九年级数学正多边形与圆教案

合集下载

人教版九年级数学上册教案:24.3正多边形和圆课堂优秀教学案例

人教版九年级数学上册教案:24.3正多边形和圆课堂优秀教学案例
5.教学策略:本节课运用了多种教学策略,如情景创设、问题导向、小组合作、反思与评价等,使得学生在学习过程中能够充分参与,培养了自己的学习能力。同时,教师注重与学生的互动,鼓励学生积极参与课堂讨论,培养学生的团队合作意识和沟通能力。
3.结合学生的课堂表现、作业完成情况和小组合作情况,进行全面评价,关注学生的知识掌握、能力发展和情Байду номын сангаас态度。
四、教学内容与过程
(一)导入新课
1.利用图片展示正多边形的实际应用场景,如足球、蜂窝等,引发学生对正多边形的兴趣,激发学生的学习动机。
2.创设问题情境,如“为什么足球是正二十面体?”、“蜂窝为什么是正六边形?”等,引导学生思考正多边形的特征和性质。
3.小组合作:本节课鼓励学生进行小组合作学习和讨论,培养了学生的团队合作意识和沟通能力。通过小组合作,学生能够共同解决问题,分享自己的学习和研究成果,提高了学生的表达能力和批判性思维。
4.反思与评价:本节课在课堂结束前,引导学生进行自我反思,总结自己在课堂上的学习情况和收获。同时,设置了不同难度的题目,让学生在课后进行巩固练习。通过这种方式,学生能够及时巩固所学知识,提高自我认知和自我评价能力。
3.在解决问题的过程中,引导学生总结正多边形的性质和规律,提高学生的数学思维能力和逻辑推理能力。
(三)小组合作
1.将学生分成小组,鼓励学生进行合作学习和讨论,培养学生的团队合作意识和沟通能力。
2.设计小组合作任务,如:“观察并描述正多边形的性质”、“制作正多边形的模型”等,让学生在实践中掌握正多边形的知识。
3.利用多媒体课件展示正多边形的动态变化,让学生直观感受正多边形的魅力,引发学生的探究欲望。
(二)问题导向
1.设计一系列问题,引导学生逐步深入探究正多边形的定义、性质和与圆的关系。如:“正多边形有什么特点?”,“正多边形的边数与圆有什么关系?”,“如何判断一个多边形是正多边形?”等。

人教版数学九年级上册第24章圆24.3正多边形和圆教学设计

人教版数学九年级上册第24章圆24.3正多边形和圆教学设计
1.对正多边形的性质理解不够深入,难以把握正多边形与圆之间的内在联系。
2.在解决实际问题时,可能无法灵活运用所学的正多边形知识,需要加强练习和指导。
3.部分学生对几何图形的观察能力和空间想象力有待提高,需要在教学过程中给予关注和培养。
4.学生在小组合作中,可能存在沟通不畅、分工不明确等问题,需要教师在教学过程中引导学生形成良好的合作氛围。
3.培养学生的空间观念,提高学生对几何图形的观察力和想象力,为后续几何学习打下基础。
4.通过解决实际问题,培养学生的责任感、使命感和创新精神,使学生在面对问题时敢于挑战、勇于探索。
二、学情分析
九年级学生在经过前两年的数学学习后,已具备了一定的几何基础和逻辑思维能力。在本章节的学习中,他们能够运用已掌握的圆的相关知识,进一步探索正多边形与圆之间的关系。然而,学生在面对正多边形的性质和计算方法时,可能会出现以下情况:
-选择2-3道题目进行详细解答,要求步骤清晰,逻辑严谨。
-针对学生在课堂练习中出现的典型错误,设计类似题目进行针对性练习。
2.提高作业:结合生活实际,设计一道综合性的问题,让学生运用本节课所学的正多边形和圆的知识解决。
-鼓励学生运用数形结合、转化等数学思想方法,提高解决问题的能力。
-要求学生在解答过程中,注意逻辑推理和几何直观的运用。
3.通过小组合作,讨论解决正多边形和圆相关问题的方法,培养学生的团队协作能力和沟通能力。
4.运用数形结合、转化等数学思想方法,解决实际问题,提高学生解决问题的能力。
(三)情感态度与价值观
1.培养学生对正多边形和圆的美的认识,激发学生对数学美的追求,提高学生的审美情趣。
2.增强学生对数学学习的兴趣,使学生感受到数学与现实生活的密切联系,体会数学的实用价值。

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计一. 教材分析人教版九年级数学上册《第二十四章圆24.3正多边形和圆》的内容包括正多边形的定义、性质和圆的定义、性质。

