K车臂架系统及副车架有限元分析
探讨汽车副车架强度模态分析及结构优化

探讨汽车副车架强度模态分析及结构优化汽车副车架是汽车重要的承载结构之一,在汽车的安全性、舒适性和性能方面起着重要作用。
其强度和刚度对汽车的整体性能有着直接的影响。
对汽车副车架的强度模态分析及结构优化是至关重要的。
本文将就此话题展开探讨。
一、汽车副车架的结构及工作原理汽车副车架是指安装在汽车底盘上的用于支撑底盘组件的结构。
其主要作用是传递车辆的荷载,同时还要满足汽车悬挂系统的需求,以确保汽车在行驶过程中的舒适性和稳定性。
在日常使用中,汽车副车架还要承受来自路面的冲击和振动,并且要能够抵抗车辆制动时产生的扭矩和冲击力。
汽车副车架需要具有足够的强度和刚度,以确保汽车在各种工况下都能够安全可靠地行驶。
二、汽车副车架的强度模态分析1. 强度分析汽车副车架在使用过程中要承受各种不同方向的受载情况,主要包括拉伸、压缩、弯曲和剪切等载荷。
需要对汽车副车架进行强度分析,以确定其在不同工况下的应力分布和变形情况。
强度分析的目的是确认汽车副车架在设计工况下不会出现塑性变形或者破坏,从而保证汽车的安全性和可靠性。
通过有限元分析等方法,可以对汽车副车架进行受力分析,计算其在各种工况下的应力和变形,从而确定其是否满足设计要求。
2. 模态分析模态分析是指通过对汽车副车架进行振动特性的分析,确定其固有频率和振型。
汽车副车架在行驶过程中会受到来自路面的激励力,因此需要对其进行振动分析,以确认其固有频率和振型与激励频率不发生共振,从而避免产生过大的振动响应。
通过模态分析,可以确定汽车副车架的主要振动模态,并评估其对汽车驾驶舒适性和稳定性的影响。
三、汽车副车架的结构优化1. 结构轻量化汽车副车架在保证足够强度和刚度的前提下,需要尽可能减小自身的重量。
轻量化可以降低汽车的整体质量,提高汽车的燃油经济性和加速性能,同时还能减少对环境的影响。
轻量化的方法包括采用高强度、轻质材料、优化结构布局和加强节点等。
2. 结构优化通过有限元分析等方法对汽车副车架进行结构拓扑优化、形状优化和材料优化。
探讨汽车副车架强度模态分析及结构优化

探讨汽车副车架强度模态分析及结构优化汽车副车架是连接车轮、车轴、悬挂系统等部件的重要组成部分,它直接影响到车辆的行驶稳定性、路面适应性和安全性。
强度是汽车副车架最基本的要求之一,其次还需要满足轻量化、高刚度和振动控制等多种要求。
因此,对副车架进行强度模态分析和结构优化是十分必要的。
汽车副车架的强度分析通常采用有限元数值模拟方法。
该方法基于力学原理和数学方法,把副车架拆分为若干个有限个单元,通过数值求解计算每个单元的应力和应变,并进而计算出整个结构的应力和应变。
采用数值模拟方法可以较为准确地预测副车架在不同加载条件下的强度及变形情况。
同时,结构优化也是副车架设计中的重要环节。
结构优化的主要目标是通过重新布局材料和构件,提高结构性能同时减少质量。
可以采用形状优化、材料优化等优化手段,通过有限元数值模拟方法进行分析和比较,从而得到最优的结构。
模态分析是副车架强度分析和优化设计中的重要组成部分,也是比较先进的分析方法。
模态分析是一种通过计算系统的自由振动频率和模态形状来分析结构动态响应的方法。
模态分析可以得到副车架在自由振动过程中各个振动模态的频率和振动形状,分析副车架在道路行驶中的动态响应情况。
针对汽车副车架的实际情况,应该在强度分析和结构优化的基础上,进行模态分析研究,从而更全面地了解副车架的性能和优化方向。
同时,应该注意到,副车架的优化设计是一个多目标、多约束的过程,需要考虑多种因素并对其进行平衡。
比如,轻量化可以提高燃油经济性和环保性能,但过度轻量化会影响结构的耐久性和稳定性。
因此,在进行结构优化的同时,应该考虑到多种因素,以取得最优的设计效果。
总之,汽车副车架强度模态分析及结构优化是汽车工程领域的重要研究内容,可以有效提高副车架的性能和安全性,为汽车行业发展做出重要贡献。
车架有限元分析word版

