高二数学抽样方法

合集下载

高中数学必修2《统计》知识点讲义(最新整理)

高中数学必修2《统计》知识点讲义(最新整理)

第二章统计一、三种抽样方法1、统计的的基本思想是:用样本的某个量去估计总体的某个量总体:在统计中,所有考察对象的全体。

个体:总体中的每一个考察对象。

样本:从总体中抽取的一部分个体叫做这个总体的一个样本。

样本容量:样本中个体的数目。

2、抽样方法:要求:总体中每个个体被抽取的机会相等(1)简单随机抽样:抽签法和随机数表法简单随机抽样的特点是:不放回、等可能.抽签法步骤(1)先将总体中的所有个体(共有N个)编号(号码可从1到N)(2)把号码写在形状、大小相同的号签上,号签可用小球、卡片、纸条等制作(3)将这些号签放在同一个箱子里,进行均匀搅拌(4)抽签时,每次从中抽出一个号签,连续抽取n次(5)抽出样本随机数表法步骤(1)将总体中的个体编号(编号时位数要统一);(2)选定开始的数字;(3)按照一定的规则读取号码;(4)取出样本(2)系统抽样系统抽样特点:容量大、等距、等可能.步骤:1.编号,随机剔除多余个体,重新编号2.分组 (段数等于样本容量),确定间隔长度 k=N/n3.抽取第一个个体编号为i4.依预定的规则抽取余下的个体编号为i+k, i+2k, …(3)分层抽样分层抽样特点:总体差异明显、按所占比例抽取、等可能.步骤:1.将总体按一定标准分层;2.计算各层的个体数与总体的个体数的比;3.按比例确定各层应抽取的样本数目4.在每一层进行抽样 (可用简单随机抽样或系统抽样)例如:5. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法。

其基本步骤是:①画出两个变量的散点图;②求回归直线方程;③并用回归直线方程进行预报。

高中数学知识点:抽样方法

高中数学知识点:抽样方法

高中数学知识点:抽样方法一、简单随机抽样设一个总体的个体数为N,假如通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个体被抽到的概率相等,就称如此的抽样为简单随机抽样。

一样地假如用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N.常用的简单随机抽样方法有:抽签法、随机数法。

1.抽签法一样地,抽签法确实是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌平均后,每次从中抽取一个号签,连续抽取n 次,就得到一个容量为n的样本。

2.随机数法随机抽样中,另一个经常被采纳的方法是随机数法,即利用随机数表、随机数骰子或运算机产生的随机数进行抽样。

二、活用随机抽样系统抽样的最差不多特点是“等距性”,每组内所抽取的号码需要依据第一组抽取的号码和组距是唯独确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d为公差的等差数列{an},第k组抽取样本的号码,ak=m+(k-1)d,如本题中依照第一组的样本号码和组距,可得第k组抽取号码应该为9+30*(k-1)三、系统抽样要练说,先练胆。

说话胆小是幼儿语言进展的障碍。

许多幼儿当众说话时显得可怕:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。

总之,说话时外部表现不自然。

我抓住练胆那个关键,面向全体,偏向差生。

一是和幼儿建立和谐的语言交流关系。

每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,排除幼儿恐惧心理,让他能主动的、自由自在地和我交谈。

二是注重培养幼儿敢于当众说话的适应。

或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的爱好,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地关心和鼓舞他把话说完、说好,增强其说话的勇气和把话说好的信心。

三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清晰,声音响亮,学会用眼神。

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)

