巧】进行角度制与弧度制的互化的原则和
{|2n, nZ} {| ( 2n1) , nZ}
4
4
{|k, kZ}. 4
2.(1)以OA为终边的角为 +2kπ(k∈Z);以OB为终边
6
的角为- 2 +2kπ(k∈Z).所以阴影部分(不包括边界)
3
内的角的集合为 { |- 2 + 2 k + 2 k , k Z } .
【解析】所求角的集合为
{ |2 k 2 k + 或 2 k + 2 2 k + , k Z } . 33
2.若将本例2中变成如图所示的图形,写出终边落在阴 影部分(不包括边界)内的角的集合.
【解析】30°= ,150°= . 5
【解析】(1)330°和60°的终边分别对应 - 和 ,
63
所表示的区域位于 - 与之间且跨越x轴的正半轴,
63
所以终边落在阴影部分(不包括边界)的角的集合为
{ |2 k - 2 k + , k Z } .
6
3
(2)210°和135°的终边分别对应 - 5 所和 表3,示的
弧长为l,半径为r,
l+ 2 r=10, ①

高中数学人教A版必修四1.1.2教学课件《弧度制》

高中数学人教A版必修四1.1.2教学课件《弧度制》
(1)将 α 改写成 β+2kπ(k∈Z,0≤β<2π)的形式,并指出 α 是第
几象限的角; (2)在[-5π,0)内找出与 α 终边相同的角。
人民教育出版社 |必修四
【解析】
(1)2
005°=2
π 005×180
401π rad= 36
rad=5×2π+4316π
41π 3π rad,又 π< 36 < 2 ,
人民教育出版社 |必修四
化解疑难
1.正确理解弧度与角度的概念 区 (1)定义不同; 别 (2)单位不同:弧度制以“弧度”为单位,角度制以“度”为单位
(1)不管以“弧度”还是以“度”为单位的角的大小都是一个与圆的半径大小无 联
关的值; 系
(2)“弧度”与“角度”之间可以相互转化 2.角度制与弧度制换算公式的理解 (1)弧度制、角度制都是角的度量制,它们之间可以进行换算。 (2)用角度制和弧度制来度量零角,单位不同,但量度相同(都是 0);用角度制和弧度制 度量任一非零角,单位不同,量度也不同。
(4)如果半径为 r 的圆的圆心角 α 所对弧的长为 l,那么, l
角 α 的弧度数的绝对值是|α|=r
人民教育出版社 |必修四
3.角度制与弧度制的换算
角度化弧度
弧度化角度
360°=2πrad
2π rad=360°
180°=πrad
π rad=180°
π 1°=180 rad≈0.017 45 rad
【例 1】 把下列角度化成弧度或弧度化成角度: 2π
(1)72°;(2)-300°;(3)2;(4)- 9 .
人民教育出版社 |必修四
π 2π
π 5π
【解析】 (1)72°=72×180= 5 ; (2)-300°=-300×180=- 3 ;

高中数学人教A版必修4课件:1.1.2弧度制

高中数学人教A版必修4课件:1.1.2弧度制
(2)将下列各弧度角化为角度:①-51π2 rad;②139π.
思路点拨:
解:(1)①∵1°=1π80 rad, ∴112°30′=1π80×112.5 rad=58π rad. ②-315°=-315×1π80=-74π. (2)①∵1 rad=1π80°, ∴-51π2 rad=-51π2×1π80°=-75°. ②139π=139π×1π80°=1 140°.
(2) 的面积.
思路点拨:(1) 设出圆心角为θ → 建方程组 → 解方程组得解 (2) 化度为弧度 → 求弧长 → 求扇形面积
解:(1)设扇形圆心角的弧度数为 θ(0<θ<2π),弧长为 l, 半径为 r,
依题意有
l+2r=10,

12lr=4.
进行角度制与弧度制的互化的策略以及注意点 (1)原则:牢记 180°=π rad,充分利用 1°=1π80 rad 和 1 rad =1π80°进行换算. (2)方法:设一个角的弧度数为 α,角度数为 n,则 α rad=α·1π80°;n°=n·1π80.
(3)注意点 ①用“弧度”为单位度量角时,“弧度”二字或“rad” 可以省略不写. ②用“弧度”为单位度量角时,常常把弧度数写成多少π 的形式,如无特别要求,不必把π写成小数. ③度化弧度时,应先将分、秒化成度,再化成弧度.
3.解析弧度制下弧长公式、扇形的面积公式 在弧度制下,弧长公式和扇形的面积公式分别为: l=|α|R,S=12lR=12|α|R2(其中 α 为圆心角的弧度数,R 为扇 形的半径). 要把握好上述公式,需注意以下三个方面: (1)由上述公式可知,由 α、l、R、S 中的两个量可以求出 另外的两个量,即“知二求二”.
【即时演练】
-247π 是第________象限的角. 解析:∵-247π=-6π-34π,而-34π 是第三象限的角, ∴-247π 是第三象限的角. 答案:三

