24.3 正多边形和圆教学设计

合集下载

人教版九年级数学上册教案:24.3正多边形和圆课堂优秀教学案例

人教版九年级数学上册教案:24.3正多边形和圆课堂优秀教学案例
5.教学策略:本节课运用了多种教学策略,如情景创设、问题导向、小组合作、反思与评价等,使得学生在学习过程中能够充分参与,培养了自己的学习能力。同时,教师注重与学生的互动,鼓励学生积极参与课堂讨论,培养学生的团队合作意识和沟通能力。
3.结合学生的课堂表现、作业完成情况和小组合作情况,进行全面评价,关注学生的知识掌握、能力发展和情Байду номын сангаас态度。
四、教学内容与过程
(一)导入新课
1.利用图片展示正多边形的实际应用场景,如足球、蜂窝等,引发学生对正多边形的兴趣,激发学生的学习动机。
2.创设问题情境,如“为什么足球是正二十面体?”、“蜂窝为什么是正六边形?”等,引导学生思考正多边形的特征和性质。
3.小组合作:本节课鼓励学生进行小组合作学习和讨论,培养了学生的团队合作意识和沟通能力。通过小组合作,学生能够共同解决问题,分享自己的学习和研究成果,提高了学生的表达能力和批判性思维。
4.反思与评价:本节课在课堂结束前,引导学生进行自我反思,总结自己在课堂上的学习情况和收获。同时,设置了不同难度的题目,让学生在课后进行巩固练习。通过这种方式,学生能够及时巩固所学知识,提高自我认知和自我评价能力。
3.在解决问题的过程中,引导学生总结正多边形的性质和规律,提高学生的数学思维能力和逻辑推理能力。
(三)小组合作
1.将学生分成小组,鼓励学生进行合作学习和讨论,培养学生的团队合作意识和沟通能力。
2.设计小组合作任务,如:“观察并描述正多边形的性质”、“制作正多边形的模型”等,让学生在实践中掌握正多边形的知识。
3.利用多媒体课件展示正多边形的动态变化,让学生直观感受正多边形的魅力,引发学生的探究欲望。
(二)问题导向
1.设计一系列问题,引导学生逐步深入探究正多边形的定义、性质和与圆的关系。如:“正多边形有什么特点?”,“正多边形的边数与圆有什么关系?”,“如何判断一个多边形是正多边形?”等。

人教版数学九年级上册第24章圆24.3正多边形和圆教学设计

人教版数学九年级上册第24章圆24.3正多边形和圆教学设计
1.对正多边形的性质理解不够深入,难以把握正多边形与圆之间的内在联系。
2.在解决实际问题时,可能无法灵活运用所学的正多边形知识,需要加强练习和指导。
3.部分学生对几何图形的观察能力和空间想象力有待提高,需要在教学过程中给予关注和培养。
4.学生在小组合作中,可能存在沟通不畅、分工不明确等问题,需要教师在教学过程中引导学生形成良好的合作氛围。
3.培养学生的空间观念,提高学生对几何图形的观察力和想象力,为后续几何学习打下基础。
4.通过解决实际问题,培养学生的责任感、使命感和创新精神,使学生在面对问题时敢于挑战、勇于探索。
二、学情分析
九年级学生在经过前两年的数学学习后,已具备了一定的几何基础和逻辑思维能力。在本章节的学习中,他们能够运用已掌握的圆的相关知识,进一步探索正多边形与圆之间的关系。然而,学生在面对正多边形的性质和计算方法时,可能会出现以下情况:
-选择2-3道题目进行详细解答,要求步骤清晰,逻辑严谨。
-针对学生在课堂练习中出现的典型错误,设计类似题目进行针对性练习。
2.提高作业:结合生活实际,设计一道综合性的问题,让学生运用本节课所学的正多边形和圆的知识解决。
-鼓励学生运用数形结合、转化等数学思想方法,提高解决问题的能力。
-要求学生在解答过程中,注意逻辑推理和几何直观的运用。
3.通过小组合作,讨论解决正多边形和圆相关问题的方法,培养学生的团队协作能力和沟通能力。
4.运用数形结合、转化等数学思想方法,解决实际问题,提高学生解决问题的能力。
(三)情感态度与价值观
1.培养学生对正多边形和圆的美的认识,激发学生对数学美的追求,提高学生的审美情趣。
2.增强学生对数学学习的兴趣,使学生感受到数学与现实生活的密切联系,体会数学的实用价值。

