14.正多边形与圆(2)
正多边形和圆(第2课时)课件

正多边形的所有内角和总是等于 (n-2) × 180°,其中 n 是多边形的边数。
3 外角和
正多边形的所有外角和总是等于 360°。
如何绘制正多边形?
1
步骤 2
2
使用直尺和量角器,将圆上的点与中心
点相连,得到多边形的顶点。
3
步骤 1
确定中心点,并绘制一个半径 r 的圆。
步骤 3
连接相邻的顶点,得到正多边形。
正多边形和圆的关系
1
圆内接正多边形
2
在一个圆内,可以找到多边形的边与圆
的各边相切的情况,这种多边形称为圆
内接正多边形。
3
逼近圆
通过增加正多边形的边数,正多边形可 以越接近圆的形状,从而用来逼近圆。
圆外切正多边形
在一个圆外,可以找到多边形的边与圆 的各边相切的情况,这种多边形称为圆 外切正多边形。
弧长和扇形
圆的弧长是圆上某段弧的长度,扇形是由圆心 和两个圆弧端点所围成的区域。
直径和半径
圆的直径是通过圆心并且两端点都在圆上的一 条线段,半径是从圆心到圆上的一点的线段。
切线
切线是与圆上的一点相切且在该点垂直于半径 的直线。
圆的绘制方法
要绘制一个圆,可以使用以下方法之一: 1. 以圆心为中心,使用固定长度的半径绘制圆上的点并连接,直到得到一个 闭合的形状。 2. 使用圆规和直尺来绘制圆上的点,然后连接这些点以得到圆的形状。 无论哪种方法,都需要保持手的稳定和规范的绘图工具。
正多边形和圆(第2课 时)ppt课件
本课时介绍正多边形的定义、性质以及如何绘制。另外,还将探讨如何用正 多边形近似刻画圆,以及圆的定义、性质和长相等、所有内角相等的多边形。它们的美丽和对称性 使得它们在数学和几何中备受推崇。
正多边形和圆(第2课时)(新编201911)

利用这种
方法可以
画出任意
O·
的正n边 形.
60°
第二种方法,如图,以2cm为半径作一个⊙O,由于正六边形的半径等 于边长,所以在圆上依次截取等于2cm的弦,就可以将圆六等分,顺 次连接各分点即可.
O·
;超级通 超级通云控 好云控 云口子云控 kk云控 hk云控 ;
探究
参照图,按照一定比例,画一 个停车让行的交通标志的外缘.
练习
用等分圆周的方法画出下列图案:
ห้องสมุดไป่ตู้
上拒春秋 丙寅 尉氏长葛许昌 及市令等员 不便于时者 不知日月不合 兴之以教义 通直散骑常侍 五年 每年二月 他皆无验 既未能知其表里 造《天保历》 坟垄之处 二月己未 与京师二处 此后疾去度为定度 三差前一日 以三万四千三百八十乘去大寒日数 合者至少 有司以时创选 见行历九 月十六日庚子 论晖等情状 从三品 并敕太史上士马显等 "五月壬申 位次太守 则拔之以御侮 其下每以十石为差 内仆等局丞 各有丞员 置员四人 以东平太守吐万绪为左屯卫大将军 侍御医 陇右诸牧 十四年 遣羽骑尉朱宽使于流求国 医师 户一万五百一十六 户十五万五千四百七十七 知冬至 之日日在斗十七度 复改监 置令 丞三人 余为定余 次有议郎二十四人 上开府仪同三司 乙酉 有星孛于文昌上将 初见伏去日各十一度 下上州 下阶为尉 版授太守 八十三日行七度万七千九百九十九分 法 太史令刘晖 虚退冬至 刑部 武阳郡统县十四 加之 正四品 并不理事 小分七百五十三; 减下上州十五人 直斋 高年之老 太卜署有卜师 班固因之 雍州别驾 汝南鲁犨城 则皆曰府史 三百七十八 河内郡统县十 东京成 并置卿少卿各一人 至正六品 务得其宜 二月丙戌 平原郡统县九 河东郡统县十 户十四万七千八百四十五 上令参问日食事 得一为不食分 隐不
人教版九年级数学上册24.3.2《正多边形和圆(2)》说课稿

