九年级数学正多边形和圆2
九年级数学正多边形和圆2

你能尺规作出正四边形、正八边形吗?
A
D
·O
B
C
只要作出已知⊙O的互 相垂直的直径即得圆 内接正方形,再过圆 心作各边的垂线与⊙O 相交,或作各中心角 的角平分线与⊙O相交, 即得圆接正八边形, 照此方法依次可作正 十六边形、正三十二
边形、正六十四边 形……
你能尺规作出正六边形、正三角形、正 十二边形吗?
F
E
O
A
·
D
B
C
以半径长在圆 周上截取六段相 等的弧,依次连 结各等分点,则 作出正六边形.
先作出正六边
形,则可作正三 角形,正十二边 形,正二十四边
形………
说说作正多边形的方法有哪些?
归纳
(1)用量角器等分圆周作正n边形;
(2)用尺规作正方形及由此扩展作正八边 形, 用尺规作正六边形及由此扩展作正12边 形、正三角形.
7.两个正三角形的内切圆的半径分别为12 和18,则它们的周长之比为2﹕—3———,面积之 比为4-﹕---9--------.
C
B
你能用以上方法画出正四边形、正五 边形、正六边形吗?
A
A
D
F
E
·O
B
E
O·
A
O ·
D
90°
72°
60°
B
C
C
D
B
C
; 微信账号购买 / 微信账号出售
;
那人仔细查看了一番地上的脚印,突然说:“那是我自己的脚印呀!” 神笑了:“现在你知道了,既然你在最低潮、最悲观的阶段,都能够背负我走过去,那你现在还需要我吗?” 120、简单的精彩 地质考察队在大山里发现了一个罕见的山洞。洞内地形非常曲折,大洞套小洞 ,变化无穷,还有深潭和峭壁,甚为奇险
湖南省九年级数学上册第二十四章圆24.3正多边形和圆2教案 新人教版

正多边形和圆教学设计课标要求利用正多边形解决有关问题教材及学情分析1、教材分析:学生在学习本章之前,已通过折叠、对称、平移、旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.学情分析:2、九年级学生已具备一定知识储备和认知能力。
但学生的基础较差,中等、差等生较多,优等生较少。
课堂上,多数学生表现欲不强,发言不积极,怕回答错问题;学生应用知识灵活解决问题的能力较差,在几何证明题中,不会抓住已知条件进行论证推理。
因此,在教学中,注重学生学习方法的培养,通过学生实践、探究、合作交流来完成本节课的教学。
课时教学目标1.理解正多边形的性质.2.会画正多边形,了解依次连结圆的n等分点所得的多边形是正多边形,过圆的n 等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.准备教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课一、复习旧知:二、探究正多边形的画法一、复习:1、什么是正多边形?怎么证明一个多边形是正多边形?2、多边形的内角和怎么计算?正多边形的每一个内角怎么计算?3、复习正多边形的相关概念;正多边形的中心角怎么计算?巩固上节课所学的内容比如画一个六角螺帽的平面图、画一个五角星等,1.等分圆周.可以以1.5 cm为半径作一个⊙O,用量角器画一个等于6=圆的6个等分点,顺次连接各分点,即可得到正条互相垂直的直径,就可以把圆四等分,从而作际例子导入新教学过程三、正多边形画法的应用三、巩固练习3.实例探究.用等分圆周的方法画出下列图案.提示:第1幅图案.以圆的三等分点为圆心,圆的半径为半径作三条弧.第2幅图案.以正六边形的各边中点为圆心,正六边形的边长为直径向圆外画半圆,就得到这幅图案.第3幅图案.作5的内接正五边形,再以正五边形的各个顶点为圆心,边长为半径画十条弧.4、巩固练习:画一个半径为2cm的正五边形,再作出这个正五边形的各条对角线,画一个五角星。
青岛版数学九年级上册《正多边形与圆》2

边数 3
角 角 径 长 距 长积
3
60° 120 2 2 3 1 6 3 3 3
4
90 90 2 2 1 8 4
6
120 60 2 2
12 6 3
O
O
O
半径R 60 边心距r
半径R 45 边心距r
半径R 30 边心距r
AC
M AC
M
AC
M
当堂训练
正多边形都是轴对称图形,一个正n边形共有n 条对称轴,每条对称轴都通过n边形的中心。
径为边长的正六边形ABCDEF的面积.
S 27 3 cm2 2
A
F
B
O
E
C
D
例题选讲
分别求出半径为R的圆内接正三角形,正方形 的边长,边心距和面积.
解:作等边△ABC的BC边上的高AD,垂足为D
连接OB,则OB=R,BC=a
A
在Rt△OBD中 ∠OBD=30°, a
边心距=OD=
1 R.
a BD=
巩固练习
1.正八边形的每个内角是_1_3__5_°_度.
2.如图,正六边形ABCDEF内接于⊙O,则
∠CFD的度数是( C )
A. 60° B. 45° C. 30° D. 22.5°
巩固练习
3.如果一个正多边形绕它的中心旋转90°就与
原来的图形重合,那么这个正多边形是( B )
A.正三角形 B.正方形 C.正五边形 D.正六边形
B O
E
x
C
D
巩固练习
6.如图,有一圆内接正八边形ABCDEFGH, 若△ADE的面积为10,则正八边形
ABCDEFGH的面积为( A )
A. 40 B .50 C. 60
人教版九年级数学上册《正多边形和圆》教学案