以ANSYS软件为分析工具对从国外引进的某重型车的车架进行了有限元分析、模态分析和以路面谱为输入的随机振动分析,通过用壳单元离散车架及MPC单元模拟铆打传力建立计算模型,研究该车架静、动态性能,了解该车架的优缺点。
车架是汽车的重要组成部分,在汽车整车设计中占据着重要位置,车架结构设计历来为广大汽车厂商所重视。
本文以某汽车公司从欧洲引进的某重型车车架为研究对象,对该车架结构的动、静态特性进行分析计算,消化、吸收欧洲的先进技术并在此基础上进行自主创新设计。
分析手段主要是通过建立正确的有限元分析模型,对车架进行典型工况的静态分析、模态分析和路面不平度引起的随机振动分析,以此了解车架的静态和动态特性,了解该车架的优越性能及其不足之处,为新车架的改型设计提供依据。
1 有限元分析模型的建立该车架为边梁式,由两根位于两边的纵梁和若干根横梁组成,用铆接或焊接方式将纵梁和横梁联接成坚固的刚性结构,纵梁上有鞍座,其结构如图1所示。
由于车架是由一系列薄壁件组成,有限元模型采用壳单元离散能详细分析车架应力集中问题,可以真实反映车架纵、横梁联接情况,是目前常采用的一种模型。
该车架是多层结构,纵梁断面为槽形,各层间用螺栓或铆钉联接,这种结构与具有连续横截面的车架不同,其力的传递是不连续的。
该车架长7m,宽约0.9 m,包括双层纵梁、横梁、外包梁、背靠梁、鞍座、飞机板、铸铁加强板、发动机安装板、三角支撑板和后轴等部分。
考虑到车架几何模型的复杂性,可在三维CAD软件UG里建立车架的面模型,导人到Hypermesh软件中进行网格划分等前置处理,然后提交到ANSYS解算。
车架各层之间的铆钉联接,可以用Hypermesh-connectors中的bar单元来模拟铆钉联接,对应的是ANSYS的MPC单元,因车架各层间既有拉压应力,又有剪应力,故MPC 的类型应选择Rigid Beam方式。
由于该车是多轴车,为超静定结构,为了得到车架结构的真实应力分布,必须考虑悬挂系统的变形情况。
浅谈汽车悬架控制臂有限元分析与结构优化

车辆工程技术39车辆技术0 概述汽车悬架控制臂作为汽车悬架系统的重要组成部件,其质量的好坏直接影响汽车行驶的安全性。
汽车悬架控制臂在实际工作状况下,经常会受到大小和方向不同的扭转力作用,随着受力次数的增加,其某些部位会出现疲劳破坏,而汽车悬架控制臂的强度及疲劳特性影响着汽车系统的可靠性。
因此汽车悬架控制臂的疲劳寿命是设计中必须要考虑的一个重要因素。
1 汽车悬架控制臂三维模型建立(1)用三维激光扫描仪对汽车悬架控制臂进行扫描,获取此零件的点云数据。
(2)对获得的点云数据进行处理及偏差分析,直到获得高精度的点云数据。
(3)将获得的点云数据导入CATIA 软件中,建立汽车悬架控制臂的三维模型,具体汽车悬架控制臂逆向三维建模过程流程如图1所示。
浅谈汽车悬架控制臂有限元分析与结构优化王 刚(长城汽车股份有限公司保定技术研发分公司,河北 保定 071000)摘 要:控制臂是汽车悬架系统的重要安全件和功能件。
本文主要结合汽车悬架控制臂的实际受载状况,利用ANSYS 疲劳分析模块对其加载要求和结构设计优化。
关键词:汽车悬架控制臂;ANSYS;有限元分析图12 汽车悬架控制臂载荷分析(1)在对汽车悬架控制臂构件进行有限元疲劳强度分析时,通常要根据构件的实际情况定义边界条件,包括施加的载荷和施加的固定约束。
对汽车悬架控制臂进行结构设计时,定义悬架控制臂在分别受拉、压达到破坏时所能承受的最大载荷为悬架控制臂的拉溃力和压溃力。
(2)一般在进行悬架控制臂结构设计时,需要根据整车行驶工况,对整车进行动力学分析或者试验测试,从而计算出或试验测出控制臂所能承受的拉溃力和压溃力。
(3)在汽车行驶的过程中,汽车悬架控制臂始终绕着与副车架连接的内侧铰点摆动,是一个运动件。
汽车悬架控制臂与衬套之间、衬套与螺栓之间为过盈配合,衬套通过芯部的螺栓固定在副车架上。
汽车悬架控制臂中衬套绕螺栓的设计扭转刚度、汽车悬架控制臂的长度、车轮上跳的最大高度,则能确定衬套受到的扭矩的大小为,汽车悬架控制臂受到同样大小的反扭矩作用,但这个扭矩与实际工况下内侧铰点其它各平动方向的载荷相比是个很小的值,故对汽车悬架控制臂受力分析时可以认为控制臂的转动自由度不受限制。
车架有限元分析