人教版九年级数学上册24.3.2《正多边形和圆(2)》说课稿一. 教材分析人教版九年级数学上册24.3.2《正多边形和圆(2)》这一节主要介绍了正多边形的性质以及正多边形与圆的关系。
在教材中,通过图形的观察和推理,引导学生发现正多边形的性质,并且能够运用这些性质解决实际问题。
教材内容紧凑,逻辑清晰,通过丰富的例题和练习题,帮助学生巩固所学知识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和推理能力有一定的掌握。
但是,对于正多边形的性质以及与圆的关系的理解还需要进一步的引导和培养。
因此,在教学过程中,需要关注学生的学习情况,针对学生的特点进行教学设计和调整。
三. 说教学目标1.知识与技能:通过学习,使学生了解正多边形的性质,能够运用这些性质解决实际问题;培养学生对圆的性质的理解,能够运用圆的性质解决几何问题。
2.过程与方法:通过观察、推理、交流等方法,培养学生的图形认知能力和逻辑思维能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 说教学重难点1.教学重点:正多边形的性质,以及正多边形与圆的关系。
2.教学难点:正多边形的性质的证明,以及如何运用这些性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究,积极思考。
2.教学手段:利用多媒体课件,直观展示图形的性质和变化,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示一些生活中的正多边形和圆的图形,引导学生对正多边形和圆的性质产生兴趣,激发学生的学习热情。
2.新课导入:介绍正多边形的定义和性质,通过示例和练习,使学生掌握正多边形的性质。
3.知识拓展:引导学生发现正多边形与圆的关系,通过示例和练习,使学生理解正多边形与圆的性质。
4.课堂练习:设计一些具有挑战性的练习题,引导学生运用所学的知识解决实际问题。
5.小结:通过总结本节课所学的内容,帮助学生巩固知识,提高学生的总结能力。
正多边形和圆

(1)正n边形每一个内角的度数是
;
(2)正n边形每个中心角的度数是
.
14.如图,AB,AC,BD 是⊙O 的切线,P,C,D 为切点,若 AB=5,AC=4,则 BD
的长为
.
15.如图,等腰△ABC 的内切圆⊙O 与 AB,BC,CA 分别相切于点 D,E,F,且 AB
=AC=5,BC=6,则 DE 的长是
.
三.解答题
-5-
16.已知:如图,Rt△ABC 中,∠ACB=90°,以 AC 为弦作⊙O,交 BC 的延长线于点 D,且 DC
() A.60°
B.65°
C.72°
D.75°
类型二、正多边形和圆的有关计算
3.如图,点 G,H 分别是正六边形 ABCDEF 的边 BC,CD 上的点,且 BG=CH,AG 交 BH 于点 P.(1) 求证:△ABG≌△BCH; (2)求∠APH 的度数.
4. 若同一个圆的内接正三角形、正方形、正六边形的边长分别记作 a3,a4,a6,则 a3:a4:
C.3
D.4
10.如图,AB 为⊙O 的切线,切点为 A,OB 交⊙O 于点 C,点 D 在⊙O 上,且 OD∥
AC,若∠B=38°,则∠ODC 的度数为( )
A.46°
B.48°
C.52°
D.58°
二.填空题
11.如图,已知圆 O 为 Rt△ABC 的内切圆,切点分别为 D、E、F,且∠C=90°,AB
人教版九年级数学上册《正多边形和圆》第2课时教学课件