正多边形和圆 ( 一)素质教育目标1.使学生理解正多边形观点;使学生认识挨次连接圆的n 平分点所得的多边形是正多边形;过圆的n 平分点作圆的切线,以相邻切线的交点为极点的多边形是正多边形.2,经过正多边形定义教课培育学生概括能力;经过正多边形与圆关系定理的教课培育学生察看、猜想、推理、迁徙能力.3,向学生浸透“特别——一般”再“一般——特别”的唯物辩证法思想.教课要点、难点、疑点及解决方法1.要点:正多边形的定义;n 平分圆周 (n ≥ 3) 可得圆的内接正n 边形和圆的外切正n 边形.2.难点:对正n 边形中泛指“n”的理解.3.疑点及解决方法:揭露定理证明的思路和步骤,说明取n=5 的特别状况证明定理具有代表性.教法学法和教具1.教法:指引学生探究研究发现法。
2.学法:学生主动探究研究发现法。
3.教具:三角尺、圆规、投影仪(或小黑板)。
教课步骤复习准备部分同学们思虑以下问题:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?[ 安排中下生回答]3.等边三角形与正方形的边、角性质有什么共同点?[ 中上生回答:各边相等、各角相等] .教师:我们今日学习的内容“7.15 正多边形和圆”.讲堂讲练部分一,正多边形的观点教师发问:1,什么是正多边形?[ 安排中下生回答:各边相等、各角也相等的多边形叫做正多边形.]师重申:假如一个正多边形有 n(n ≥ 3) 条边,就叫正 n 边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.[ 教师展现图形]2,上边这些图形都是正几边形?[ 安排中下生回答:正三角形,正四边形,正五边形,正六边形. ]3,矩形是正多边形吗?为何?菱形是正多边形吗?为何?[ 安排中下生回答:矩形不是正多边形,因为边不必定相等.菱形不是正多边形,因为角不必定相等.] 4,哪位同学记得在同圆中,圆心角、弧、弦、弦心距关系定理?[ 安排记起来的学生回答:在同圆中,圆心角、弧、弦、弦心距有一组量相等,那么其他量都相等.] 5,要将圆三平分,那么此中一等份的弧所对圆心角度数是多少?要将圆四平分、五等分、六平分呢?[ 安排中下生回答:将圆三平分,此中每等份弧所对圆心角120°、将圆四平分,每等份弧所对圆心角90°、五平分,圆心角72°、六平分,圆心角60° ] 6,哪位同学能用量角器将黑板上的圆三平分、四平分、五平分、六平分?[ 接排四名上等生上黑板达成,其他学生在下边练习本上用量角器平分圆周.]7,大家挨次连接各分点看所得的圆内接多边形是什么样的多边形?[ 学生答:正多边形.二,平分圆周法定理求证:五边形ABCDE是⊙ O的内接正五边形.教师指引学生剖析:1,以五边形为例,哪位同学能证明这五边形的五条边相等?[ 安排中等生回答:]2,哪位同学能明五形的五个角相等?[ 安排中等生回答:]3,前方的明明“挨次的五平分点所得的内接五形是正五形”的察后的猜想是正确的.假如n 平分周, (n ≥ 3) 、 n=6, n=8⋯⋯能否也正确呢?[ 安排学生充足] .教: 因在同中,弧等弦等,n 平分就获得n 条弦等,也就是n 形的各都相等.又n 形的每个内角的(n-2)条弧,而每一内角所的弧都相等,依据弧等、周角相等,了然n 形的各角都相等,所以内接正五形的明拥有代表性.定理:把圆分红 n(n ≥ 3) 等份:(1) 挨次连接各分点所得的多边形是这个圆的内接正n 边形;教:1,何要“挨次” 各分点呢?缺乏“挨次”二字会出什么象?大家看看.2,的五平分点作的切,大家察以相切的交点点的五形能否是正五形?PQ、 QR、 RS、 ST 分是分点A、 B、 C、 D、 E 的⊙ O的切.求:五形PQRST是⊙ O的外切正五形教引学生剖析:1, 由弧等推得弦等、弦切角等,哪位同学能明五形PQRST的各角都相等?[ 安排中上生回答]2, 哪位同学能明五形PQRST的各都相等?[ 安排中等生回答.]教:前方同学的明,明“ 的五平分点作的切,以相切的交点点的多形是个的外切正五形.”同依据弧等弦等、弦切角等便可明的n 平分点作的切,以相切的交点点的n 个等腰三角形全等,进而了然个的以它n 平分点切点的外切n 形是正n 形.(2)经过各分点作圆的切线,以相邻切线的交点为极点的多边形是这个圆的外切正 n 边形.教师重申:定理(2) 中少“相邻”两字行不可以?少“相邻”两字会出现什么现象?同学们相互间议论研究看看.总结、扩展、反省本堂课我们学习的知识:1.学习了正多边形的定义.2. n 平分圆周 (n ≥ 3) 可得圆的内接正n 边形和圆的外切正n 边形.讲堂作业:教材P.143 .练习 2、 3部署作业:P.157 中 2、 3.板书设计教后札记:学生对正多边形的观点能够理解,会用平分圆周法作图,可是,因为对多边形接触较少,应用有难度,解题不周祥,要指导学生对正多边形的观点作图和定理的反省学习。
人教版九年级数学上册作业课件 第二十四章 圆 正多边形和圆 (2)

