人教版九年级数学上册《24.3 正多边形和圆》 教案 第2课时
24.3正多边形和圆(第2课时)教学设计

-14-
回顾本节课的学习历程, 你有哪些收获? 还有什么疑问?
画正多边形的方法
1.用量角器等分圆 2.尺规作图等分圆
-15-
作业
作业本:课本P108,练习1、2题
中心角 中心角 360
F
O.
n
C 边心距把△AOB分成
Rr
2个全等的直角三角形
设正A多边形Ga的边长B 为a,半径AO为GR,边BO心G距为18nr0.a 22
r2
R2,
周长L=na, 面积S 1 lr 2
-6-
怎样画一个正多边形呢?
-7-
画一个边长为2cm的正六边形 。
作圆 确定圆心角 所对的弧 截取等弧 顺次连接各分点 正多边形
-10-
问题1:已知⊙O的半径为2cm, 求作圆的内接正三角形.
A
①用量角器度量,使
∠AOB=∠BOC=∠C
120 ° O
OA=120°. ②用量角器或30°角
C
B
的三角板度量,
∠BAO=∠CAO=30°
-11-
问题2:你能用以上方法画出正四边形、 正五边形吗?
十四边形……
-13-
方案设计 学校在教学楼前的圆形广场中,准备建
造一个花园,并在花园内分别种植牡丹、月 季和杜鹃三种花卉。为了美观,种植要求如 下:
(1)种植4块面积相等的牡丹、4块面积 相等的月季和一块杜鹃。(注意:面积相等 必须由数学知识作保证)
(2)花卉总面积等于广场面积 (3)花园边界只能种植牡丹花,杜鹃花 种植在花园中间且与牡丹花没有公共边。
由此,你能 画出正三角
O·
形,正十二
边形吗?
-9-
小结:如何用等分圆周的方法画正多边形?
人教版九年级数学上册教案:24.3正多边形和圆课堂优秀教学案例

3.结合学生的课堂表现、作业完成情况和小组合作情况,进行全面评价,关注学生的知识掌握、能力发展和情Байду номын сангаас态度。
四、教学内容与过程
(一)导入新课
1.利用图片展示正多边形的实际应用场景,如足球、蜂窝等,引发学生对正多边形的兴趣,激发学生的学习动机。
2.创设问题情境,如“为什么足球是正二十面体?”、“蜂窝为什么是正六边形?”等,引导学生思考正多边形的特征和性质。
3.小组合作:本节课鼓励学生进行小组合作学习和讨论,培养了学生的团队合作意识和沟通能力。通过小组合作,学生能够共同解决问题,分享自己的学习和研究成果,提高了学生的表达能力和批判性思维。
4.反思与评价:本节课在课堂结束前,引导学生进行自我反思,总结自己在课堂上的学习情况和收获。同时,设置了不同难度的题目,让学生在课后进行巩固练习。通过这种方式,学生能够及时巩固所学知识,提高自我认知和自我评价能力。
3.在解决问题的过程中,引导学生总结正多边形的性质和规律,提高学生的数学思维能力和逻辑推理能力。
(三)小组合作
1.将学生分成小组,鼓励学生进行合作学习和讨论,培养学生的团队合作意识和沟通能力。
2.设计小组合作任务,如:“观察并描述正多边形的性质”、“制作正多边形的模型”等,让学生在实践中掌握正多边形的知识。
3.利用多媒体课件展示正多边形的动态变化,让学生直观感受正多边形的魅力,引发学生的探究欲望。
(二)问题导向
1.设计一系列问题,引导学生逐步深入探究正多边形的定义、性质和与圆的关系。如:“正多边形有什么特点?”,“正多边形的边数与圆有什么关系?”,“如何判断一个多边形是正多边形?”等。
人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计一. 教材分析人教版九年级数学上册《第二十四章圆24.3正多边形和圆》的内容包括正多边形的定义、性质和圆的定义、性质。
本章节的目的是让学生理解正多边形和圆的关系,掌握正多边形的计算方法,以及了解圆的性质和应用。
本节课的教学内容是24.3正多边形和圆,主要包括正多边形的定义、性质和圆的定义、性质。
二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对于图形的理解和计算能力有一定的基础。
但是,对于正多边形和圆的关系,以及圆的性质和应用可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索正多边形和圆的性质,提高他们的空间想象能力和思维能力。
三. 教学目标1.知识与技能:使学生掌握正多边形的定义、性质,理解圆的定义、性质,能够运用正多边形和圆的知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:正多边形的定义、性质,圆的定义、性质。
2.难点:正多边形和圆的关系,圆的性质和应用。
五. 教学方法1.情境教学法:通过实物、图片、几何画板等直观教具,引导学生观察、操作、思考,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。
3.合作学习法:学生进行小组讨论,培养学生的团队合作意识和交流能力。
4.归纳总结法:引导学生通过总结归纳,形成系统的知识结构。
六. 教学准备1.教学课件:制作精美的课件,包括图片、几何画板等直观教具。
2.教学素材:准备相关的实物、图片等教学素材。
3.教学用具:准备黑板、粉笔、直尺、圆规等教学用具。
七. 教学过程1.导入(5分钟)利用实物、图片等教学素材,引导学生观察正多边形和圆的实例,激发学生的学习兴趣。
人教版九年级数学上册24.3.2《正多边形和圆(2)》说课稿