本章节的目的是让学生理解正多边形和圆的关系,掌握正多边形的计算方法,以及了解圆的性质和应用。

本节课的教学内容是24.3正多边形和圆,主要包括正多边形的定义、性质和圆的定义、性质。

二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对于图形的理解和计算能力有一定的基础。

但是,对于正多边形和圆的关系,以及圆的性质和应用可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索正多边形和圆的性质,提高他们的空间想象能力和思维能力。

三. 教学目标1.知识与技能:使学生掌握正多边形的定义、性质,理解圆的定义、性质,能够运用正多边形和圆的知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:正多边形的定义、性质,圆的定义、性质。

2.难点:正多边形和圆的关系,圆的性质和应用。

五. 教学方法1.情境教学法:通过实物、图片、几何画板等直观教具,引导学生观察、操作、思考,激发学生的学习兴趣。

2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。

3.合作学习法:学生进行小组讨论,培养学生的团队合作意识和交流能力。

4.归纳总结法:引导学生通过总结归纳,形成系统的知识结构。

六. 教学准备1.教学课件:制作精美的课件,包括图片、几何画板等直观教具。

2.教学素材:准备相关的实物、图片等教学素材。

3.教学用具:准备黑板、粉笔、直尺、圆规等教学用具。

七. 教学过程1.导入(5分钟)利用实物、图片等教学素材,引导学生观察正多边形和圆的实例,激发学生的学习兴趣。

3 正多边形和圆一等奖创新教案

3 正多边形和圆一等奖创新教案

3 正多边形和圆一等奖创新教案课题:24.3正多边形和圆学科:备课教师:授课年级:九年级教材分析本节课是新人教版九年级(上)第二十四章第三节的内容。

学生已经学习了圆和正多边形的相关知识,这些知识都将为本节的学习起着铺垫作用。

本课时内容也是将圆及正多边形知识的总结和深化,让学生再次体会了图形之间的密切联系,为以后学习空间与图形知识奠定基础,具有承上启下的作用.《新课标》对数学学习内容的要求是:现实的、有意义的、富有挑战性的.因此教材以生活中的正多边形引出正多边是实际生活的需要,进而由特殊到一般的介绍等分圆周是作正多边形的有效方法,通过练习操作掌握作图方法,符合学生的认知特点.学情分析数学教学活动必须建立在学生认知发展水平和已有的知识经验基础之上。

九年级的学生正处于思维能力培养的重要时期,他们已经具备一定的归纳、猜想能力,但个别学生在理解、应用上还须借助老师、同学的帮助,通过教师的指导和同伴的帮助,也会有所收获。

教师要给予个别关照以及适当的精神激励,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。

九年级学生的思维以形象型为主,具备了抽象思维能力;仍然在一定程度困扰有好奇、好动的习性依存,因此,教学中尽量采用问题诱导和直观演示帮助学生逐步实现“直观感知——操作确认——简单说理——实践应用”的攀升,使学生进一步加深对知识的理解.设计思路学生在前面的学习中已经掌握了圆和正多边形的相关性质,知道了圆和正多边形的关系非常密切.圆和正多边形都是轴对称图形,边数为偶数的正多边形也是中心对称图形,并且以正五边形为例由特殊到一般的证明了将圆分成一些相等弧就可以得到它相应的内接正多边形.而且学生已经学习过用尺规作图的方法作角的平分线和线段的垂直平分线.但此班级的学生的基础薄弱,两极分化比较严重,所以有一些学生在寻求作图的方法、说明作图原理、进而准确作图时还会有一定的困难.教学准备教师:制作PPT学生:复习正多边形的概念,准备圆规、直尺、量角器。