a,则正六
边形的面积为 6×21
×a×
3 2
a=32 3
a2,正方
形的面积为 a×a=a2,∴正六边形与正方形的面
(2积)易比得为O3F2=3 Ea2F∶=aF2=G,3 ∴3 ∠∶O2GF=12 (180°-60°-90°)=15°
16.如图①,②,③,④,M,N分别是⊙O的内接正三角形ABC,正方 形ABCD,正五边形ABCDE,正n边形ABCDEF…的边AB,BC上的点,且 BM=CN,连接OM,ON.
人教版
第二十四章 圆
24.3 正多边形和圆
1.各边_相__等__、各角也_相__等__的多边形是正多边形. 练习1:下列图形中是正多边形的是( D ) A.等腰三角形 B.菱形 C.矩形 D.正方形
2.正多边形外接圆的圆心叫做这个正多边形的_____,中外心接圆的 _____叫半做径正多边形的半径,正多边形每一边所对的圆心角叫做正多 边形的______中,心中角心到正多边形的一边的_____叫距做离正多边形的
(2)90° 72° (3)∠MON=36n0°
(1)求图①中∠MON的度数; (2)图②中∠MON的度数是_9_0_°___,_ 图③中∠MON的度数是_7_2_°___;_ (3)试探究∠MON的度数与正n边形的边数n的关系.(直接写出答案)
解:(1)连接OA,OB,图略.∵正三角形ABC内接于⊙O,∴AB=BC, ∠OAM=∠OBN=30°,∠AOB=120°.∵BM=CN,∴AM=BN,又 ∵OA=OB,∴△AOM≌△BON(SAS),∴∠AOM=∠BON,∴∠AOM+ ∠BOM=∠BON+∠BOM,∴∠AOB=∠MON=120°
∠DEB=72°,∴∠AME=∠EAC,∴ME=AE
人教版九年级数学上册《24.3 正多边形和圆》 教案 第2课时

第二十四章圆24.3 正多边形和圆第2课时一、教学目标1.巩固正多边形与圆的关系.2.掌握用尺规画图作正多边形.二、教学重点及难点重点:画特殊的正多边形.难点:利用直尺与圆规作特殊的正多边形.三、教学用具多媒体课件,三角板、直尺、圆规、量角器.四、相关资源五、教学过程【复习回顾,引入新课】师生活动:教师展示复习的课件,让学生回顾上节课所学知识.设计意图:通过复习正多边形与圆相关定义,为本节课学习正多边形画法作好铺垫.【合作探究,形成新知】实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关,我们一起探究正六边形的画法.我们可以用量角器画正六边形吗?如果可以,请说说作图原理.师生活动:四人一组,小组讨论、交流,一名学生回答,全班订正.学生回答不足的地方,教师补充.归纳用“量角器等分圆”:依据:同圆中相等的圆心角所对应的弧相等.操作:两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个圆心角,然后在圆上依次截取等于该圆心角所对弧的等弧,于是得到圆的等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正多边形的边长误差较大.【例题分析,深化提升】例有没有其他作正六边形的方法?你能用尺规作出圆的内接正六边形吗?试试看.师生活动:教师组织学生思考作图的方法,先让学生独立思考,再与小组同学协作完成,有方法的小组通过实物投影展示,对完成较好的同学给予表扬.教师引导学生观察正六边形,从而使其回忆起正六边形的边长等于半径,找到作图的方法,然后学生自己动手作图.设计意图:充分发挥学生的发散思维,让学生充分利用手中的工具,实际操作,认真思考,从而培养学生的动手能力.【练习巩固,综合应用】已知⊙O的半径为1 cm,求作⊙O的内接正八边形.解:(1)如图所示,作直径AC,使AC=2 cm.(2)作AC的中垂线BD交⊙O于B,D两点.(3)连接AD,作AD的中垂线交AD于M点.,,的中点E,F,G.(4)用同样的方法作出AB BC CD(5)依次连接各分点,即得正八边形.正八边形AEBFCGDM即为所求作的⊙O的内接正八边形.设计意图:巩固正多边形画法.六、课堂小结学完这节课你有哪些收获?1.量角器画正多边形2.尺规作正多边形师生活动:学生自己总结,不全面的由其他学生补充完善.教师重点关注:不同层次学生对本节知识的理解、掌握程度.设计意图:让学生总结出自己的收获,理清思路、整理经验,从而形成良好的学习习惯,同时也提出自己的疑问和困惑便于教师及时反馈.七、板书设计24.3 正多边形和圆(2)1.量角器画正多边形2.尺规作正多边形。
人教版数学九年级上册24.3正多边形和圆(第2课时)教学设计