高中数学统计抽样方法精选题目(附答案)一、抽样方法1.简单随机抽样(1)特征:①一个一个不放回的抽取;②每个个体被抽到可能性相等.(2)常用方法:①抽签法;②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.1.(1)采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10 D.15(2)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.[解析](1)从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n组抽到的号码为a n=9+30(n-1)=30n-21,由451≤30n-21≤750,得23615≤n≤25710,所以n=16,17,…,25,共有25-16+1=10人.(2)小学中抽取30×150150+75+25=18所学校;从中学中抽取30×75150+75+25=9所学校.[答案](1)C(2)189注:1.系统抽样的特点(1)适用于元素个数很多且均衡的总体. (2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样. (4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn . 2.与分层抽样有关问题的常见类型及解题策略(1)确定抽样比.可依据各层总数与样本数之比,确定抽样比.(2)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(3)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数. 2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法解析:选C 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法. 3.某学校高一、高二、高三3个年级共有430名学生,其中高一年级学生160名,高二年级学生180名,为了解学生身体状况,现采用分层抽样方法进行调查,在抽取的样本中高二学生有32人,则该样本中高三学生人数为________.解析:高三年级学生人数为430-160-180=90,设高三年级抽取x 人,由分层抽样可得32180=x90,解得x =16. 答案:164.某单位有职工960人,其中青年职工420人,中年职工300人,老年职工240人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为________.解析:因为分层抽样的抽样比应相等,所以420960=14样本容量,样本容量=960×14420=32.答案:32二、用样本的频率分布估计总体的频率分布1.频率分布直方图2.茎叶图5.(1)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.(2)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].①求图中a的值;②根据频率分布直方图,估计这100名学生语文成绩的平均分;③若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 [为50×0.18=9.答案:9(2)解:①由频率分布直方图可知(0.04+0.03+0.02+2a)×10=1.所以a=0.005.②该100名学生的语文成绩的平均分约为x=0.05×55+0.4×65+0.3×75+0.2×85+0.05×95=73.③由频率分布直方图及已知的语文成绩、数学成绩分布在各分数段的人数比,可得下表:分数段[50,60)[60,70)[70,80)[80,90)x 5403020x∶y 1∶12∶13∶44∶5y 5204025100-(5+20+40+25)=10.注:与频率分布直方图有关问题的常见类型及解题策略(1)已知频率分布直方图中的部分数据,求其他数据,可根据频率分布直方图中的数据求出样本与整体的关系,利用频率和等于1就可求出其他数据.(2)已知频率分布直方图,求某种范围内的数据,可利用图形及某范围结合求解.6.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()A.0.2 B.0.4C.0.5 D.0.6解析:选B由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.7.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2 000名高中男生中体重大于70.5公斤的人数为()A .300B .360C .420D .450解析:选B 样本中体重大于70.5公斤的频率为: (0.04+0.034+0.016)×2=0.090×2=0.18.故可估计该校2 000名高中男生中体重大于70.5公斤的人数为:2 000×0.18=360(人). 8.某商场在庆元宵节促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.解析:总销售额为2.50.1=25(万元),故11时至12时的销售额为0.4×25=10(万元).答案:10三、用样本的数字特征估计总体的数字特征有关数据的数字特征9.(1)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53(2)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差(3)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[解析] (1)从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56,故选择A.(2)由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.故选C.(3)假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎨⎧x 1+x 2+x 3+x44=2,x 2+x32=2,∴⎩⎪⎨⎪⎧x 1+x 4=4,x 2+x 3=4, 又s = 14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2] =12(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=122[(x 1-2)2+(x 2-2)2]=1, ∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.[答案] (1)A (2)C (3)1,1,3,3 注:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.10.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③D .②④解析:选B 法一:∵x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,∴x 甲<x 乙,又s 2甲=9+1+0+4+45=185,s 2乙=4+1+0+1+45=2,∴s 甲>s 乙.故可判断结论①④正确.法二:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.11.甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如图所示,根据茎叶图可知,两城市中平均温度较高的城市是__________,气温波动较大的城市是__________.解析:根据题中所给的茎叶图可知,甲城市上半年的平均温度为9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙 乙12.甲、乙两台机床同时加工直径为100 mm 的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103; 乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求. 解:(1)x 甲=99+100+98+100+100+1036=100(mm),x 乙=99+100+102+99+100+1006=100(mm),s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73(mm 2), s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1(mm 2).(2)因为s 2甲>s 2乙,说明甲机床加工零件波动比较大,因此乙机床加工零件更符合要求.四、线性回归1.两个变量的线性相关(1)散点图:将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形.(2)正相关与负相关:①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)线性回归方程:方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b x .13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程y =b x +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)[解] (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y =16(90+84+83+80+75+68)=80.所以a ^=y -b ^x =80+20×8.5=250,从而回归直线方程为y ^=-20x +250. (2)设工厂获得的利润为L 元,依题意得 L =x (-20x +250)-4(-20x +250) =-20x 2+330x -1 000 =-20(x -8.25)2+361.25.当且仅当x =8.25时,L 取得最大值.故当单价定为8.25元时,工厂可获得最大利润. 注:(1)线性回归分析就是研究两组变量间线性相关关系的一种方法,通过对统计数据的分析,可以预测可能的结果,这就是线性回归方程的基本应用,因此利用最小二乘法求线性回归方程是关键,必须熟练掌握线性回归方程中两个重要估计量的计算.(2)回归直线方程恒过点(x ,y ).14.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?解:(1)将6组数据按月份顺序编号为1,2,3,4,5,6,从中任取两组数据,基本事件构成的集合为Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}共15个基本事件,设抽到相邻两个月的事件为A ,则A ={(1,2),(2,3),(3,4),(4,5),(5,6)}共5个基本事件,∴P (A )=515=13.(2)由表中数据求得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498.代入公式可得b ^=187.再由a ^=y -b ^x ,求得a ^=-307,所以y 关于x 的线性回归方程为 y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22=47<2; 同样,当x =6时,y ^=787,⎪⎪⎪⎪787-12=67<2. 所以该小组所得线性回归方程是理想的.。

