正多边形和圆教案

合集下载

人教版九年级数学上册教案:24.3正多边形和圆课堂优秀教学案例

人教版九年级数学上册教案:24.3正多边形和圆课堂优秀教学案例
5.教学策略:本节课运用了多种教学策略,如情景创设、问题导向、小组合作、反思与评价等,使得学生在学习过程中能够充分参与,培养了自己的学习能力。同时,教师注重与学生的互动,鼓励学生积极参与课堂讨论,培养学生的团队合作意识和沟通能力。
3.结合学生的课堂表现、作业完成情况和小组合作情况,进行全面评价,关注学生的知识掌握、能力发展和情Байду номын сангаас态度。
四、教学内容与过程
(一)导入新课
1.利用图片展示正多边形的实际应用场景,如足球、蜂窝等,引发学生对正多边形的兴趣,激发学生的学习动机。
2.创设问题情境,如“为什么足球是正二十面体?”、“蜂窝为什么是正六边形?”等,引导学生思考正多边形的特征和性质。
3.小组合作:本节课鼓励学生进行小组合作学习和讨论,培养了学生的团队合作意识和沟通能力。通过小组合作,学生能够共同解决问题,分享自己的学习和研究成果,提高了学生的表达能力和批判性思维。
4.反思与评价:本节课在课堂结束前,引导学生进行自我反思,总结自己在课堂上的学习情况和收获。同时,设置了不同难度的题目,让学生在课后进行巩固练习。通过这种方式,学生能够及时巩固所学知识,提高自我认知和自我评价能力。
3.在解决问题的过程中,引导学生总结正多边形的性质和规律,提高学生的数学思维能力和逻辑推理能力。
(三)小组合作
1.将学生分成小组,鼓励学生进行合作学习和讨论,培养学生的团队合作意识和沟通能力。
2.设计小组合作任务,如:“观察并描述正多边形的性质”、“制作正多边形的模型”等,让学生在实践中掌握正多边形的知识。
3.利用多媒体课件展示正多边形的动态变化,让学生直观感受正多边形的魅力,引发学生的探究欲望。
(二)问题导向
1.设计一系列问题,引导学生逐步深入探究正多边形的定义、性质和与圆的关系。如:“正多边形有什么特点?”,“正多边形的边数与圆有什么关系?”,“如何判断一个多边形是正多边形?”等。

2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案)正多边形和圆(第1课时)

2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案)正多边形和圆(第1课时)