4.强调数学知识在实际生活中的应用,激发学生学习数学的兴趣。
五、作业布置
为了巩固本节课所学的正多边形和圆的知识,以及提高学生的应用能力和思维能力,特布置以下作业:
1.基础巩固题:请同学们完成课本第XX页的练习题1-5,重点复习正多边形的性质、内角和、外角和的计算方法,以及正多边形与圆的相互关系。
4.思考题:请同学们思考以下问题,下节课进行分享和讨论:
(1)为什么正多边形的外角和为360°?
(2)如何判断一个多边形是否为正多边形?
(3)正多边形与圆的性质在解决实际问题时有什么优势?
5.预习作业:预习下一节课的内容,了解圆的内接多边形和外切多边形的性质,为课堂学习做好准备。
作业要求:
1.请同学们按时完成作业,保持字迹工整,确保作业质量。
4.借助几何画板等教学工具,直观展示正多边形和圆的性质,加深学生对知识的理解。
(三)学生小组讨论,500字
在学生小组讨论环节,我将组织学生进行以下活动:
1.将学生分成若干小组,每组讨论一个问题,如正多边形内角和的计算方法、正多边形与圆的关系等。
2.每个小组派代表汇报讨论成果,其他小组进行补充和评价。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-正多边形的性质及其与圆的关系。
-运用圆的性质解决正多边形相关问题。
-正多边形周长和面积的计算方法。
2.教学难点:
-正多边形内角和、外角和的计算。
-正多边形与圆结合的综合问题解决。
-空间想象能力的培养。
(二)教学设想
1.教学方法:
-采用启发式教学法,引导学生通过观察、探索、讨论等方式发现正多边形的性质,培养学生自主学习能力。
九年级数学上册24.3正多边形和圆(第2课时)教案新人教版

24.3 正多边形和圆教学内容24.3 正多边形和圆(2).教学目标1.理解正多边形的性质.2.会画正多边形,了解依次连结圆的n等分点所得的多边形是正多边形,过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.教学重点正多边形的画法.教学难点对正n边形中泛指“n”的理解.教学步骤一、导入新课实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关.二、新课教学我们知道,依次连结圆的五等分点所得的圆内接五边形是正五边形.如果n等分圆周,(n ≥3)、n=6,n=8……是否也正确呢?教师引导学生充分讨论.因为在同圆中,弧等弦等,n等分圆就得到n条弦等,也就是n边形的各边都相等.又n 边形的每个内角对圆的(n-2)条弧,而每一内角所对的弧都相等,根据弧等、圆周角相等,证明了n边形的各角都相等,因此圆内接正五边形的证明具有代表性.定理:把圆分成n(n≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形.为何要“依次"连结各分点呢?缺少“依次”二字会出现什么现象?大家讨论讨论看看.我们还可以用圆心角来等分圆周.由于同圆中相等的圆心角所对的弧相等,因此作相等的圆心角就可以等分圆周,从而得到相应的正多边形.例如,画一个边长为1。
5 cm 的正六边形时,可以以 1.5 cm为半径作一个⊙O,用量角器画一个等360 =60°的圆心角,它对着一段弧,然后在圆上依次截取与这条弧于6相等的弧,就得到圆的6个等分点,顺次连接各分点,即可得到正六边形(如下图).对于一些特殊的正多边形,还可以用圆规和直尺来作.如,用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作出正方形(下图).三、巩固联系教材第108页练习.四、课堂小结今天学习了什么,有什么收获?五、布置作业习题24.3 第4、6题.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。