高中数学必修四1.1.2弧度制课件人教A版

高中数学必修四1.1.2弧度制课件人教A版
-6-
1.1.2
1 2AOHANG
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
(4)角的概念推广后,在弧度制下,角的集合与实数集R之间建立起 一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度 数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等 于这个实数的角)与它对应.
Z 知识梳理
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
3.弧度制与角度制的换算 π (1)角度转化为弧度:360° =2π rad,180° =π rad,1° = rad ≈0.017 180 45 rad. (2)弧度转化为角度:2π rad=360° ,π rad=180° ,1 rad=
HISHI SHULI
Z 重难聚焦
HONGNAN JVJIAO
D典例透析
IANLI TOUXI
1.用弧度制表示象限角与终边在坐标轴上的角 剖析:(1)象限角的表示:
角 α 终边所在象限 第一象限 第二象限 第三象限 第四象限 集合 ������ x 2k������ < α < 2k������ + ,������∈Z 2 π ������ 2������π + < ������ < 2������π + π,������∈Z 2 3π ������ 2������π + π < ������ < 2������π + ,������∈Z 2 3π ������ 2������π + < ������ < 2������π + 2π,������∈Z 2

人教A版高中数学必修四《1.1.2弧度制》ppt课件.ppt

人教A版高中数学必修四《1.1.2弧度制》ppt课件.ppt

• 20、No man is happy who does not think himself so.——Publilius Syrus认为自己不幸福的人就不会幸福。2020年8月5日星期三11时1分19秒11:01:195 August 2020
• 21、The emperor treats talent as tools, using their strongpoint to his advantage. 君子用人如器,各取所长。上午11时1分19秒上午11时1分11:01:1920.8.5
3

1.什么叫1弧度角? 2.“角度制”与“弧度制”的联系与区别; 3.弧长公式与扇形面积公式.
把希望建筑在意欲和心愿上面的人们,二十 次中有十九次都会失望。
——大仲马
• 1、Genius only means hard-working all one's life. (Mendeleyer, Russian Chemist) 天才只意味着终身不懈的努力。20.8.58.5.202011:0311:03:10Aug-2011:03
• •
THE END 8、For man is man and master of his fate.----Tennyson人就是人,是自己命运的主人11:0311:03:108.5.2020Wednesday, August 5, 2020
9、When success comes in the door, it seems, love often goes out the window.-----Joyce Brothers成功来到门前时,爱情往往就走出了窗外。 11:038.5.202011:038.5.202011:0311:03:108.5.202011:038.5.2020

二年级【数学】1.1.2 弧度制(人教A版必修4)2---短篇版

二年级【数学】1.1.2 弧度制(人教A版必修4)2---短篇版
在初中几何里,我们学习过角的度量, 1度的角是怎样定义的呢?
周角的 1 为1度的角。 360
这种用1º角作单位来度量角的制度叫做 角度制 ,今天我们来学习另一种在数学和其 他学科中常用的度量角的制度——弧度制。
1. 圆心角、弧长和半径之间的关系: 角是由射线绕它的端点旋转而成的,在旋
转的过程中射线上的点必然形成一条圆弧, 不同的点所形成的圆
S R2 n 1 R2
360 2
又 αR=l,所以
S 1 lR 2
证明2:因为圆心角为1 rad的扇形面积是
R2 1 R2 2 2
l
而弧长为l的扇形的圆心角的大小是 R rad.
所以它的面积是 S 1 lR 2
例2. 把
8
5
化成度。
解:1rad=
(180 )
8 8 (180) 55
57.30o
57o18 '
6. 用弧度制表示弧长及扇形面积公式:
① 弧长公式: l r
由公式: l l r
r
比公式
l nr
180
简单.
弧长等于弧所对的圆心角(的弧度数)
的绝对值与半径的积.
② 扇形面积公式 S 1 lR 2
其中l是扇形弧长,R是圆的半径。
证明:设扇形所对的圆心角为nº(αrad),则
例7. 已知一半径为R的扇形,它的周长等于 所在圆的周长,那么扇形的中心角是多少弧 度?合多少度?扇形的面积是多少?
解:周长=2πR=2R+l,所以l=2(π-1)R. 所以扇形的中心角是2(π-1) rad. 合( 360( 1) ) º
扇形面积是 ( 1)R2
② 平角、周角的弧度数: 平角= rad、周角=2 rad.