人教版九年级数学上册24.3.2《正多边形和圆(2)》说课稿一. 教材分析人教版九年级数学上册24.3.2《正多边形和圆(2)》这一节主要介绍了正多边形的性质以及正多边形与圆的关系。
在教材中,通过图形的观察和推理,引导学生发现正多边形的性质,并且能够运用这些性质解决实际问题。
教材内容紧凑,逻辑清晰,通过丰富的例题和练习题,帮助学生巩固所学知识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和推理能力有一定的掌握。
但是,对于正多边形的性质以及与圆的关系的理解还需要进一步的引导和培养。
因此,在教学过程中,需要关注学生的学习情况,针对学生的特点进行教学设计和调整。
三. 说教学目标1.知识与技能:通过学习,使学生了解正多边形的性质,能够运用这些性质解决实际问题;培养学生对圆的性质的理解,能够运用圆的性质解决几何问题。
2.过程与方法:通过观察、推理、交流等方法,培养学生的图形认知能力和逻辑思维能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 说教学重难点1.教学重点:正多边形的性质,以及正多边形与圆的关系。
2.教学难点:正多边形的性质的证明,以及如何运用这些性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究,积极思考。
2.教学手段:利用多媒体课件,直观展示图形的性质和变化,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示一些生活中的正多边形和圆的图形,引导学生对正多边形和圆的性质产生兴趣,激发学生的学习热情。
2.新课导入:介绍正多边形的定义和性质,通过示例和练习,使学生掌握正多边形的性质。
3.知识拓展:引导学生发现正多边形与圆的关系,通过示例和练习,使学生理解正多边形与圆的性质。
4.课堂练习:设计一些具有挑战性的练习题,引导学生运用所学的知识解决实际问题。
5.小结:通过总结本节课所学的内容,帮助学生巩固知识,提高学生的总结能力。
人教版数学九年级上册24.3.2《正多边形和圆》教案

人教版数学九年级上册24.3.2《正多边形和圆》教案一. 教材分析《正多边形和圆》是人民教育出版社出版的数学九年级上册第24章第三节的内容。
本节内容主要介绍了正多边形的定义、性质以及与圆的关系。
通过学习正多边形和圆,学生能够理解圆的定义,掌握圆的性质,并能够运用圆的知识解决实际问题。
二. 学情分析九年级的学生已经掌握了多边形的基本概念和性质,具备一定的逻辑思维能力。
但是对于正多边形和圆的关系的理解可能存在一定的困难。
因此,在教学过程中,需要通过实例和图形的演示,帮助学生建立直观的认识,引导学生主动探究正多边形和圆的性质。
三. 教学目标1.知识与技能:–能够理解正多边形的定义和性质。
–能够理解圆的定义和性质。
–能够运用正多边形和圆的知识解决实际问题。
2.过程与方法:–通过观察和操作,培养学生的观察能力和动手能力。
–通过小组合作,培养学生的合作能力和沟通能力。
3.情感态度与价值观:–培养学生对数学的兴趣和好奇心。
–培养学生的自主学习能力和解决问题的能力。
四. 教学重难点•正多边形的定义和性质。
•圆的定义和性质。
•正多边形和圆的关系的理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正多边形和圆的性质。
2.通过实例和图形的演示,帮助学生建立直观的认识。
3.采用小组合作的学习方式,培养学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图形和图片,用于演示和解释正多边形和圆的性质。
2.准备练习题和实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)–利用图片和实例,引导学生回顾多边形的基本概念和性质。
–提出问题,引导学生思考正多边形和圆的关系。
2.呈现(15分钟)–通过图形和实例,展示正多边形的定义和性质。
–解释正多边形和圆的关系,引导学生理解圆的定义和性质。
3.操练(15分钟)–学生分组合作,进行实际操作,探究正多边形和圆的性质。
–教师引导学生进行讨论和交流,解答学生的疑问。
人教版数学九年级上册24.3正多边形和圆(第2课时)教学设计