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计一. 教材分析人教版九年级数学上册《第二十四章圆24.3正多边形和圆》的内容包括正多边形的定义、性质和圆的定义、性质。

本章节的目的是让学生理解正多边形和圆的关系,掌握正多边形的计算方法,以及了解圆的性质和应用。

本节课的教学内容是24.3正多边形和圆,主要包括正多边形的定义、性质和圆的定义、性质。

二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对于图形的理解和计算能力有一定的基础。

但是,对于正多边形和圆的关系,以及圆的性质和应用可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索正多边形和圆的性质,提高他们的空间想象能力和思维能力。

三. 教学目标1.知识与技能:使学生掌握正多边形的定义、性质,理解圆的定义、性质,能够运用正多边形和圆的知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:正多边形的定义、性质,圆的定义、性质。

2.难点:正多边形和圆的关系,圆的性质和应用。

五. 教学方法1.情境教学法:通过实物、图片、几何画板等直观教具,引导学生观察、操作、思考,激发学生的学习兴趣。

2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。

3.合作学习法:学生进行小组讨论,培养学生的团队合作意识和交流能力。

4.归纳总结法:引导学生通过总结归纳,形成系统的知识结构。

六. 教学准备1.教学课件:制作精美的课件,包括图片、几何画板等直观教具。

2.教学素材:准备相关的实物、图片等教学素材。

3.教学用具:准备黑板、粉笔、直尺、圆规等教学用具。

七. 教学过程1.导入(5分钟)利用实物、图片等教学素材,引导学生观察正多边形和圆的实例,激发学生的学习兴趣。

正多边形和圆教案教学设计

正多边形和圆教案教学设计
(2)五边形ABCDE是正五边形吗?为什么?
如图,点A、B、C、D、E把⨀O五等分,
∵ = = = = ,
∴AB=BC=CD=DE=EA, = ,
∴∠A=∠B,
同理:∠B=∠C=∠D=∠E,
∴五边形ABCDE是正五边形.
归纳总结:
一般地,只要用量角器把一个圆n(n≥3)等分,依次连接各等分点就能得到这个圆的内接正n边形,这个圆是这个正n边形的外接圆。
尝试画出圆内接正六边形?
作法:1)在⊙O中任意作一条直径AD.
2)分别以点A、D为圆心,⊙O的半径为半径作弧,与⊙O相交于点B、F和点C、E.
3)依次连接A、B、C、D、E、F各点.
正六边形ABCDEF就是所求作的圆内接正六边形.
对于一些特殊的正多边形,还可以用圆规和直尺来作图.
再如,用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作出正方形.
(2)如图,已知☉O,求作☉O的内接正八边形.
教学反思
这一节主要学习了正多边形与圆,正多边形和圆关系密切,主要正多边形的有关概念,正多边形的有关计算,以及正多边形的有关画法等。课前先让学生预习学案,对于课本上正五边形的证明结合图形,明确了证明思路,然后让学生明确,这个结论对于任意的正多边形都成立。再一个通过了解正多边形的有关概念,让学生会求一些量,比如给你一个正多边形,已知它的边长、周长、半径、边心距、面积中
因此,亭子地基的周长l=6×4=24(m).
作OP⊥BC,垂足为P. 在Rt△OPC中,OC=4 m,
PC= =2(m),利用勾股定理,可得边心距r=
亭子地基的面积S=
学生活动4:
学生在教师的指导下将实际问题中的正六边形地基抽象正六边形ABCDEF,从而将实际问题转化为数学问题