24.3 正多边形和圆第1课时一、教学目标【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系.【情感态度与价值观】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、边心距,边长之间的关系.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课出示课件2,3:观察上边的美丽图案,思考下面的问题:(1)这些都是生活中经常见到的利用正多边形得到的物体,你能找出正多边形吗?(2)你知道正多边形和圆有什么关系吗?怎样做一个正多边形呢?学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.(板书课题)(二)探索新知探究一正多边形的对称性教师问:什么叫做正多边形?(出示课件5)学生答:各边相等,各角也相等的多边形叫做正多边形.教师问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?学生答:矩形不是正多边形,因为矩形不符合各边相等;菱形不是正多边形,因为菱形不符合各角相等;教师强调:正多边形:①各边相等;②各角相等,两个条件,缺一不可.教师问:正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?(出示课件6,7)学生动手操作,交流,感受正多边形的对称性.教师归纳:正n边形都是轴对称图形,都有n条对称轴,只有边数为偶数的正多边形既是轴对称图形又是中心对称图形.探究二正多边形的有关概念教师问:以正四边形为例,根据对称轴的性质,你能得出什么结论?(出示课件8,9)师生结合图形共同探究:EF是边AB、CD的垂直平分线,∴OA=OB,OD=OC.GH是边AD、BC的垂直平分线,∴OA=OD,OB=OC.∴OA=OB=OC=OD.∴正方形ABCD有一个以点O为圆心的外接圆.AC是∠DAB及∠DCB的角平分线,BD是∠ABC及∠ADC的角平分线,∴OE=OH=OF=OG.∴正方形ABCD还有一个以点O为圆心的内切圆.出示课件10:教师问:所有的正多边形是不是也都有一个外接圆和一个内切圆?学生答:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.教师问:一个正多边形的各个顶点在同一个圆上?学生答:一个正多边形的各个顶点在同一个圆上,则这个正多边形就是这个圆的一个内接正多边形,圆叫做这个正多边形的外接圆.教师问:所有的多边形是不是都有一个外接圆和内切圆?学生答:多边形不一定有外接圆和内切圆,只有是正多边形时才有,任意三角形都有外接圆和内切圆.教师出示概念:(出示课件11)1.正多边形的外接圆和内切圆的公共圆心,叫做正多边形的中心.2.外接圆的半径叫做正多边形的半径.3.内切圆的半径叫做正多边形的边心距.4.正多边形每一条边所对的圆心角,叫做正多边形的中心角.正多边形的每个中心角都等于360.n练一练:(出示课件12)完成下面的表格:学生计算交流并填表.探究三 正多边形的有关计算出示课件13:如图,已知半径为4的圆内接正六边形ABCDEF :①它的中心角等于 度; ②OC BC(填>、<或=); ③△OBC 是 三角形;④圆内接正六边形的面积是△OBC 面积的 倍. ⑤圆内接正n 边形面积公式:_______________________. 学生计算交流后,教师抽学生口答.①60;②=;③等边;④6;⑤1=2S ⨯⨯正多边形周长边心距出示课件14:例 有一个亭子,它的地基是半径为4m 的正六边形,求地基的周长和面积(精确到0.1m 2).教师分析:根据题意作图,将实际问题转化为数学问题.师生共同解答:(出示课件15)解:过点O 作OM ⊥BC 于M.在Rt △OMB 中,OB =4,MB =4222BC ==,利用勾股定理,可得边心距r ==亭子地基的面积:2112441.6(m ).22S l r =⋅=⨯⨯≈ 巩固练习:(出示课件16)如图所示,正五边形ABCDE 内接于⊙O ,则∠ADE 的度数是( )A .60°B .45°C .36°D .30° 学生独立思考后自主解答:C.教师归纳:圆内接正多边形的辅助线(出示课件17)1.连半径,得中心角;2.作边心距,构造直角三角形. 巩固练习:(出示课件18)已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?学生独立思考后解答,一生板演.解:∵直角三角形两直角边之和为8,设一边长为x. ∴ 另一边长为8-x.则该直角三角形面积:S=(8-x )x ÷2,即214.2s x x =-+ 当x=2b a -=4,另一边为4时,S 有最大值244ac b a -=8.∴当两直角边都是4时,直角面积最大,最大值为8. (三)课堂练习(出示课件19-24)1.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=______度.2.填表:3.若正多边形的边心距与半径的比为1:2,则这个多边形的边数是_____.4.如图是一枚奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为_____度.(不取近似值)5.要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要____cm.6.如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,求⊙O的面积.7.如图,正六边形ABCDEF的边长为点P为六边形内任一点.则点P 到各边距离之和是多少?8.如图,M,N分别是☉O内接正多边形AB,BC上的点,且BM=CN.(1)求图①中∠MON=_______;图②中∠MON=_______;图③中∠MON=_______;(2)试探究∠MON的度数与正n边形的边数n的关系.参考答案:1.360°解析:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°.2.3.34.412875.6.解:∵正方形的面积等于4, ∴正方形的边长AB=2. 则圆的直径AC=2, ∴⊙O 的半径=.∴⊙O 的面积为22.ππ=7.解:过P 作AB 的垂线,分别交AB 、DE 于H 、K ,连接BD ,作CG ⊥BD 于G.22∵六边形ABCDEF 是正六边形, ∴AB ∥DE ,AF ∥CD ,BC ∥EF ,∴P 到AF 与CD 的距离之和,及P 到EF 、BC 的距离之和均为HK 的长. ∵BC=CD ,∠BCD=∠ABC=∠CDE=120°, ∴∠CBD=∠BDC=30°,BD ∥HK ,且BD=HK.∴CG=12BC=.∵CG ⊥BD ,∴BD=2BG=2×=2×3=6.∴点P 到各边距离之和=3BD=3×6=18. 8.解:⑴①120°;②90°;③72°;⑵360MON n ︒∠=.(四)课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?(五)课前预习22BG BC-预习下节课(24.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本节课通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.。