正多边形与圆教案

正多边形与圆教案

1. 让学生了解正多边形的定义及其性质。

2. 让学生掌握正多边形与圆的关系。

3. 培养学生运用几何知识解决实际问题的能力。

二、教学内容1. 正多边形的定义及性质。

2. 正多边形与圆的关系。

3. 正多边形的计算与应用。

三、教学重点与难点1. 教学重点:正多边形的定义、性质及正多边形与圆的关系。

2. 教学难点:正多边形的计算与应用。

四、教学方法1. 采用问题驱动法,引导学生探究正多边形的性质。

2. 利用几何画板软件,直观展示正多边形与圆的关系。

3. 结合实际例子,让学生运用正多边形的知识解决实际问题。

五、教学过程1. 引入:讲解正多边形的定义,引导学生思考正多边形的性质。

2. 探究:让学生通过观察、操作,发现正多边形与圆的关系。

3. 讲解:讲解正多边形的计算方法,并举例说明。

4. 应用:布置练习题,让学生运用正多边形的知识解决实际问题。

5. 总结:对本节课的内容进行总结,强调正多边形与圆的关系。

6. 作业布置:布置适量作业,巩固所学知识。

1. 通过课堂提问,了解学生对正多边形定义和性质的掌握情况。

2. 通过练习题,评估学生对正多边形与圆的关系的理解程度。

3. 观察学生在实际问题中的应用能力,评估其对正多边形计算方法的掌握。

七、教学资源1. 几何画板软件:用于直观展示正多边形与圆的关系。

2. PPT课件:用于讲解正多边形的性质和计算方法。

3. 练习题:用于巩固学生对正多边形的理解和应用能力。

八、教学进度安排1. 第1周:介绍正多边形的定义及性质。

2. 第2周:讲解正多边形与圆的关系。

3. 第3周:讲解正多边形的计算方法。

4. 第4周:实际问题中的应用练习。

九、教学反思1. 反思教学方法的有效性,根据学生反馈调整教学策略。

2. 考虑如何更好地引导学生发现正多边形与圆的内在联系。

3. 评估作业难度,确保作业能够有效巩固所学知识。

十、拓展与延伸1. 引导学生探究正多边形在现实生活中的应用。

2. 介绍正多边形的相关历史背景和文化意义。

初中数学《正多边形和圆》第一课时 教案

初中数学《正多边形和圆》第一课时 教案
(3)正n边形的一个外角为30°,则它的边数为
____,它的内角和为______;
(4)如果一个正多边形的一个外角等于一个内角
的三分之二,则这个正多边形的边数n=____;
(5)正六边形的边长为1,则它的半径为_____,面积为________;
(6)同圆的内接正三角形、正方形、正六边形的边长之比为________________;
二、探究新知
什么叫正多边形? 各边相等,各角相等的多边形.
什么是正多形的边心距、半径?
正多边形的边有什么性质、角有什么性质?
什么叫正多边形的中心角?
正n边形的中心角度数如何计算?
正n边形的一个外角度数如何计算?
【例】有一个亭子,它的地基是半径为4 m的正六边形,求地基的周长和面积(结果保留小数点后一位).
(7)正三角形的高∶半径∶边心距为_________;
(8)边长为1的正六边形的内切圆的面积是____.
四、课堂小结(抽小组小结:小组内1人小结,其余同学补充)
1.本节课你有哪些收获?正多边形与圆有什么关系?
2.还有没解决的问题吗?本节课学习了哪些与正多边形有关的概念?在解决有关的计算问题时,关键是什么?
正n边形的n条半径、n条边心距将正n边形分割成全等直角三角形的个数是多少?
每个直角三角形都由正多边形的哪些元素组成?
三、小组学生探究练习
(1)正n边形的半径和边心距把正n边形分成___个全等的直角三角形;
(2)正三角形的半径为R,则边长为_____,边心距为______,面积为________.若正三角形边长为a,则半径为______;
4.素养:通过探究正多边形在生活中的实际应用,增强对生活的热爱
重点难点
重点:正多边形的有关概念,特殊正多边形的有关计算;

人教版九年级数学上册《正多边形和圆》教学案

人教版九年级数学上册《正多边形和圆》教学案

正多边形和圆 ( 一)素质教育目标1.使学生理解正多边形观点;使学生认识挨次连接圆的n 平分点所得的多边形是正多边形;过圆的n 平分点作圆的切线,以相邻切线的交点为极点的多边形是正多边形.2,经过正多边形定义教课培育学生概括能力;经过正多边形与圆关系定理的教课培育学生察看、猜想、推理、迁徙能力.3,向学生浸透“特别——一般”再“一般——特别”的唯物辩证法思想.教课要点、难点、疑点及解决方法1.要点:正多边形的定义;n 平分圆周 (n ≥ 3) 可得圆的内接正n 边形和圆的外切正n 边形.2.难点:对正n 边形中泛指“n”的理解.3.疑点及解决方法:揭露定理证明的思路和步骤,说明取n=5 的特别状况证明定理具有代表性.教法学法和教具1.教法:指引学生探究研究发现法。