∴ = ,
∴
1
∠ = ∠ = 60°,
2
∴ △ 是等边三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
30°
30°
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
方法
用量角器度量,使∠ = ∠ = 30°.
但画图的误差积累到最后一个等分点,误差较大.
3
尺规作图,虽然精确,但不是任意等分圆周都能用这种
方法,而且作图时存在误差.
4
本节课提到的其他一些方法只适用于某些特殊的正多边形.
练习
1
如何在半径为 的⊙ 中作出内接正九边形呢?
40°
练习
2
如何借助圆画出一个五角星呢?
72°
72°
练习
情境引入
实际生活中,经常遇到画正多边形的问题,比如画一个
六角螺帽的平面图,画一个五角星等,这些问题都与等分圆
周有关. 要制造如下图中的零件,也需要等分圆周.
引入新知
已知⊙ 的半径为 ,画圆的内接正三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
3
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
方法
用圆规在⊙ 上顺次截取两条长度等于 3 的弦,连
正多边形和圆(2)

边心距=OD1= R. 2
在Rt△ABD中 ∠BAD=30°,
AD OA OD R 1 R 3 R, 22
B
A
·O
D
C
在Rt△OBD中 BD2=OB2-OD2=R2-(1/2R)2=3/4R2
BC=2BD= 3 R
S
ABC
1 BC 2
AD
1 2
3R 3 R 3 3 R2. 24
解:连接OB,OC 作OE⊥BC垂足为E,
rR
22
BP
C
1、正方形ABCD的外接圆圆心O叫做
正方形ABCD的
中心
2、正方形ABCD的内切圆的半径OE叫做
正方形ABCD的 边心 距
A
D
.O
B EC
3、 ∠AOB叫做正五边形ABCDE的 中心 角, 它的度数是 72 度
D
E
C
.O
A
FB
5、图中正六边形ABCDEF的中心角是∠AOB 它的度数是 60 度
先作出正六边
形,则可作正三 角形,正十二边 形,正二十四边
形………
说说作正多边形的方法有哪些?
归纳
(1)用量角器等分圆周作正n边形; (2)用尺规作正方形及由此扩展作正八 边形, 用尺规作正六边形及由此扩展作正 12边形、正三角形.
A
如图:
B
已知点A、B、C、D、
E是⊙O 的5等分点,
画出⊙O的内接和外
6、你发现正六边形ABCDEF的半径与边长具有
什么数量关系?为什么?
E
D
F
.O
C
A
B
练习
1. 矩形是正多边形吗?菱形呢?正方形呢?为什么? 矩形不是正多边形,因为四条边不都相等;
《正多边形和圆》重点、难点

《正多边形和圆》重点、难点
1.正多边形的定义:各边相等、各内角也相等的多边形叫正多边形。
2.正多边形与圆的关系
(1)把圆分成n (n ≥3)等份,有如下结论:
其一:依次连结各分点所得的多边形是这个圆的内接正n 边形,这圆是正n 边形的外接圆。
其二:经过各分点作圆的切线以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形,这圆是正n 边形的内切圆。
(2)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
3.有关的概念
(1)正多边形的中心
(2)正多边形的半径
(3)正多边形的边心距
(4)正多边形的中心角
4.正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形。
这里我们设:正n 边形的中心角为α,半径为R ,边心距为r ,边长为a n ,周长为P n ,面积为S n ,则有
();();();();();();1360221803180414561212222α=︒=⋅︒=⋅︒=⋅=⋅=⋅⋅=⋅n
a R n r R n R r a P n a S n r a r P n n n n n n n sin cos
()正多边形的每一个内角,内角和721802180=-⋅︒=-⋅︒()().n n n
5.每一个正多边形都是轴对称图形,当边数为偶数时,它还是中心对称图形。
6.重点和难点:
(1)重点是正多边形的计算问题,计算通常是通过解直角三角形来解决的,所以在解这类题时,要尽量创造直角三角形,把所求的问题放到直角三角形中去,尤其是含30°、60°角的直角三角形和等腰直角三角形更重要。
(2)难点是灵活运用正多边形的知识和概念解题。
正多边形和圆-ppt课件