人教版数学九年级上册24.3正多边形和圆优秀教学案例

人教版数学九年级上册24.3正多边形和圆优秀教学案例
(二)过程与方法
1.通过观察、操作、思考、交流等途径,自主探索正多边形和圆的性质;
2.学会用几何画板或其他工具绘制正多边形和圆,培养空间想象能力;
3.能够运用正多边形和圆的性质解决实际问题,提高数学运用能力。
在教学过程中,我注重培养学生的探究能力、合作能力和创新能力。首先,我会创设有趣的教学情境,引导学生主动探究,发现正多边形和圆的性质。然后,组织学生进行小组合作,让学生在合作中发现问题、解决问题,培养学生的合作能力。此外,我还会设计一些开放性问题,激发学生的思维,培养学生的创新能力。
(三)小组合作
1.组织学生进行小组合作,让学生通过讨论、交流等方式,共同探究正多边形和圆的性质;
2.设计合作任务,如“制作不同规格的正多边形和圆,观察它们的性质”等,引导学生动手操作,培养学生的实践能力;
3.鼓励学生互相评价、互相学习,培养学生的合作能力和团队精神。
在小组合作环节,我会组织学生进行小组合作,让学生通过讨论、交流等方式,共同探究正多边形和圆的性质。同时,我会设计一些合作任务,如制作不同规格的正多边形和圆,观察它们的性质等,引导学生动手操作,培养学生的实践能力。此外,我还会鼓励学生互相评价、互相学习,培养学生的合作能力和团队精神。
在案例背景中,我设计了以下几个环节:
1.生活情境导入:以实际生活中的圆形物品为例,如硬币、圆桌、地球等,引导学生发现生活中的圆形现象,激发学生对圆形的兴趣。
2.探究活动:组织学生进行小组合作,利用剪刀、彩纸等工具,动手制作不同规格的正多边形和圆,通过观察、测量、比较等方法,发现正多边形和圆的性质。
3.数学文化:介绍我国古代数学家对正多边形和圆的研究成果,如秦九韶、刘徽等,让学生了解数学文化,培养学生的民族自豪感。
4.知识拓展:引导学生思考正多边形和圆在现实生活中的应用,如建筑设计、电路板设计等,提高学生的知识运用能力。

24.3 正多边形与圆 教学设计

24.3 正多边形与圆 教学设计

24.3 正多边形和圆一、【教学目标】知识与能力:了解正多边形与圆的关系,以及正多边形的中心、半径、边心距、中心角等概念.经历探索正多边形与圆的关系过程,学会运用圆的有关知识解决问题,并能运用正多边形的知识解决圆的有关计算问题.过程与方法:学生在探讨正多边形和圆的关系的学习过程中,体会到要善于发现和解决问题,提升学生的观察、比较、分析、概括及归纳的思维能力和推理能力.情感态度与价值观:学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又应用于生活,体会到事物之间是相互联系,相互作用的.重点:了解正多边形与圆的关系,了解正多边形的有关概念.难点:探索正多边形与圆的关系.二、【教学过程】一、巩固基础,复习回顾问题1:什么是多边形?问题2:多边形的内角和、外角和分别是多少?问题3:什么样的多边形是正多边形?问题4:正多边形都有哪些性质?(数量关系和对称性)教师演示课件,提出问题,引导学生观察、思考.学生独立思考,发表各自见解.二、情景引入,探索新知1、提出问题你知道正多边形与圆的关系吗?正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.例题:以圆内接正五边形为例证明:如图,把⊙O分成相等的5段弧,依次连接各分点得到正五边形ABCDE.问题:如果将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形吗?定义:把圆分成n(n≥3)等份:依次连结各分点所得的多边形是这个圆的内接正多边形.教师演示课件,把圆分成相等的5段弧,依次连接各个分点得到五边形.教师引导学生从正多边形的定义入手,证明多边形各边都相等,各角都相等,引导学生观察、分析.教师关注引导细节:1、学生能否看出:将圆分成五等份,可以得到5段相等的弧,这些弧所对的弦也是相等的,这些弦就是五边形的各边,进而证明五边形的各边相等;2、学生能否观察发现圆内接五边形的各内角都是圆周角;3、学生能否发现每一个圆周角所对弧都是三等份的弧;4、学生能否利用这些圆周角所对的弧都相等,证明五边形的各内角相等,从而证明圆内接五边形是正五边形.教师带领学生完成证明过程. 2、概念学习①我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心(即点O ) ②外接圆的半径叫做正多边形的半径(即OA )③正多边形每一边所对的圆心角叫做正多边形的中心角(即∠AOB ) ④中心到正多边形的一边的距离叫做正多边形的边心距(即OM ) 应用深化1. O 是正△ABC 的中心,它是△ABC 的 外接 圆的圆心。