正多边形与圆教案

正多边形与圆教案

1. 让学生了解正多边形的定义及其性质。

2. 让学生掌握正多边形与圆的关系。

3. 培养学生运用几何知识解决实际问题的能力。

二、教学内容1. 正多边形的定义及性质。

2. 正多边形与圆的关系。

3. 正多边形的计算与应用。

三、教学重点与难点1. 教学重点:正多边形的定义、性质及正多边形与圆的关系。

2. 教学难点:正多边形的计算与应用。

四、教学方法1. 采用问题驱动法,引导学生探究正多边形的性质。

2. 利用几何画板软件,直观展示正多边形与圆的关系。

3. 结合实际例子,让学生运用正多边形的知识解决实际问题。

五、教学过程1. 引入:讲解正多边形的定义,引导学生思考正多边形的性质。

2. 探究:让学生通过观察、操作,发现正多边形与圆的关系。

3. 讲解:讲解正多边形的计算方法,并举例说明。

4. 应用:布置练习题,让学生运用正多边形的知识解决实际问题。

5. 总结:对本节课的内容进行总结,强调正多边形与圆的关系。

6. 作业布置:布置适量作业,巩固所学知识。

1. 通过课堂提问,了解学生对正多边形定义和性质的掌握情况。

2. 通过练习题,评估学生对正多边形与圆的关系的理解程度。

3. 观察学生在实际问题中的应用能力,评估其对正多边形计算方法的掌握。

七、教学资源1. 几何画板软件:用于直观展示正多边形与圆的关系。

2. PPT课件:用于讲解正多边形的性质和计算方法。

3. 练习题:用于巩固学生对正多边形的理解和应用能力。

八、教学进度安排1. 第1周:介绍正多边形的定义及性质。

2. 第2周:讲解正多边形与圆的关系。

3. 第3周:讲解正多边形的计算方法。

4. 第4周:实际问题中的应用练习。

九、教学反思1. 反思教学方法的有效性,根据学生反馈调整教学策略。

2. 考虑如何更好地引导学生发现正多边形与圆的内在联系。

3. 评估作业难度,确保作业能够有效巩固所学知识。

十、拓展与延伸1. 引导学生探究正多边形在现实生活中的应用。

2. 介绍正多边形的相关历史背景和文化意义。

24.3 正多边形和圆教案

24.3   正多边形和圆教案

课题24.3 正多边形和圆授课人 安远县濂江中学 刘志超教学目标知识技能 使学生理解正多边形概念,初步掌握正多边形与圆的关系. 数学思考使学生丰富对正多边形的认识,发展学生的形象思维.问题解决 教师引导学生将实际问题转化为数学问题,将多边形问题转化为三角形问题,发展学生的实践能力和创新精神.情感态度通过认识与探究正多边形到实际应用等实践活动,使学生在数学学习活动中获得成功的体验,建立自信心.教学重点理解掌握正多边形的半径、中心角、边心距、边相关概念及其中的关系.教学难点 探索正多边形和圆的关系.授课类型 新授课课 时第一课时教具多媒体教 学 活 动教学步骤师生活动设计意图 回顾与思考((积木展示) 问题: 1. 在这个摩天轮上你找到了哪几种形状的积木?. 2. 什么样的多边形是正多边形? 3.你对正多边形有多少了解?4.学生思考:菱形是正多边形吗?矩形是正多边形吗? 师生活动:教师引导学生进行解答,并适时作出补充和讲解.回顾以前学习过的且对本节课的学习有基础作用的知识,为学习新知打下基础.活动一: 创设情境 导入新课(1)请再观察摩天轮,你还能找出正多边形吗? (2)把正多边形的边数增多,它的形状有何特点?师生活动:教师实物展示及几何画板软件演示,引导学生观察、思考,学生讨论、交流,发表各自见解.教师关注:①学生能否从图案中找出正多边形;②学生能否从动画中发现正多边形和圆的关系.创设情境,激发学生主动将圆的知识与正多边形联系起来,激发学生积极探索,调动学生学习积极性. 活动二: 1.探究新知问题1:将一个圆分为五等份,依次连接各分点得到一个五边形,这五边形一定是正多边形吗?如果是,请你证明这个结论. 师生活动:教师演示作图并引导学生从正多边形的定义入手证明,引导学生观察、分析,教师指导学生完成证明过程. 教师在学生思考、交流的基础上板书证明过程.问题2:如果将圆n 等分,依次连接各顶点得到一个n 边形,这个n 边形一定是正n 边形吗?师生活动:学生思考,小组内交流、讨论,教师根据学生回1.