以ANSYS软件为分析工具对从国外引进的某重型车的车架进行了有限元分析、模态分析和以路面谱为输入的随机振动分析,通过用壳单元离散车架及MPC单元模拟铆打传力建立计算模型,研究该车架静、动态性能,了解该车架的优缺点。
车架是汽车的重要组成部分,在汽车整车设计中占据着重要位置,车架结构设计历来为广大汽车厂商所重视。
本文以某汽车公司从欧洲引进的某重型车车架为研究对象,对该车架结构的动、静态特性进行分析计算,消化、吸收欧洲的先进技术并在此基础上进行自主创新设计。
分析手段主要是通过建立正确的有限元分析模型,对车架进行典型工况的静态分析、模态分析和路面不平度引起的随机振动分析,以此了解车架的静态和动态特性,了解该车架的优越性能及其不足之处,为新车架的改型设计提供依据。
1 有限元分析模型的建立该车架为边梁式,由两根位于两边的纵梁和若干根横梁组成,用铆接或焊接方式将纵梁和横梁联接成坚固的刚性结构,纵梁上有鞍座,其结构如图1所示。
由于车架是由一系列薄壁件组成,有限元模型采用壳单元离散能详细分析车架应力集中问题,可以真实反映车架纵、横梁联接情况,是目前常采用的一种模型。
该车架是多层结构,纵梁断面为槽形,各层间用螺栓或铆钉联接,这种结构与具有连续横截面的车架不同,其力的传递是不连续的。
该车架长7m,宽约0.9 m,包括双层纵梁、横梁、外包梁、背靠梁、鞍座、飞机板、铸铁加强板、发动机安装板、三角支撑板和后轴等部分。
考虑到车架几何模型的复杂性,可在三维CAD软件UG里建立车架的面模型,导人到Hypermesh 软件中进行网格划分等前置处理,然后提交到ANSYS解算。
车架各层之间的铆钉联接,可以用Hypermesh-connectors中的bar单元来模拟铆钉联接,对应的是ANSYS的MPC单元,因车架各层间既有拉压应力,又有剪应力,故MPC的类型应选择Rigid Beam方式。
由于该车是多轴车,为超静定结构,为了得到车架结构的真实应力分布,必须考虑悬挂系统的变形情况。
载货汽车车架拓扑优化设计及有限元分析的开题报告

载货汽车车架拓扑优化设计及有限元分析的开题报告一、研究背景随着物流业的快速发展,货车需求也不断增加。
而车辆的持久稳定性和安全性是货车发展的基础,因此在设计过程中车架的优化设计和有限元分析尤为重要。
从材料及制造工艺角度来看,目前较为成熟的结果是焊接结构,但是这种结构重量较重、成本高、制造周期长、不环保等问题日益凸显,因此要求综合考虑设计材料、拓扑结构、工艺等多方面因素,通过优化设计来提高车辆的质量、性能、经济性和可靠性。
二、研究内容1.车架结构拓扑优化设计。
在满足安全性和结构强度的前提下,结合实际的工作条件和载荷特点,通过最优化设计方法寻找最佳的车架结构形式,减轻车身质量,实现经济性和环保性。
2.车架有限元分析。
采用有限元分析方法,对拓扑优化设计后的车架进行有限元模拟分析,验证其强度和刚度的可靠性,进行有限元分析计算,为车辆的改进提供依据。
3.材料选择及加工工艺的分析。
车架材料的选择及加工工艺直接影响着车体的质量、成本、环保性等方面,以现代先进制造工艺,适当选择适合的材料,实现车体质量的低成本、高品质。
三、研究意义与价值根据研究内容,主要达到以下目的:1.提高载货汽车的安全性和可靠性,减少事故数量和损失,同时提高企业的经济效益。
2.减少我国的能源和环境负担,优化设计和改进制造工艺,避免资源的浪费和环境污染。
3.积累相关技术和经验,在相应领域做出贡献,并推动该领域技术的进步。
四、研究方法1.车架结构拓扑优化设计。
综合考虑载荷、强度、刚度等因素,采用最优化模拟设计方法,缩短设计周期,降低制造成本。
同时,为了防止优化设计过程中出现失控情况,我们建立了一套预警机制来发现和纠正问题。
2.车架有限元分析。
建立标准分析模型,通过有限元分析计算车架的应力、位移和应变,以确定车架的强度和刚度,在改进设计过程中应用结果。
3.材料选择及加工工艺的分析。
在选择材料的过程中,我们将考虑性能、成本等各方面因素。
在加工工艺的选择过程中,我们将专注于工艺稳定性、效率和成本。
基于ANSYS的高空作业车臂架有限元分析