人教版数学九年级上册第24章圆24.3正多边形和圆优秀教学案例

人教版数学九年级上册第24章圆24.3正多边形和圆优秀教学案例
2.强调正多边形和圆的内在联系,提醒学生在解题过程中注意运用。
3.总结本节课的学习方法,如观察、操作、探究、合作等。
4.布置课后作业,巩固所学知识。
(五)作业小结
1.教师发放课后作业,要求学生运用所学知识解决实际问题。
2.提醒学生在完成作业过程中注意审题、仔细计算、规范书写。
3.鼓励学生遇到问题时互相讨论、请教教师,提高解题能力。 Nhomakorabea五、案例亮点
1.生活情境的创设:本节课通过展示生活中的正多边形实例,让学生感受到了数学与生活的紧密联系,激发了学生的学习兴趣。这种情境的创设,不仅让学生在课堂上保持高度的热情,而且有助于提高学生的应用能力,使他们在解决实际问题时能够自然而然地想到运用所学知识。
1.教师展示一系列生活中常见的正多边形图片,如正方形、正三角形、正六边形等,引导学生关注正多边形的美感及其在生活中的应用。
2.提问:“同学们,你们能找出这些图片中的共同特征吗?这些图形有什么特别之处?”让学生思考并回答。
3.总结:正多边形具有对称性、边长相等、内角相等等特征。这些特征使得正多边形在生活中的应用非常广泛。
4.最后提问:“如何用圆规和直尺绘制正多边形?请同学们尝试绘制一个正六边形。”激发学生的动手操作欲望。
(三)小组合作
1.将学生分成若干小组,每组选定一个正多边形进行研究。
2.给出研究任务:“请同学们探究你们所选的正多边形的性质,并尝试用数学语言表达。”
3.组织小组讨论,鼓励学生发表自己的观点,培养学生的合作精神和团队意识。
本节课的教学策略旨在激发学生的学习兴趣,培养学生的探究能力和合作精神。通过情景创设、问题导向、小组合作和反思与评价等环节,引导学生主动参与课堂,提高学生的数学素养。同时,关注学生的情感态度与价值观的培养,使学生在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。