2.学法:学生主动探究研究发现法。

3.教具:三角尺、圆规、投影仪(或小黑板)。

教课步骤复习准备部分同学们思虑以下问题:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?[ 安排中下生回答]3.等边三角形与正方形的边、角性质有什么共同点?[ 中上生回答:各边相等、各角相等] .教师:我们今日学习的内容“7.15 正多边形和圆”.讲堂讲练部分一,正多边形的观点教师发问:1,什么是正多边形?[ 安排中下生回答:各边相等、各角也相等的多边形叫做正多边形.]师重申:假如一个正多边形有 n(n ≥ 3) 条边,就叫正 n 边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.[ 教师展现图形]2,上边这些图形都是正几边形?[ 安排中下生回答:正三角形,正四边形,正五边形,正六边形. ]3,矩形是正多边形吗?为何?菱形是正多边形吗?为何?[ 安排中下生回答:矩形不是正多边形,因为边不必定相等.菱形不是正多边形,因为角不必定相等.] 4,哪位同学记得在同圆中,圆心角、弧、弦、弦心距关系定理?[ 安排记起来的学生回答:在同圆中,圆心角、弧、弦、弦心距有一组量相等,那么其他量都相等.] 5,要将圆三平分,那么此中一等份的弧所对圆心角度数是多少?要将圆四平分、五等分、六平分呢?[ 安排中下生回答:将圆三平分,此中每等份弧所对圆心角120°、将圆四平分,每等份弧所对圆心角90°、五平分,圆心角72°、六平分,圆心角60° ] 6,哪位同学能用量角器将黑板上的圆三平分、四平分、五平分、六平分?[ 接排四名上等生上黑板达成,其他学生在下边练习本上用量角器平分圆周.]7,大家挨次连接各分点看所得的圆内接多边形是什么样的多边形?[ 学生答:正多边形.二,平分圆周法定理求证:五边形ABCDE是⊙ O的内接正五边形.教师指引学生剖析:1,以五边形为例,哪位同学能证明这五边形的五条边相等?[ 安排中等生回答:]2,哪位同学能明五形的五个角相等?[ 安排中等生回答:]3,前方的明明“挨次的五平分点所得的内接五形是正五形”的察后的猜想是正确的.假如n 平分周, (n ≥ 3) 、 n=6, n=8⋯⋯能否也正确呢?[ 安排学生充足] .教: 因在同中,弧等弦等,n 平分就获得n 条弦等,也就是n 形的各都相等.又n 形的每个内角的(n-2)条弧,而每一内角所的弧都相等,依据弧等、周角相等,了然n 形的各角都相等,所以内接正五形的明拥有代表性.定理:把圆分红 n(n ≥ 3) 等份:(1) 挨次连接各分点所得的多边形是这个圆的内接正n 边形;教:1,何要“挨次” 各分点呢?缺乏“挨次”二字会出什么象?大家看看.2,的五平分点作的切,大家察以相切的交点点的五形能否是正五形?PQ、 QR、 RS、 ST 分是分点A、 B、 C、 D、 E 的⊙ O的切.求:五形PQRST是⊙ O的外切正五形教引学生剖析:1, 由弧等推得弦等、弦切角等,哪位同学能明五形PQRST的各角都相等?[ 安排中上生回答]2, 哪位同学能明五形PQRST的各都相等?[ 安排中等生回答.]教:前方同学的明,明“ 的五平分点作的切,以相切的交点点的多形是个的外切正五形.”同依据弧等弦等、弦切角等便可明的n 平分点作的切,以相切的交点点的n 个等腰三角形全等,进而了然个的以它n 平分点切点的外切n 形是正n 形.(2)经过各分点作圆的切线,以相邻切线的交点为极点的多边形是这个圆的外切正 n 边形.教师重申:定理(2) 中少“相邻”两字行不可以?少“相邻”两字会出现什么现象?同学们相互间议论研究看看.总结、扩展、反省本堂课我们学习的知识:1.学习了正多边形的定义.2. n 平分圆周 (n ≥ 3) 可得圆的内接正n 边形和圆的外切正n 边形.讲堂作业:教材P.143 .练习 2、 3部署作业:P.157 中 2、 3.板书设计教后札记:学生对正多边形的观点能够理解,会用平分圆周法作图,可是,因为对多边形接触较少,应用有难度,解题不周祥,要指导学生对正多边形的观点作图和定理的反省学习。