三种抽样方法(全)

三种抽样方法(全)
(3)系统抽样比简单随机抽样的应用范围更广.
8
【例题解析】 例1、某校高中三年级的295名学生已经编 号为1,2,……,295,为了了解学生的学习情 况,要按1:5的比例抽取一个样本,用系统抽 样的方法进行抽取,并写出过程。 解:样本容量为295÷5=59.
确定分段间隔k=5,将编号分段 1~5,6~10,…,291~295; 采用简单随机抽样的方法,从第一组5名 学生中抽出一名学生,如确定编号为3的学生, 依次取出的学生编号为3,8,13,…,288,293 , 这样就得到一个样本容量为59的样本.
24
※(2004年福建省高考卷)一个总体中有 100个个体,随机编号为0,1,2,…,99,依编号顺序 平均分成10个小组,组号分别为1,2,3,…,10.现 用系统抽样方法抽取一个容量为10的样本,规 定如果在第1组随机抽取的号码为m,那么在第k 组抽取的号码个位数字与m+k的个位数字相同. 若m=6,则在第7组中抽取的号码是______. 解析:依编号顺序平均分成的10个小组分 别为0~9, 10~19, 20~29, 30~39, 40~49,50~59,60~69,70~79,80~89,90~99.因第 7组抽取的号码个位数字应是3,所以抽取的号码 是63.这个样本的号码依次是 6,18,29,30,41,52,63,74,85,96这10个号. 25
二、分层抽样的步骤: (1)按某种特征将总体分成互不相交的层 (2)按比例k=n/N确定每层抽取个体的个数 (n/N)*Ni个。 (3)各层分别按简单随机抽样的方法抽取。 (4)综合每层抽样,组成样本。 练习:分层抽样又称类型抽样,即将相似的个 体归入一类(层),然后每层抽取若干个体构 成样本,所以分层抽样为保证每个个体等可能 入样,必须进行 (c ) A、每层等可能抽样 B、每层不等可能抽样 16 C、所有层按同一抽样比等可能抽样