人教版数学九年级上册24.3正多边形和圆(第2课时)教学设计

人教版数学九年级上册24.3正多边形和圆(第2课时)教学设计
3.鼓励学生提出疑问,解答学生在学习过程中遇到的问题。
4.强调数学知识在实际生活中的应用,激发学生学习数学的兴趣。
五、作业布置
为了巩固本节课所学的正多边形和圆的知识,以及提高学生的应用能力和思维能力,特布置以下作业:
1.基础巩固题:请同学们完成课本第XX页的练习题1-5,重点复习正多边形的性质、内角和、外角和的计算方法,以及正多边形与圆的相互关系。
4.思考题:请同学们思考以下问题,下节课进行分享和讨论:
(1)为什么正多边形的外角和为360°?
(2)如何判断一个多边形是否为正多边形?
(3)正多边形与圆的性质在解决实际问题时有什么优势?
5.预习作业:预习下一节课的内容,了解圆的内接多边形和外切多边形的性质,为课堂学习做好准备。
作业要求:
1.请同学们按时完成作业,保持字迹工整,确保作业质量。
4.借助几何画板等教学工具,直观展示正多边形和圆的性质,加深学生对知识的理解。
(三)学生小组讨论,500字
在学生小组讨论环节,我将组织学生进行以下活动:
1.将学生分成若干小组,每组讨论一个问题,如正多边形内角和的计算方法、正多边形与圆的关系等。
2.每个小组派代表汇报讨论成果,其他小组进行补充和评价。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-正多边形的性质及其与圆的关系。
-运用圆的性质解决正多边形相关问题。
-正多边形周长和面积的计算方法。
2.教学难点:
-正多边形内角和、外角和的计算。
-正多边形与圆结合的综合问题解决。
-空间想象能力的培养。
(二)教学设想
1.教学方法:
-采用启发式教学法,引导学生通过观察、探索、讨论等方式发现正多边形的性质,培养学生自主学习能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.3 正多边形和圆教学内容1.正多边形和圆的有关概念:正多边形的外接圆,正多边形的中心,•正多边形的半径,正多边形的中心角,正多边形的边心距.2.在正多边形和圆中,圆的半径、边长、边心距中心角之间的等量关系.3.正多边形的画法.教学目标1.知识与技能了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形.复习正多边形概念,让学生尽可能讲出生活中的多边形为引题引入正多边形和圆这一节间的内容.2.过程与方法(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.•了解概念,理解等量关系,掌握定理及公式.(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流.3.情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.重难点、关键1.重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、•边长之间的关系. 2.难点与关键:通过例题使学生理解四者:正多边形半径、中心角、•弦心距、边长之间的关系.教学过程一、复习引入请同学们口答下面两个问题.1.什么叫正多边形?2.从你身边举出两三个正多边形的实例,正多边形具有轴对称、•中心对称吗?其对称轴有几条,对称中心是哪一点?老师点评:1.各边相等,各角也相等的多边形是正多边形.2.实例略.正多边形是轴对称图形,对称轴有无数多条;•正多边形是中心对称图形,其对称中心是正多边形对应顶点的连线交点.二、探索新知如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,•正六边形ABCDEF ,连结AD 、CF 交于一点,以O 为圆心,OA 为半径作圆,那么肯定B 、C 、•D 、E 、F 都在这个圆上.因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆. 我们以圆内接正六边形为例证明.如图所示的圆,把⊙O•分成相等的6•段弧,依次连接各分点得到六边ABCDEF ,下面证明,它是正六边形. ∵AB=BC=CD=DE=EF ∴AB=BC=CD=DE=EF又∴∠A=12BCF=12(BC+CD+DE+EF )=2BC ∠B=12CDA=12(CD+DE+EF+FA )=2CD∴∠A=∠B同理可证:∠B=∠C=∠D=∠E=∠F=∠A 又六边形ABCDEF 的顶点都在⊙O 上∴根据正多边形的定义,各边相等、各角相等、六边形ABCDEF 是⊙O 的内接正六边形,⊙O 是正六边形ABCDEF 的外接圆.为了今后学习和应用的方便,•我们把一个正多边形的外接圆的圆心叫做这个多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角. 中心到正多边形的一边的距离叫做正多边形的边心距. 例1.已知正六边形ABCDEF ,如图所示,其外接圆的半径是a ,•求正六边形的周长和面积.分析:要求正六边形的周长,只要求AB 的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA ,过O 点作OM ⊥AB 垂于M ,在Rt △AOM•中便可求得AM ,又应用垂径定理可求得AB 的长.正六边形的面积是由六块正三角形面积组成的.解:如图所示,由于ABCDEF 是正六边形,所以它的中心角等于3606︒=60°,•△OBC 是等边三角形,从而正六边形的边长等于它的半径. 因此,所求的正六边形的周长为6a 在Rt △OAM 中,OA=a ,AM=12AB=12a 利用勾股定理,可得边心距 221()2a a -=123aDEBAOM∴所求正六边形的面积=6×12×AB ×OM=6×12×a ×32a=323a 2现在我们利用正多边形的概念和性质来画正多边形. 