基于ANSYS的高空作业车臂架有限元分析发表时间:2017-10-23T12:14:26.840Z 来源:《电力设备》2017年第17期作者:张幸幸[导读] 摘要:以高空作业车臂架为研究对象,以ANSYS分析软件为工具,对其强度和刚度进行有限元分析,形成基于ANSYS软件平台的高空作业车臂架计算分析方法,为高空作业车的臂架优化设计和改进提供了有力的支撑。
(徐州徐工环境技术有限公司江苏徐州 221135)摘要:以高空作业车臂架为研究对象,以ANSYS分析软件为工具,对其强度和刚度进行有限元分析,形成基于ANSYS软件平台的高空作业车臂架计算分析方法,为高空作业车的臂架优化设计和改进提供了有力的支撑。
关键词:高空作业车;臂架;有限元高空作业车主要由底盘、副车架、转台、臂架系统、控制系统、工作平台组成。
其中,臂架是高空作业车最主要的关键部件之一,其安全性、可靠性和先进性是决定高空作业车核心竞争力的关键。
臂架作为将工作平台送至指定工作位置的主要部件,其可靠性对作业安全性的影响至关重要,因此,对臂架结构进行优化及提高可靠性的研究和攻关具有重要意义。
本文以30m高空作业车臂架为研究对象,充分利用有限元多种单元类型的特点,对臂架实现了建模,得到了臂架静态计算的变形与应力,为臂架结构优化及其可靠性的提升奠定了理论与实践数据相统一的基础。
1 臂架所受载荷的确定对于静强度分析,传统观点认为,臂架水平全伸时的工况是最危险工况,但是对于某些部件,从经验可以判断最大应力发生在其他作业工况。
为了更好的了解臂架的整体应力分布情况,对其各个作业工况都进行有限元计算是非常必要的。
作用在臂架上的载荷分为基本载荷和附加载荷,基本载荷是始终或经常作用在高空作业车臂架结构上的载荷,包括自重载荷、工作载荷;附加载荷是高空作业车在正常工作状态下,结构件所受的非经常性作用的载荷,包括风载荷和冲击载荷。
对于不同的载荷,在计算过程中需要乘上不同的载荷系数。
摩托车车架的有限元分析及结构优化研究的开题报告

摩托车车架的有限元分析及结构优化研究的开题报告
一、选题背景及意义
摩托车是一种重要的交通工具,其车架是整个车辆结构中至关重要的组成部分。
车架的结构设计和优化对于摩托车稳定性、操控性、安全性等方面有着重要的影响。
有限元分析是一种常用的分析方法,能够对复杂的结构进行有效的分析和优化,因此可以用于摩托车车架的有限元分析及结构优化。
本研究旨在通过有限元分析和优化技术,提高摩托车车架的结构强度、刚度、减轻重量,达到优化设计的目的。
二、研究内容和方法
本研究的主要内容包括以下几个方面:
1. 摩托车车架有限元模型的建立
2. 车架在不同工况下的有限元分析
3. 车架结构的优化设计
4. 优化设计后的性能测试与对比分析
研究方法主要采用有限元分析软件进行模型建立和分析,并结合优化算法进行车架结构的优化设计。
三、预期成果和意义
本研究的预期成果主要包括以下几个方面:
1. 摩托车车架的有限元模型和分析结果
2. 车架结构的优化设计方案
3. 优化设计后的车架结构重量减轻和强度等性能指标的提升
该研究对于摩托车车架结构的优化设计和改进具有重要意义,能够提供相应的指导和参考,为更好地提高汽车的性能和可靠性提供有力的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K车臂架系统及副车架有限元分析
作者:英吉泰科
车载集装箱检测系统的的变形和应力非常关键,其变形将大大影响检测的精度,而应力将关系到臂架系统的安全性。
英吉泰科受用户委托用ALGOR软件对K车臂架及副车架系统的变形应力进行了分析。
系统的CAD模型由英吉泰科按照用户的设计图纸用CAD软件Inventor建立,然后利用ALGOR的CAD接口导入进行分析。
图1为导入ALGOR后的臂架系统模型。
图2为完成网格划分,施加载荷与约束后的有限元模型,模型采用ALGOR的中面提取技术直接由CAD实体模型生成了板壳单元,并采用集中质量的方法考虑了调制器、水冷机组、加速器等附属设备的影响。
图3,图4为臂架系统的总变形图和等效应力分布云图。
计算结果表明K车臂架系统的变形和应力均在允许范围之内,可以在安全范围内正常工作,同时也确定了应力集中部位,确定了制造中的重点强度控制部位,为设计加工提供了依据。
(end)。