《红对勾》2015-2016学年人教A版高中数学必修4课件1-1-2弧度制

《红对勾》2015-2016学年人教A版高中数学必修4课件1-1-2弧度制
l 么,角α的弧度数的绝对值是|α|= r .
3.角α=6这种表达方式正确吗? 答:正确.角α=6表示6弧度的角,这里将“弧度”省 去了.
角度与弧度的互化
4.在同一个式子中,角度制与弧度制能否混用?为什 么?
答:角度制和弧度制是表示角的两种不同的度量方 法,两者有着本质的不同,因此在同一个表达式中不能出 现两种度量方法的混用,如α=2kπ+30°,k∈Z是不正确的 写法,应写成α=2kπ+6π,k∈Z.
扇形的弧长和面积的计算
【例 3】 已知一扇形的周长为 8 cm,当它的半径 和圆心角取什么值时,扇形的面积最大?并求出最大面 积.
【分析】 (1)用哪些量表达扇形的周长?(半径和弧 长)
(2)扇形的面积公式是什么?能否用半径表示?(S= 12lr,能)
(3)如何求扇形面积的最大值?(利用二次函数)
答:随着半径的变化,弧长也在变化,但对于一定大 小的圆心角所对应的弧长与半径的比值是唯一确定的,与 半径的大小无关.
任意角的弧度数与实数的对应关系
(1)正角:正角的弧度数是一个 正数 (2)负角:负角的弧度数是一个 负数 (3)零角:零角的弧度数是 0 . (4)如果半径为r的圆的圆心角α所对弧的长为l,那
角度制与弧度制的互化
【例 2】 设 α1=510°,α2=-750°,β1=45π,β2= -161π.
(1)将 α1,α2 用弧度表示出来,并指出它们各自终边 所在的象限;
(2)将 β1,β2 用角度表示出来,并在[-360°,360°) 内找出与它们终边相同的所有的角.
【分析】 首先利用 1°=18π0rad 可将角度化成弧度,利 用 1rad=18π0°可将弧度化成角度,然后再根据要求指出 α1, α2 终边所在的象限,与 β1,β2 终边相同且在[-360°,360°) 内的角.

高中数学必修四 第1章 三角函数课件 1.1.2 弧度制

高中数学必修四 第1章 三角函数课件 1.1.2 弧度制
高中数学 必修四
第一章 三角函数
1.1.2 弧度制
【教学目标】 1.了解角的另外一种度量方法——弧度制. 2.能进行弧度与角度的互化. 3.掌握弧度制中扇形的弧长公式和面积公式. 【重难点】 1.对弧度制概念的理解.(难点) 2.弧度制与角度制的互化.(重点、易错点)
新知导学
1.度量角的单位制 (1)角度制 用度作为单位来度量角的单位制叫做角度制,规定 1 度的角等 1 于周角的 360 . (2)弧度制 ①弧度制的定义
[思路探索] 本题主要考查角度与弧度的换算,直接套用角度与 弧度的换算公式,即度数×1π80=弧度数,弧度数×1π80°=度 数.
解 (1)20°=2108π0=π9. (2)-15°=-11850π=-1π2. (3)71π2=172×180°=105°. (4)-115π=-151×180°=-396°.

α2kπ+π2<α<2kπ+π,k∈Z


α2kπ+π<α<2kπ+32π,k∈2π<α<2kπ+2π,k∈Z

类型一 角度制与弧度制的换算 【例 1】 将下列角度与弧度进行互化.
(1)20°;(2)-15°;(3)71π2;(4)-115π.
解 (1)-1 500°=-1 500×1π80=-253π=-10π+53π. ∵53π是第四象限角,∴-1 500°是第四角限角. (2)∵25π=25×180°=72°,∴终边与角25π相同的角为 θ=72°+ k·360°(k∈Z),当 k=0 时,θ=72°;当 k=1 时,θ=432°, ∴在 0°~720°范围内,与25π角终边相同的角为 72°,432°. [规律方法] 用弧度制表示终边相同的角 2kπ+α(k∈Z)时,其 中 2kπ 是 π 的偶数倍,而不是整数倍,还要注意角度制与弧度 制不能混用.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