人教版数学九年级上册24.3.2《正多边形和圆》教案

人教版数学九年级上册24.3.2《正多边形和圆》教案

人教版数学九年级上册24.3.2《正多边形和圆》教案一. 教材分析《正多边形和圆》是人民教育出版社出版的数学九年级上册第24章第三节的内容。

本节内容主要介绍了正多边形的定义、性质以及与圆的关系。

通过学习正多边形和圆,学生能够理解圆的定义,掌握圆的性质,并能够运用圆的知识解决实际问题。

二. 学情分析九年级的学生已经掌握了多边形的基本概念和性质,具备一定的逻辑思维能力。

但是对于正多边形和圆的关系的理解可能存在一定的困难。

因此,在教学过程中,需要通过实例和图形的演示,帮助学生建立直观的认识,引导学生主动探究正多边形和圆的性质。

三. 教学目标1.知识与技能:–能够理解正多边形的定义和性质。

–能够理解圆的定义和性质。

–能够运用正多边形和圆的知识解决实际问题。

2.过程与方法:–通过观察和操作,培养学生的观察能力和动手能力。

–通过小组合作,培养学生的合作能力和沟通能力。

3.情感态度与价值观:–培养学生对数学的兴趣和好奇心。

–培养学生的自主学习能力和解决问题的能力。

四. 教学重难点•正多边形的定义和性质。

•圆的定义和性质。

•正多边形和圆的关系的理解。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正多边形和圆的性质。

2.通过实例和图形的演示,帮助学生建立直观的认识。

3.采用小组合作的学习方式,培养学生的合作能力和沟通能力。

六. 教学准备1.准备相关的图形和图片,用于演示和解释正多边形和圆的性质。

2.准备练习题和实际问题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)–利用图片和实例,引导学生回顾多边形的基本概念和性质。

–提出问题,引导学生思考正多边形和圆的关系。

2.呈现(15分钟)–通过图形和实例,展示正多边形的定义和性质。

–解释正多边形和圆的关系,引导学生理解圆的定义和性质。

3.操练(15分钟)–学生分组合作,进行实际操作,探究正多边形和圆的性质。

–教师引导学生进行讨论和交流,解答学生的疑问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学正多边形与圆教案
学习目标:1、了解正多边形的概念、正多边形和圆的关系;
2、会通过等分圆心角的方法等分圆周,画出所需的正多边形;
3、能够用直尺和圆规作图,作出一些特殊的正多边形;
4、理解正多边形的中心、半径、边心距、中心角等概念。

学习重点:正多边形的概念及正多边形与圆的关系。

学习难点:利用直尺与圆规作特殊的正多边形。

学习过程:
一、情境创设:
观察下列图形,你能说出这些图形的特征吗?
提问:1.等边三角形的边、角各有什么性质?
2.正方形的边、角各有什么性质?
二、探索活动:
活动一观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念概念:叫做正多边形。

(注:各边相等与各角相等必须同时成立)
提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?
如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.
活动二用量角器作正多边形,探索正多边形与圆的内在联系
1、用量角器将一个圆n(n≥3)等分,依次连接各等分点所得的n边形是这个圆的内接正n 边形;圆的内接正n边形将圆n等分;
2、正多边形的外接圆的圆心叫正多边形的中心。

活动三探索正多边形的对称性
问题:正三角形、正方形、正五边形、正六边形、正八边形中,哪些是轴对称图形?哪些是中心对称图形?哪些既是轴对称图形,又是中心对称图形?如果是轴对称图形,画出它的对称轴;如果是中心对称图形,找出它的对称中心。

问题:正多边形与圆有什么关系呢?什么是正多边形的中心?
发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.圆心就是正多边形的中心。

分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?你知道为什么吗?
思考:任何一个正多边形既是轴对称图形,又是中心对称图形吗?跟边数有何关系?
结论:正多边形都是轴对称图形,一个正n边形有条对称轴,每条对称轴都通过正n边形的;
一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。

活动四利用直尺与圆规作特殊的正多边形
问题:用直尺和圆规作出正方形,正六多边形。

思考:如何作正八边形正三角形、正十二边形?
拓展1:已知:如图,五边形ABCDE内接于⊙O,AB=BC=CD=DE=EA.
求证:五边形ABCDE是正五边形.
拓展2:各内角都相等的圆内接多边形是否为正多边形?
三、课堂练习
1、正方形ABCD的外接圆圆心O叫做正方形ABCD的______.
2、正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______.
3、若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是
______,它的每一个内角是______.
4、正n边形的一个外角度数与它的______角的度数相等.
5、P144 练习 1、2
四、课堂小结
1、正多边形的概念、正多边形与圆的关系以及正多边形的对称性;
2、利用直尺与圆规作一些特殊的正多边形。

正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距.正多边形各边所对的外接圆的圆心角都相等.正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.正n边形的每个中心角都等于.五、课堂作业:
P108 5 6。

相关文档
最新文档