将结论由特殊推广到一般,符合学生的认知规律,并交给学生一种研究问题的方法. 2.教学中,实践探究交流新知答进行总结.教师重点关注:学生能否按照证明圆内接正五边形的方法证明圆内接正n边形.问题3:各边相等的圆内接多边形是正多边形吗?各角相等的圆内接正多边形呢?如果是为什么?请说明,不是,举出反例.师生活动:学生讨论,思考回答,教师进行总结讲解.教师重点关注:学生能否利用正多边形的定义进行判断;学生能否由圆内接正多边形各边相等得到弦相等,及弦所对的弧相等;学生能否列举反例说明各角相等的圆内接多边形不一定是正多边形.2.应用新知活动一:教师演示课件,给出正多边形的中心、半径、中心角等概念.教师提出问题:(1)正五边形的5条半径把它分割成几个三角形?它们有什么关系?(2)正n边形的n条半径有什么关系?(3)正多边形的中心角怎么计算?(4)正多边形的中心角、内角、外角有什么关系?师生活动:学生在教师的引导下,结合图形,得到结论.活动二:举手抢答(1)圆内接正十边形的中心角是_____度.(2)如果一个圆内接正多边形的中心角是120°,那么这是个正____边形.师生活动:学生应用定义进行角度计算抢答,训练中心角的计算能力.活动三:边心距定义的生成教师提出问题:(1)正三边形半径R=2,请求出边BC.(引出边心距定义)(2)画出正三边形的所有边心距,这些边心距相等吗?有几个直角三角形?正n边形呢?(3)正多边形的边长a与边心距r、半径R有什么等量关系?师生活动:由学生计算作图引出边心距定义,学生在教师的引导下,结合图形,得到结论.活动四:正多边形相关线段、角度的综合(1)圆内接正四边形ABCD,∠BOC=________度;(2)若半径为R,①求边BC(用含R的式子表示);②求边心距OE(用含R的式子表示).(3)圆内接正六边形ABCDEF,∠BOC=________度,你发现正六边形ABCDEF的半径与边长具有什么数量关系?为什么?师生活动:学生思考,动手验证,教师引导,得出结论.使学生明确圆内正多边形必须满足各边相等,各角相等,培养学生严谨的态度和思维批判性.3.学生通过对半径的探究了解正多边形,进而对正多边形问题中各类角的关系知其所以然,为角度计算问题立好根基.4.通过对边心距的探究,让学生进一步得到正多边形内外心重合,以及解决正多边形问题转化为解直角三角形问题.活动三:开放训练体现应用【应用举例】(课件展示)例1:如图,有一个亭子,它的地基是半径为4m的正六边形,求地基的周长.活动一:正多边形的周长问题探究(1)教师引导学生画出图形,进行分析,完成例题的解答.(2)提出问题:边长为a的正n边形的周长又怎么求?师生活动:小组讨论探究,成果展示,得出一般性的结论.活动二:正边形的面积探究(1)要求地基的面积,你又有什么办法?(2)解决正多边形计算的关键你认为在于什么?师生活动:小组讨论,进行面积求法开放探究,教师参与学生交流后小组成果展示,师生共同归纳计算办法.【拓展提升】1.正六边形ABCDEF内接于⊙O,则∠BEC的度数是_______.题1图题2图题3图2.将正六边形ABCDEF补成如图所示的矩形MNPQ,已知矩形的边NP=8,求BC.3.如图,M,N分别是正六边形AB,BC上的点,且BM=CN.(1)求∠MON的度数;(2)试说明四边形OMBN的面积与正六边形面积之间的关系.师生活动:学生讨论,成果展示,教师引导体会其中的数形结合、方程、化归思想.1.将正多边形的中心、半径、中心角、边心距等一些量集中在一个三角形中研究,可以利用勾股定理进行计算,进而能够求得正多边形的所有量.2.教师引导学生将实际问题转化为数学问题,将多边形问题转化为三角形问题.3通过对面积开放性探究,将正六边形与正三边形结合,了解正多边形的对称性.活动四:课堂总结反思1.课堂总结:(1)谈一谈这节课中,你有哪些收获?解决问题的方法是什么?(2)解决问题的方法是什么?2.布置作业:教科书第108---109页1,6题.巩固、梳理所学知识,对学生进行鼓励、进行思想教育.【板书设计】24.3正多边形和圆各边相等一、圆等弧各角相等提纲挈领,重点突出正多边形内角 半径R, 边心距四、周长l= na 【教学反思】 )180.n ︒22()2a R+=。