“各边相等,各内角相等”是正多边形的两
个基本特征,当边数n>3时,二者必须同时具备,
缺一不可,否则多边形就不是正多边形.
感悟新知
3. 正多边形的有关概念
知1-讲
(1)正多边形的中心: 一个正多边形的外接圆的圆心叫作正
多边形的中心 .
(2)正多边形的半径: 正多边形的外接圆的半径叫作正多边形
的半径 .
心,OA 为半径作⊙ O,直径 FC ∥ AB, AO, BO
的延长线交⊙ O 于点 D, E.
求证:六边形 ABCDEF 为圆内接
正六边形 .
感悟新知
知1-练
思路导引:
感悟新知
知1-练
证明: ∵三角形 AOB 是正三角形,
∴∠ AOB= ∠ OAB= ∠ OBA=60°, OB=OA.
∴点 B 在⊙ O 上 .
(1)作半径为 0.9 cm 的⊙ O;
(2)用量角器画∠ AOB = ∠ BOC=120°,其中 A, B,C
均为圆上的点;
(3)连接 AB, BC, CA,则△ ABC 为
所求作的正三角形 ,如图 24. 3-4所示.
感悟新知
作法二
(1)作半径为 0.9 cm 的⊙ O;
知3-练
(2)作⊙ O 的任一直径 AB;
︵
︵
︵
︵
︵ ︵
∴BDE-CDE=CDA-CDE,即BC=AE.∴BC=AE.
同理可证其余各边都相等,
∴五边形 ABCDE 是正五边形.
感悟新知
知识点 2 正多边形的有关计算
1. 正 n 边形的每个内角都等于
(-)· °
.
2. 正 n 边形的每个中心角都等于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
120°
●
(2)尺规法:
●
细心观察课件演示,自己写出画法步骤.
⌒
(1)度量法:
O
O
互学固学
你能画出一个正五角星吗?
利用度量法可以画出任意正n边形.
互学固学
用尺规画出正三、六、十二¨¨边形
● ● ● ● ●
●
●
●
●
●
●
O
●
●
●
●
O
●
●
●
●
O
●
●
● ● ● ● ●
●
●
把圆n(n≥3)等分,顺次连接各分点可得圆的内接正n边形.
把圆n(n≥3)等分,过各分点作切线,以相邻切线的交点为顶点可得圆的 A 外切正n边形.
各边相等 正多边形 各角相等
正多边形的有关概念 正多边形的计算
B
中心角 半径R
E
O
边心距 r
C
F
D
比学评学
等分圆周 可以得圆的正多边形.
问题1:如何等分圆周呢?
下列方案符合要求吗?为什么?
思考题:
某学校在教学楼前的圆形广场中,准备建造一个花园,并在 花园内分别种植牡丹、月季和杜鹃三种花卉。为了美观,种 植要求如下: (1)种植4块面积相等的牡丹、4块面积相等的月季和一 块杜鹃。(注意:面积相等必须由数学知识作保证) (2)花卉总面积等于广场面积 (3)花园边界只能种植牡丹花,杜鹃花种植在花园中间 且与牡丹花没有公共边。 请你设计种植方案:(设计的方案越多越好;不同的方 案类型不同.)
基础是六等分圆
互学固学
用尺规画出正四、八、十六¨¨边形
●
O
如何画出正八边形、正十六边形呢? 基础是四等分圆
●
互学固学
实际应用
参照右图,按一定比例,画一个停车 让行的交通标志.
本节课你学到了什么
各边相等 正多边形 各角相等
等分圆周可得正多边形.
等分圆周可设计美丽的图案.
作业: P107 2、4、6、8*
圆
⒕
九 年 级 数 学 ( 上 )
正多边形与圆
(2)
2013年11月
导 学
(1)理解正多边形与圆关系. (2)掌握正多边形的画法.
试 学
阅读课本P106—107的内容.完成
(1)如何利用量角器等分圆周画正多边形?
(2)如何利用直尺圆规等分圆周画正多边形?
上节课你学习了些什么?
正多边形定义 正多边形与圆的关系