高二数学必修3 简单随机抽样 ppt

高二数学必修3 简单随机抽样 ppt

抽签法的步骤: 抽签法的步骤 1、把总体中的N个个体编号; 、把总体中的 个个体编号 个个体编号; 2、 把号码写在号签上,将号签放在一个容器中 、 把号码写在号签上, 搅拌均匀; 搅拌均匀; 3、每次从中抽取一个号签,连续抽取n次,就得到 、每次从中抽取一个号签,连续抽取 次 一个容量为n的样本 的样本。 一个容量为 的样本。
问题 2006年春节联欢晚会结束后,中央电视台想在较短时间内 年春节联欢晚会结束后, 年春节联欢晚会结束后 得到节目的收视率,请问如何调查得出合理的结果呢? 得到节目的收视率,请问如何调查得出合理的结果呢? 一个水库养了某种鱼10万条 ,如何调查它们的体重情况 一个水库养了某种鱼10万条 10 从中捕捞了20条 称得它们的体重(单位: )如下: 从中捕捞了 条,称得它们的体重(单位:kg)如下: 2.3 2.1 2.2 2.1 2.2 2.6 2.5 2.4 2.3 2.4 2.4 2.3 2.2 2.5 2.4 2.6 2.3 2.5 2.2 2.3
思考2、 思考 、你设计的方法,个体抽取的机会均等吗?
抽样方法:当总体个数较多时,可将总体均匀地分成n个 抽样方法: 部分,然后按照预先给定的规则,从每一部分 中抽取一个个体,得到所需的样本,—— 称 系统抽样. 为系统抽样 系统抽样 讨论1、怎样均分? 讨论 、 讨论2、 讨论 、怎样定规则? 讨论3、 讨论 、第一个个体怎样选取?
问题1: 问题
疾病的预防与个人的身体素质有关,为此学校 决定在高二(3)班77位同学中抽取20个同学进行抗 病原情况调查,假如你是一位学校防疫中心的领导, 你将如何抽取样本?
的特征:(1)逐个抽取; (2)每个个体机会均等; (3)样本个体间没有联系。
为了扩大调查面,使调查结果更符合学校实际, 问题2: 问题 : 学校要求将调查面扩大到全校学生,学校现有 学生3387名,要求从中抽取114人进行抗病原调 查,你将如何抽取样本? 你不觉得太累了吗? —— 与疾病的预防不利! 思考1、 思考 、能否设计一个方案,使得抽取方法简化?

高中数学抽样技巧图解教案

高中数学抽样技巧图解教案

高中数学抽样技巧图解教案
一、教学目标
1. 了解什么是抽样技巧以及其重要性;
2. 掌握常见的抽样技巧,包括简单随机抽样、分层抽样、系统抽样等;
3. 能够应用抽样技巧解决实际问题。

二、教学内容
1. 什么是抽样技巧;
2. 常见的抽样技巧;
3. 抽样技巧的应用。

三、教学过程
第一步:导入
老师与学生交流抽样的定义,并简单介绍抽样技巧的重要性。

第二步:讲解常见的抽样技巧
1. 简单随机抽样:将总体按照某种规则编号,然后通过随机数表或随机数生成器随机选取
样本;
2. 分层抽样:将总体按照某种特征分成若干层,然后在每一层中进行简单随机抽样,最后
将各层的样本组合成总体样本;
3. 系统抽样:按照一定的规则从总体中选取样本,例如每隔一定的间隔选取一个样本。