人教版九年级数学上册《正多边形和圆》教学案

人教版九年级数学上册《正多边形和圆》教学案

正多边形和圆 ( 一)素质教育目标1.使学生理解正多边形观点;使学生认识挨次连接圆的n 平分点所得的多边形是正多边形;过圆的n 平分点作圆的切线,以相邻切线的交点为极点的多边形是正多边形.2,经过正多边形定义教课培育学生概括能力;经过正多边形与圆关系定理的教课培育学生察看、猜想、推理、迁徙能力.3,向学生浸透“特别——一般”再“一般——特别”的唯物辩证法思想.教课要点、难点、疑点及解决方法1.要点:正多边形的定义;n 平分圆周 (n ≥ 3) 可得圆的内接正n 边形和圆的外切正n 边形.2.难点:对正n 边形中泛指“n”的理解.3.疑点及解决方法:揭露定理证明的思路和步骤,说明取n=5 的特别状况证明定理具有代表性.教法学法和教具1.教法:指引学生探究研究发现法。

2.学法:学生主动探究研究发现法。

3.教具:三角尺、圆规、投影仪(或小黑板)。

教课步骤复习准备部分同学们思虑以下问题:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?[ 安排中下生回答]3.等边三角形与正方形的边、角性质有什么共同点?[ 中上生回答:各边相等、各角相等] .教师:我们今日学习的内容“7.15 正多边形和圆”.讲堂讲练部分一,正多边形的观点教师发问:1,什么是正多边形?[ 安排中下生回答:各边相等、各角也相等的多边形叫做正多边形.]师重申:假如一个正多边形有 n(n ≥ 3) 条边,就叫正 n 边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.[ 教师展现图形]2,上边这些图形都是正几边形?[ 安排中下生回答:正三角形,正四边形,正五边形,正六边形. ]3,矩形是正多边形吗?为何?菱形是正多边形吗?为何?[ 安排中下生回答:矩形不是正多边形,因为边不必定相等.菱形不是正多边形,因为角不必定相等.] 4,哪位同学记得在同圆中,圆心角、弧、弦、弦心距关系定理?[ 安排记起来的学生回答:在同圆中,圆心角、弧、弦、弦心距有一组量相等,那么其他量都相等.] 5,要将圆三平分,那么此中一等份的弧所对圆心角度数是多少?要将圆四平分、五等分、六平分呢?[ 安排中下生回答:将圆三平分,此中每等份弧所对圆心角120°、将圆四平分,每等份弧所对圆心角90°、五平分,圆心角72°、六平分,圆心角60° ] 6,哪位同学能用量角器将黑板上的圆三平分、四平分、五平分、六平分?[ 接排四名上等生上黑板达成,其他学生在下边练习本上用量角器平分圆周.]7,大家挨次连接各分点看所得的圆内接多边形是什么样的多边形?[ 学生答:正多边形.二,平分圆周法定理求证:五边形ABCDE是⊙ O的内接正五边形.教师指引学生剖析:1,以五边形为例,哪位同学能证明这五边形的五条边相等?[ 安排中等生回答:]2,哪位同学能明五形的五个角相等?[ 安排中等生回答:]3,前方的明明“挨次的五平分点所得的内接五形是正五形”的察后的猜想是正确的.假如n 平分周, (n ≥ 3) 、 n=6, n=8⋯⋯能否也正确呢?[ 安排学生充足] .教: 因在同中,弧等弦等,n 平分就获得n 条弦等,也就是n 形的各都相等.又n 形的每个内角的(n-2)条弧,而每一内角所的弧都相等,依据弧等、周角相等,了然n 形的各角都相等,所以内接正五形的明拥有代表性.定理:把圆分红 n(n ≥ 3) 等份:(1) 挨次连接各分点所得的多边形是这个圆的内接正n 边形;教:1,何要“挨次” 各分点呢?缺乏“挨次”二字会出什么象?大家看看.2,的五平分点作的切,大家察以相切的交点点的五形能否是正五形?PQ、 QR、 RS、 ST 分是分点A、 B、 C、 D、 E 的⊙ O的切.求:五形PQRST是⊙ O的外切正五形教引学生剖析:1, 由弧等推得弦等、弦切角等,哪位同学能明五形PQRST的各角都相等?[ 安排中上生回答]2, 哪位同学能明五形PQRST的各都相等?[ 安排中等生回答.]教:前方同学的明,明“ 的五平分点作的切,以相切的交点点的多形是个的外切正五形.”同依据弧等弦等、弦切角等便可明的n 平分点作的切,以相切的交点点的n 个等腰三角形全等,进而了然个的以它n 平分点切点的外切n 形是正n 形.(2)经过各分点作圆的切线,以相邻切线的交点为极点的多边形是这个圆的外切正 n 边形.教师重申:定理(2) 中少“相邻”两字行不可以?少“相邻”两字会出现什么现象?同学们相互间议论研究看看.总结、扩展、反省本堂课我们学习的知识:1.学习了正多边形的定义.2. n 平分圆周 (n ≥ 3) 可得圆的内接正n 边形和圆的外切正n 边形.讲堂作业:教材P.143 .练习 2、 3部署作业:P.157 中 2、 3.板书设计教后札记:学生对正多边形的观点能够理解,会用平分圆周法作图,可是,因为对多边形接触较少,应用有难度,解题不周祥,要指导学生对正多边形的观点作图和定理的反省学习。