位制,角度制是以“度”为单位来度量角的
单位制;1弧度≠1º; (2)1弧度是弧长等于半径长的圆弧所对的圆
1 心角的大小,而1度是圆周 的所对的圆心 360
角的大小;
(3)弧度制是十进制,它的表示是用一个实
数表示,而角度制是六十进制;
(4)以弧度和度为单位的角,都是一个与 半径无关的定值。
l 4.公式: , r
表示的是在半径为r的圆中,弧长为l的
弧所对的圆心角是α rad。
5. 弧度制与角度制的换算 ① 用角度制和弧度制度量角,零角既是0º 角,又是0 rad角,同一个非零角的度数和 弧度数是不同的. ② 平角、周角的弧度数:
平角= rad、周角=2 rad.
③ 正角的弧度数是正数,负角的弧度数是 负数,零角的弧度数是0.
不同的点所形成的圆
弧的长度是不同的, 但都对应同一个圆心角。
AB AB =定值, r r
设α =nº, AB 弧长为l,半径OA为r,
2 r l 2 , n 则 l n , 360 r 360 可以看出,等式右端不含
半径,表示弧长与半径的
比值跟半径无关,只与α的
l ④角的弧度数的绝对值: r
(l为弧长,r为半径)
⑤ ∵ 360=2 rad ,∴180= rad
∴ 1 =

180
rad 0.01745rad

180 1 rad 57.30 57 18'
6. 用弧度制表示弧长及扇形面积公式:
半径是50米,求 米)。
解:因为60º = 3 ,所以
3×50≈52.5 .
的长 ABl(精确到0.1
l=α· r=
AB 的长约为52.5米. 答:
例5. 在半径为R的圆中,240º的中心角所对的
弧长为
中心角等于
,面积为2R2的扇形的
弧度。
4 解:(1)240º = ,根据l=αR,得 3
解: (1)112º30′=112.5º,
1

180
0.0175
所以112º30′≈112.5×0.0175≈1.969rad. (2) 112º30′=112.5×

180
=
5 . 8
8 例2. 把 化成度。 5
解:1rad= (
180

)
8 8 180 ( ) 5 5
大小有关。
结论:可以用圆的半径作单位去度量角。
2.定义:
长度等于半径长的圆弧所对的圆心角叫做1弧 度的角,弧度记作rad。这种以弧度为单位来 度量角的制度叫做弧度制。 注:今后在用弧度制表示角的时候,弧度二字 或rad可以略去不写。
3. 弧度制与角度制相比: (1) 弧度制是以“弧度”为单位的度量角的单
288
例3. 填写下表:
角度 弧度 角度 0° 30°
6
5 6
45°

4
60°

3
90°

2
0
120° 2
3
135° 150° 180° 210° 225° 240°
3 4
弧度
角度
π

弧度
270° 300° 315° 330° 360° 3
2

例4. 扇形AOB中, , AB 所对的圆心角是60º
2
又 αR=l,所以
1 S lR 2
证明2:因为圆心角为1 rad的扇形面积是
R2 1 2 R 2 2
l 而弧长为l的扇形的圆心角的大小是 R rad.
1 所以它的面积是 S lR 2
例1. (1) 把112º30′化成弧度(精确到0.001);
(2)把112º30′化成弧度(用π 表示)。
① 弧长公式: l r
l 由公式: l r r
nr 比公式 l 简单. 180
弧长等于弧所对的圆心角(的弧度数) 的绝对值与半径的积.
1 ② 扇形面积公式 S lR 2
其中l是扇形弧长,R是圆的半径。 证明:设扇形所对的圆心角为nº (αrad),则
n 1 2 S R R 360 2
5 合 36
例7. 已知一半径为R的扇形,它的周长等于
所在圆的周长,那么扇形的中心角是多少弧 度?合多少度?扇形的面积是多少? 解:周长=2πR=2R+l,所以l=2(π-1)R. 所以扇形的中心角是2(π-1) rad. 合(
360( 1)


2
扇形面积是 ( 1) R
在初中几何里,我们学习过角的度量,
1度的角是怎样定义的呢?
1 周角的 为1度的角。 360
这种用1º角作单位来度量角的制度叫做 角度制 ,今天我们来学习另一种在数学和其
他学科中常用的度量角的制度——弧度制。
1. 圆心角、弧长和半径之间的关系: 角是由射线绕它的端点旋转而成的,在旋 转的过程中射线上的点必然形成一条圆弧,
1 2 1 (2)根据S= lR= αR ,且S=2R2. 2 2
4 l R 3
所以 α=4.
例6.与角-1825º 的终边相同,且绝对值最小 的角的度数是___,合___弧度。 解:-1825º =-5×360º -25º , 所以与角-1825º 的终边相同,且绝对值 最小的角是-25º .
相关文档
最新文档