第三步:示例演练
老师通过实际例题演示如何应用抽样技巧解决实际问题,让学生逐步掌握抽样技巧的应用。

第四步:练习与总结
让学生进行练习题,巩固所学知识。

同时让学生总结抽样技巧的要点,加深理解。

四、作业
布置作业:要求学生练习抽样技巧的应用题,并写一篇小结。

五、教学反思
通过学生的作业表现以及课堂互动情况,总结教学中存在的不足之处,并进行改进。

六、教学反馈
及时对学生的提出问题进行解答和指导,帮助学生进一步理解抽样技巧的应用。

高中数学统计学中的抽样方法探究

高中数学统计学中的抽样方法探究

高中数学统计学中的抽样方法探究在高中数学的统计学中,抽样方法是非常重要的一部分。

通过合理的抽样方法,可以从总体中选取一部分样本,对总体进行推断和分析。

本文将探究几种常见的抽样方法,并结合具体题目进行说明和分析,以帮助高中学生更好地理解和应用这些方法。

一、简单随机抽样简单随机抽样是最常见的一种抽样方法,它的特点是每个样本被选取的概率相等且独立。

简单随机抽样的步骤如下:1. 确定总体:首先确定要进行抽样的总体,例如某个班级的学生。

2. 编号:给总体中的每个个体进行编号,编号应该是唯一的。

3. 抽样:使用随机数表或随机数生成器,根据编号进行随机抽样。

4. 分析:对抽取的样本进行统计分析,得出相应的结论。

例如,某班级有40名学生,我们想要从中抽取10名学生进行调查。

我们可以给每个学生编号,然后使用随机数表或随机数生成器抽取10个不重复的随机数,对应的编号即为抽取的样本。

通过对这10名学生的调查结果进行分析,我们可以得出关于整个班级的一些结论。

简单随机抽样的优点是操作简单,适用于总体较小的情况。

但在总体较大时,抽取样本的时间和成本较高。

二、系统抽样系统抽样是按照一定的规则从总体中选取样本的方法。

它的步骤如下:1. 确定总体:同样需要确定要进行抽样的总体。

2. 确定抽样间隔:根据总体大小和样本大小,确定抽样间隔。

抽样间隔可以通过总体大小除以样本大小得到。

3. 随机起点:使用随机数表或随机数生成器确定一个随机起点。

4. 抽样:从起点开始,按照抽样间隔选取样本。

5. 分析:对抽取的样本进行统计分析。

例如,某班级有40名学生,我们想要从中抽取10名学生进行调查。

我们可以先确定抽样间隔为4(总体大小40除以样本大小10),然后使用随机数表或随机数生成器确定一个随机起点,假设起点为7,那么我们可以选取编号为7、11、15、19、23、27、31、35、39的学生作为样本。

通过对这些学生的调查结果进行分析,我们可以得出关于整个班级的一些结论。

高中数学知识点:抽样方法

高中数学知识点:抽样方法

高中数学知识点:抽样方法
一、简单随机抽样
设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个体被抽到的概率相等,就称这样的抽样为简单随机抽样。

一般地如果用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N.常用的简单随机抽样方法有:抽签法、随机数法。

1.抽签法
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

2.随机数法
随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

二、活用随机抽样
系统抽样的最基本特征是“等距性”,每组内所抽取的号码需要依据第一组抽取的号码和组距是唯一确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d为公差的等差数列{an},第k组抽取样本的号码,
ak=m+(k-1)d,如本题中根据第一组的样本号码和组距,可
得第k组抽取号码应该为9+30*(k-1)
三、系统抽样
当总体中的个体数较多时,采用简单随机抽样显得较为费事,这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。