人教版数学九年级上册24.3.2《正多边形和圆》教案

人教版数学九年级上册24.3.2《正多边形和圆》教案

人教版数学九年级上册24.3.2《正多边形和圆》教案一. 教材分析《正多边形和圆》是人民教育出版社出版的数学九年级上册第24章第三节的内容。

本节内容主要介绍了正多边形的定义、性质以及与圆的关系。

通过学习正多边形和圆,学生能够理解圆的定义,掌握圆的性质,并能够运用圆的知识解决实际问题。

二. 学情分析九年级的学生已经掌握了多边形的基本概念和性质,具备一定的逻辑思维能力。

但是对于正多边形和圆的关系的理解可能存在一定的困难。

因此,在教学过程中,需要通过实例和图形的演示,帮助学生建立直观的认识,引导学生主动探究正多边形和圆的性质。

三. 教学目标1.知识与技能:–能够理解正多边形的定义和性质。

–能够理解圆的定义和性质。

–能够运用正多边形和圆的知识解决实际问题。

2.过程与方法:–通过观察和操作,培养学生的观察能力和动手能力。

–通过小组合作,培养学生的合作能力和沟通能力。

3.情感态度与价值观:–培养学生对数学的兴趣和好奇心。

–培养学生的自主学习能力和解决问题的能力。

四. 教学重难点•正多边形的定义和性质。

•圆的定义和性质。

•正多边形和圆的关系的理解。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正多边形和圆的性质。

2.通过实例和图形的演示,帮助学生建立直观的认识。

3.采用小组合作的学习方式,培养学生的合作能力和沟通能力。

六. 教学准备1.准备相关的图形和图片,用于演示和解释正多边形和圆的性质。

2.准备练习题和实际问题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)–利用图片和实例,引导学生回顾多边形的基本概念和性质。