例2.利用你手中的工具画一个边长为3cm 的正五边形.分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,•应该先求边长为3的正五边形的半径.解:正五边形的中心角∠AOB=3605︒=72°, 如图,∠AOC=30°,OA=12AB ÷sin36°=1.5÷sin36°≈2.55(cm )画法(1)以O 为圆心,OA=2.55cm 为半径画圆;(2)在⊙O 上顺次截取边长为3cm 的AB 、BC 、CD 、DE 、EA . (3)分别连结AB 、BC 、CD 、DE 、EA .则正五边形ABCDE 就是所要画的正五边形,如图所示. 三、巩固练习教材P115 练习1、2、3 P116 探究题、练习. 四、应用拓展例3.在直径为AB 的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB ,顶点C 在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC•的矩形水池DEFN ,其中D 、E 在AB 上,如图24-94的设计方案是使AC=8,BC=6. (1)求△ABC 的边AB 上的高h . (2)设DN=x ,且h DN NFh AB-=,当x 取何值时,水池DEFN 的面积最大? (3)实际施工时,发现在AB 上距B 点1.85的M 处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.hFDEC BANG分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值.(3)的设计要有新意,•应用圆的对称性就能圆满解决此题.解:(1)由AB ·CG=AC ·BC 得h=8610AC BC AB ⨯==4.8 (2)∵h=h DN NFh AB-=且DN=x ∴NF=10(4.8)4.8x -则S 四边形DEFN =x ·104.8(4.8-x )=-2512x 2+10x=-2512(x 2-12025x )=-2512 [(x-6025)2-3600625] =-25x (x-2.4)2+12 ∵-25x (x-2.4)2≤0 ∴-25x(x-2.4)2+12≤12 且当x=2.4时,取等号 ∴当x=2.4时,S DEFN 最大.(3)当S DEFN 最大时,x=2.4,此时,F 为BC 中点,在Rt △FEB 中,EF=2.4,BF=3. ∴= ∵BM=1.85,∴BM>EB ,即大树必位于欲修建的水池边上,应重新设计方案. ∵当x=2.4时,DE=5∴AD=3.2,由圆的对称性知满足条件的另一设计方案,如图所示:.cFD EC B AG此时,•AC=6,BC=8,AD=1.8,BE=3.2,这样设计既满足条件,又避开大树.五、归纳小结(学生小结,老师点评) 本节课应掌握:1.正多边和圆的有关概念:正多边形的中心,正多边形的半径,•正多边形的中心角,正多边的边心距.2.正多边形的半径、正多边形的中心角、边长、•正多边的边心距之间的等量关系. 3.画正多边形的方法.4.运用以上的知识解决实际问题.六、布置作业1.教材P117 复习巩固1 综合运用5、7 P118 8.2.选用课时作业设计.课时作业设计一、选择题1.如图1所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是().A.60° B.45° C.30° D.22.5°(1) (2) (3)2.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是(). A.36° B.60° C.72° D.108°3.若半径为5cm的一段弧长等于半径为2cm的圆的周长,•则这段弧所对的圆心角为() A.18° B.36° C.72° D.144°二、填空题1.已知正六边形边长为a,则它的内切圆面积为_______.2.在△ABC中,∠ACB=90°,∠B=15°,以C为圆心,CA长为半径的圆交AB于D,如图2所示,若AC=6,则AD的长为________.3.四边形ABCD为⊙O的内接梯形,如图3所示,AB∥CD,且CD为直径,•如果⊙O的半径等于r,∠C=60°,那图中△OAB的边长AB是______;△ODA的周长是_______;∠BOC的度数是________.三、综合提高题1.等边△ABC的边长为a,求其内切圆的内接正方形DEFG的面积.2.如图所示,•已知⊙O•的周长等于6 cm,•求以它的半径为边长的正六边形ABCDEF 的面积.3.如图所示,正五边形ABCDE 的对角线AC 、BE 相交于M . (1)求证:四边形CDEM 是菱形;(2)设MF 2=BE ·BM ,若AB=4,求BE 的长.答案:一、1.C 2.C 3.D 二、1.34πa 2 2.π 3.r 3r 60° 三、1.设BC 与⊙O 切于M ,连结OM 、OB ,则OM ⊥BC 于M ,3, 连OE ,作OE ⊥EF 于N ,则OE=OM=36a ,∠EOM=45°,OE=36a , ∵EN=612a ,EF=2EN=66,∴S 正方形=16a 2. 2.设正六边形边长为a ,则圆O 半径为a ,由题意得:2πa=6π,∴a=3.如右图,设AB 为正六边形的一边,O 为它的中心, 过O 作OD ⊥AB ,垂足为D ,.cD B A O则OD=r 6,•则∠DOA=1806︒=30°,AD=12AB=32, 在Rt △ABC 中,OD=r 6=332cm ,∴S=6·12ar 6=12×3×2×6=2722.3.略.。

相关文档
最新文档