四、分层抽样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为什么大嘴麻将玩不了了
[单选]公司法规定,有限责任公司可以设经理,经理对()负责,行使职权。A.董事会B.监事会C.股东会D.经理会 [单选,A2型题,A1/A2型题]关于灰阶与CT值关系的叙述,正确的是()A.高CT值部分被转换为黑色B.高CT值部分被转换为白色C.X射线衰减越大,转换成灰阶后颜色越深D.图像中X射线未被衰减,它将显示为白色图像E.改变窗宽,也可改变被显示物体的CT值 [判断题]近交和早配都会导致后代的生活力减弱。()A.正确B.错误 [判断题]CO2(g)的标准摩尔生成焓等于石墨的标准摩尔燃烧热。A.正确B.错误 [单选,A2型题,A1/A2型题]眨眼反射可用来检查下列疾病,但除外()A.特发性三叉神经痛B.面神经炎C.延髓受损D.吉兰-巴雷综合征E.视神经炎 [单选]排烟罩的罩口要比灶台宽()米A、0.5B、0.25C、0.4D、0.8 [问答题,简答题]型车钩缓冲装置由哪些部件组成? [单选,A2型题,A1/A2型题]癌症疼痛器质性原因不包括()A.肿瘤刺激骨膜、破坏骨质引起疼痛B.颅内肿瘤长大、颅内压增高时头痛剧烈C.肿瘤直接浸润,侵犯神经,引起神经走行区疼痛D.手术、放疗、化疗直接损伤神经,引起医源性疼痛E.肿瘤长大、膨胀,压迫器官,引起缺血、坏死而致疼痛 [单选]关于CT扫描层厚的理解,哪个是错误的()A.层厚是CT扫描技术选择的重要参数B.层厚薄空间分辨率高C.层厚加大,密度分辨率低D.层厚的选择,应根据扫描部位和病变大小决定E.层厚薄,病灶检出率高 [单选,A2型题,A1/A2型题]C反应蛋白在哪种情况下不升高().A.病毒感染B.细菌感染C.高血压D.急性心肌梗塞E.大面积烧伤 [单选]与碱性焊条相比,酸性焊条焊接时所表现出的特点为()。A.存在铁锈和水分时,很少产生氢化孔B.熔渣脱氧较完全C.能有效消除焊缝金属中的硫D.焊缝金属力学性能较好 [单选,A2型题]热性惊厥发作中最首要的处理是()A.给氧、保持气道通畅B.降低颅内压C.降低体温D.控制感染E.控制惊厥发作 [单选]确诊不明原因性不孕首先选用()A.输卵管通液试验B.腹腔镜子宫镜联合检查C.B超检查D.子宫输卵管碘油造影E.输卵管通气实验 [单选]用于公路路基的填料要求强度高,其强度要求是按()指标确定。A.密度B.回弹模量C.弯沉D.CBR值 [多选]气割所用的可燃气体主要是()。A.乙炔B.液化石油气C.氧气D.氢气 [单选,A2型题,A1/A2型题]为了鉴别巨幼细胞贫血与红白血病,最好的染色方法是()ACP染色B.PAS染色C.&alpha;-NAE染色D.NAP染色E.POX染色 [单选,A1型题]染色体畸变的结构基础是()。A.缺失B.裂隙C.断片D.断裂E.转换 [名词解释]铁路电报 [单选]泵的功率是指在单位时间内电机对泵所提供的()。A、能量;B、有效能量。 [单选]气体分馏装置四停事故中,()对装置威胁最大。A、停电B、停汽C、停水D、停风 [单选]下列建设单位向施工单位作出的意思表示中,为法律、行政法规禁止的是()。A.明示报名参加投标的各施工单位以低价竞标B.明示施工单位在施工中应优化工期C.暗示施工单位不采用《建设工程施工合同(示范文本)》签定合同D.暗示施工单位在非承重结构部位使用不合格的水泥 [填空题]散文就其表现形式,可分______________、______________、_____________三类。 [单选]物权和债权的性质分别可以表述为()。A.相对权,绝对权B.相对权,相对权C.绝对权,相对权D.绝对权,绝对权 [单选,配伍题]枕先露时,胎头以哪条径线通过产道最小径线()A.双顶径B.枕额径C.枕颏径D.枕下前囟径E.双颞径 [单选,A1型题]既能消食健胃又能回乳消胀的药物是()A.神曲B.山楂C.谷芽D.麦芽E.鸡内金 [单选]石膏的条痕色是()A.红色B.金黄色C.绿黑色D.白色E.橙黄色 [单选,A1型题]我国现存最早的脉诊专著是()A.《脉经》B.《脉诀》C.《濒湖脉学》D.《三指禅》E.《脉象统类》 [多选]下列各项中属于企业社会责任的有()。A.对债权人的责任B.对消费者的责任C.对社会公益的责任D.对环境和资源的责任 [多选]关于性病性淋巴肉芽肿描述正确的是()A.病原体为6、11、15血清型沙眼衣原体B.生殖器初疮主要表现为外生殖器小丘疹,疱疹,糜烂或溃疡C.常伴有发热、头痛、乏力等全身症状D.可并发无菌性脑膜炎、心包炎等并发症 [单选]按密度计算重量的货物,应以定期()的密度作为计算重量的依据。A、测定B、测量C、确定D、规定 [判断题]在重整期间,经债务人申请,人民法院批准,债务人可以在管理人的监督下自行管理财产和营业事务。A.正确B.错误 [单选]既能化火,又能遏伤阳气的温邪是:().A.湿热B.温毒C.风热D.燥热 [问答题]什么是室内的避震空间? [单选]〈HR〉在HTML中是标记()A.标题B.空格C.换行D.水平线 [名词解释]俄狄浦斯情结(05年十月已考) [填空题]在声程大于3N时,垂直入射到平底孔的超声波,当平底孔的直径增加一倍时,其反射声压增加()。 [填空题]人类最早使用的工具是石器.考古学家根据石器的制造技术的发展和演进情况,将石器时代分为(),中石器,()三个时代. [填空题]电力系统中的电力设备和线路短路故障的保护应有主保护和() [单选]超声检查盆腔需适度充盈膀胱,目的是:()。①作为透声窗;②推开肠管;③作为辨认脏器的标志;④作为解剖的参照结构;⑤有助于提高子宫位置,以便充分显露脏器。A.①②B.①②③⑤C.①②③④D.①③④⑤E.①②③④⑤ [填空题]曳引机采用刚性联轴器安装时同轴度应不大于()mm。

相关文档
最新文档