–提出问题,引导学生思考正多边形和圆的关系。

2.呈现(15分钟)–通过图形和实例,展示正多边形的定义和性质。

–解释正多边形和圆的关系,引导学生理解圆的定义和性质。

3.操练(15分钟)–学生分组合作,进行实际操作,探究正多边形和圆的性质。

–教师引导学生进行讨论和交流,解答学生的疑问。

正多边形和圆教案

正多边形和圆教案

正多边形和圆教案【教学目标】1. 理解正多边形和圆的定义和特点。

2. 掌握计算正多边形的周长和面积的方法。

3. 掌握计算圆的周长和面积的方法。

【教学重点】1. 正多边形和圆的定义和特点。

2. 正多边形的周长和面积计算。

3. 圆的周长和面积计算。

【教学准备】1. 教师准备:投影仪或黑板、粉笔。

2. 学生准备:几何工具。

【教学过程】一、导入(5分钟)1. 教师出示图形,让学生回顾正多边形和圆的定义。

2. 学生回答正多边形和圆的特点。

二、正多边形(15分钟)1. 教师板书正多边形的定义和性质。

(1)定义:所有边相等,所有角相等的多边形称为正多边形。

(2)性质:内角和公式为180°×(n-2),其中n表示正多边形的边数。

2. 教师出示图形,引导学生计算正多边形的周长和面积。

(1)周长计算:正多边形的周长等于边长乘以边数。

(2)面积计算:正多边形的面积等于边长的平方乘以正多边形的边数,再除以4乘正切180°/n。

三、圆(20分钟)1. 教师板书圆的定义和性质。

(1)定义:平面上的一组点,到圆心的距离都相等的图形。

(2)性质:圆心角的度数等于它所对应的弧的度数。

2. 教师出示图形,引导学生计算圆的周长和面积。

(1)周长计算:圆的周长等于直径乘以π(π取近似值3.14)。

(2)面积计算:圆的面积等于半径的平方乘以π。

四、小结(5分钟)教师总结正多边形和圆的定义、特点以及计算方法。

【教学延伸】1. 学生可以用几何工具绘制正多边形和圆来加深理解。

2. 学生可以通过解决相关练习题来熟练应用计算方法。

【教学反思】本节课通过引导学生理解正多边形和圆的定义和特点,以及掌握计算它们的周长和面积的方法,培养了学生的几何计算能力。

在教学过程中,可适当增加生动的示例和实例计算,以提高学生的学习兴趣和思维能力。

九年级数学上册《正多边形和圆》教案、教学设计

九年级数学上册《正多边形和圆》教案、教学设计
1.教学活动设计:利用多媒体展示生活中常见的正多边形和圆形物体,如正方形的地砖、圆形的餐桌等。引导学生观察这些图形的特点,激发学生对正多边形和圆的学习兴趣。
a.提问:同学们,你们在生活中都见过哪些正多边形和圆形的物体呢?
b.学生回答后,教师总结:正多边形和圆在我们的生活中无处不在,它们具有很多独特的性质和美感。今天我们就来学习正多边形和圆的相关知识。
2.学生在解决实际问题时,可能难以将正多边形的性质与实际问题相结合,需要教师通过举例、引导,帮助学生建立知识间的联系。
3.部分学生对数学学习存在恐惧心理,需要教师关注学生的情感态度,激发学生的学习兴趣,增强他们的自信心。
4.学生在团队合作、交流表达方面有待提高,教师应创造更多机会让学生进行讨论交流,培养他们的沟通能力。
a.设计一道具有实际背景的问题,运用正多边形和圆的知识进行解决,要求学生将解题过程和答案以书面形式提交。
b.学生以小组为单位,共同探讨生活中的正多边形和圆的应用,完成一份小报告,内容包括:应用实例、性质分析、解题方法等。
3.拓展与思考:
a.阅读相关资料,了解正多边形和圆在历史、文化、艺术等领域的应用,撰写一篇心得体会。
b.探究正多边形与圆在建筑设计中的应用,结合实际案例进行分析,提出自己的看法。
4.口头作业:
a.与家人分享本节课所学知识,讲解正多边形和圆的性质,以及它们在生活中的应用。
b.与同学进行交流,讨论解决正多边形和圆相关问题时的策略和方法。
5.预习作业:
a.预习下一节课内容,提前了解与正多边形和圆相关的其他几何知识。
b.采用问题驱动法,设计具有启发性的问题,引导学生主动探究正多边形的性质及其与圆的关系。
c.以小组合作的形式,让学生共同解决正多边形与圆的实际问题,培养学生的团队合作意识和问题解决能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正多边形和圆(一)教案
教材分析
学生在前面已经学习了正多边形的概念,了解正多边形的各边相等、各内角相等以及多边形内角和的运算公式。

在本册中学习了圆及圆的有关性质,理解圆中弧与弦的关系,从而为本节课研究正多边形与圆的关系打下了良好的基础,本节课先通过观察美丽的图案,让学生感受到数学来源于生活。

接下来研究正多边形和圆的关系,按由特殊到一般的规律,以正五边形为例进行探索和证明,并将结论推广到正n边形。

让学生体会到化归思想在研究问题中的重要性。

培养学生观察、比较、分析问题的能力,发展了学生合情推理能力和演绎推理能力。

教学目标
知识技能:了解正多边形与圆的关系,了解正多边形的中心、半径、边心距、中心角等概念。

能运用正多边形的知识解决圆的有关计算问题。

数学思考;通过正多边形与圆的关系的教学培养学生观察、猜想、推理、迁移的能力。

解决问题:进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想,体会化归思想在研究问题中的重要性,能综合运用所学知识和技能解决问题。

情感态度:学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用的。

重点难点
教学重点:探索正多边形与圆的关系,了解正多边形的有关概念,并能进行计算。

教学难点:探索正多边形与圆的关系。

教学过程:
一、观察图案,提出问题
(设计说明:学生通过观看美丽的图案,欣赏生活中正多边形形状的物体,让学生感受到数学来源于生活,从中感受到数学美,并提出本节课所要研究的问题。


问题l:观看教科书图24。

3-1,这些美丽的图案,都是在日常生活中我们经常能看到的,利用正多边形得到的物体。

你能从这些图案中找出正多边形来吗?
教师引导学生回忆、理解正多边形的概念。

问题2:菱形,矩形,正方形是正多边形吗?
问题3:通过观察图案,你们知道正多边形和圆有什么关系吗?
问题4:给你一个圆,怎样就能做出一个正多边形来?
(教师引导学生观察、思考,学生分组讨论、交流,发表各自见解)
此问题比较抽象,是本节课的难点。

教师要求学生观察教材图案,会发现正多边形的边数多给人一种接近圆的印象。

教师展示课件:在圆中依次出现几条相等的弦,学生会想到弧相等,教师迸一步引导学生明确只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形。

二、自主探究,获得新知
(设计说明:在上面的活动中学生发现了只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形。

教师指导学生进行逻辑推理,论证所发现的结论的正确性,从而培养学生科学严谨的治学态度和运用所学知识解决问题的能力。


问题1:将一个圆分成五等份,依次连接各分点得到一个五边形,这个五边形一定是正五边形吗?如果是,该如何证明这个结论呢?
教师利用课件演示,把圆分成相等的5段弧,依次连接各个分点得到五边形。

教师引导学生从正多边形的定义入手证明,学生通过观察、分析能够得出5段相等的弧所对的弦也是相等的,证明五边形的各边相等。

思考l:五边形的角在圆中是什么角?学生通过观察发现圆内接五边形的各内角都是圆周角。

思考2:每一个圆周角所对的弧有什么特点?
学生分析、讨论发现每一个圆周角所对的弧都是三等分的弧,证明五边形的各内角相等,从而证明圆内接五边形是正五边形。

教师利用课件展示证明的过程(略)。

问题2:如果将圆n等份,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?
(教学设计:将结论由特殊推广到一般,并教给学生这种研究问题的方法。

)教师要求学生分组讨论、分析,同学之间进行合作交流,教师巡回指导并总结、归纳证明思路;
对应的弦相等
多边形各边相等
对应的圆周角相等多边形各内角相等
问题3:各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明为什么。

如果不是,举出反例。

(设计说明:此问题的提出是为了巩固所学知识,明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角都相等,这两个条件缺一不可。

同时教给学生学会举反例,培养学生思维的批判性。


让学生讨论,思考回答,教师讲评。

三、了解概念,巩固练习
(设计说明:教师引导学生将实际问题转化成数学问题,将多边形化归成三角形来解决,体现了化归思想在解题中的作用。


教师演示课件,给出正多边形的中心,半径,中心角,边心距等概念。

问题1:我们在前面的章节中学过的正多边形有哪些?
教师要求学生分别画一个正三角形和正方形,让学生找出它的中心,画出它的半径、边心距、中心角,加深对概念的理解。

问题2:让学生阅读教科书例题。

引导学生把实际问题形成数学问题,结合图形,明确哪一部分是地基,知道要计算的是哪一部分。

教师演示地基的数学图形,引导学生进行分析。

思考:欲求地基的周长和面积,需要先求出正六边形的什么?
学生分析、讨论得出先求出正六边形的边长和边心距。

教师通过演示图形引导学生将正六边形的边长、半径和边心距集中到一个
三角形中来研究。

学生通过分组讨论、交流,发现将正六边形的中心与顶点连接后分割成六个全等的等腰三角形,每个等腰三角形的顶角为中心角,腰为半径,底边为边长,底边上的高为边心距,可利用勾股定理进行计算,进而能求得正多边形的周长和面积。

教师巡视,个别指导。

(教学说明:问题1比较简单,主要是巩固正多边形的有关概念;问题2目的是让学生在了解有关正多边形的概念后,掌握正多边形的计算。

通过问题2引导学生将实际问题转化成数学问题一,将多边形化归成三角形来解决,体现化归思想在解题中的应用,让学生领会化未知为已知,化复杂为简单的解题思路。

问题3利用网格图呈现,便于学生比较,加深对图形的理解。

这也是本节课学生要掌握的内容。


问题4:巩固练习
四、反思总结,深化拓展
(设计说明:围绕两个问题,师生以谈话交流的形式,共同总结本节课的学习收获。


问题1:本节课你学习了什么?。

有何收获?
问题2:正n边形的一个内角的度数是多少?中心角呢?
问题3:正多边形的中心角与外角的大小有什么关系?正多边形有哪些性质?
问题4:正n边形的半径,边心距,边长有什么关系?
(教学说明:学生自己总结,不全面的由其他学生补充完善。

通过问题的思考引导学生回顾自己的学习过程,加强反思、提炼及知识的归纳,纳入自己的知识结构;通过问题2拓宽学生的视野,引导学生注意在学习过程中加强知识点之间的联系,关注不同层次学生对本节课知识的理解)
五、布置作业
教材习题24。

3第3,5,6题。

(教学说明:通过对实际问题的探究,完成从具体一抽象一具体的思维螺旋上升过程,形成应用数学的意识,加深对本节知识的理解。

)。

相关文档
最新文档