4.强调数学知识在实际生活中的应用,激发学生学习数学的兴趣。
五、作业布置
为了巩固本节课所学的正多边形和圆的知识,以及提高学生的应用能力和思维能力,特布置以下作业:
1.基础巩固题:请同学们完成课本第XX页的练习题1-5,重点复习正多边形的性质、内角和、外角和的计算方法,以及正多边形与圆的相互关系。
4.思考题:请同学们思考以下问题,下节课进行分享和讨论:
(1)为什么正多边形的外角和为360°?
(2)如何判断一个多边形是否为正多边形?
(3)正多边形与圆的性质在解决实际问题时有什么优势?
5.预习作业:预习下一节课的内容,了解圆的内接多边形和外切多边形的性质,为课堂学习做好准备。
作业要求:
1.请同学们按时完成作业,保持字迹工整,确保作业质量。
4.借助几何画板等教学工具,直观展示正多边形和圆的性质,加深学生对知识的理解。
(三)学生小组讨论,500字
在学生小组讨论环节,我将组织学生进行以下活动:
1.将学生分成若干小组,每组讨论一个问题,如正多边形内角和的计算方法、正多边形与圆的关系等。
2.每个小组派代表汇报讨论成果,其他小组进行补充和评价。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-正多边形的性质及其与圆的关系。
-运用圆的性质解决正多边形相关问题。
-正多边形周长和面积的计算方法。
2.教学难点:
-正多边形内角和、外角和的计算。
-正多边形与圆结合的综合问题解决。
-空间想象能力的培养。
(二)教学设想
1.教学方法:
-采用启发式教学法,引导学生通过观察、探索、讨论等方式发现正多边形的性质,培养学生自主学习能力。
九年级数学上册24.3正多边形和圆(第2课时)教案新人教版

24.3 正多边形和圆教学内容24.3 正多边形和圆(2).教学目标1.理解正多边形的性质.2.会画正多边形,了解依次连结圆的n等分点所得的多边形是正多边形,过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.教学重点正多边形的画法.教学难点对正n边形中泛指“n”的理解.教学步骤一、导入新课实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关.二、新课教学我们知道,依次连结圆的五等分点所得的圆内接五边形是正五边形.如果n等分圆周,(n ≥3)、n=6,n=8……是否也正确呢?教师引导学生充分讨论.因为在同圆中,弧等弦等,n等分圆就得到n条弦等,也就是n边形的各边都相等.又n 边形的每个内角对圆的(n-2)条弧,而每一内角所对的弧都相等,根据弧等、圆周角相等,证明了n边形的各角都相等,因此圆内接正五边形的证明具有代表性.定理:把圆分成n(n≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形.为何要“依次"连结各分点呢?缺少“依次”二字会出现什么现象?大家讨论讨论看看.我们还可以用圆心角来等分圆周.由于同圆中相等的圆心角所对的弧相等,因此作相等的圆心角就可以等分圆周,从而得到相应的正多边形.例如,画一个边长为1。
5 cm 的正六边形时,可以以 1.5 cm为半径作一个⊙O,用量角器画一个等360 =60°的圆心角,它对着一段弧,然后在圆上依次截取与这条弧于6相等的弧,就得到圆的6个等分点,顺次连接各分点,即可得到正六边形(如下图).对于一些特殊的正多边形,还可以用圆规和直尺来作.如,用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作出正方形(下图).三、巩固联系教材第108页练习.四、课堂小结今天学习了什么,有什么收获?五、布置作业习题24.3 第4、6题.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
人教版九年级数学上册《正多边形和圆》第2课时教学课件

∴ = ,
∴
1
∠ = ∠ = 60°,
2
∴ △ 是等边三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
30°
30°
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
方法
用量角器度量,使∠ = ∠ = 30°.
但画图的误差积累到最后一个等分点,误差较大.
3
尺规作图,虽然精确,但不是任意等分圆周都能用这种
方法,而且作图时存在误差.
4
本节课提到的其他一些方法只适用于某些特殊的正多边形.
练习
1
如何在半径为 的⊙ 中作出内接正九边形呢?
40°
练习
2
如何借助圆画出一个五角星呢?
72°
72°
练习
情境引入
实际生活中,经常遇到画正多边形的问题,比如画一个
六角螺帽的平面图,画一个五角星等,这些问题都与等分圆
周有关. 要制造如下图中的零件,也需要等分圆周.
引入新知
已知⊙ 的半径为 ,画圆的内接正三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
3
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
方法
用圆规在⊙ 上顺次截取两条长度等于 3 的弦,连
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章圆
24.3 正多边形和圆
第2课时
一、教学目标
1.巩固正多边形与圆的关系.
2.掌握用尺规画图作正多边形.
二、教学重点及难点
重点:画特殊的正多边形.
难点:利用直尺与圆规作特殊的正多边形.
三、教学用具
多媒体课件,三角板、直尺、圆规、量角器.
四、相关资源
五、教学过程
【复习回顾,引入新课】
师生活动:教师展示复习的课件,让学生回顾上节课所学知识.
设计意图:通过复习正多边形与圆相关定义,为本节课学习正多边形画法作好铺垫.【合作探究,形成新知】
实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关,我们一起探究正六边形的画法.
我们可以用量角器画正六边形吗?如果可以,请说说作图原理.
师生活动:四人一组,小组讨论、交流,一名学生回答,全班订正.学生回答不足的地方,教师补充.
归纳用“量角器等分圆”:
依据:同圆中相等的圆心角所对应的弧相等.
操作:两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个圆心角,然后在圆上依次截取等于该圆心角所对弧的等弧,于是得到圆的等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正多边形的边长误差较大.
【例题分析,深化提升】
例有没有其他作正六边形的方法?你能用尺规作出圆的内接正六边形吗?试试看.
师生活动:教师组织学生思考作图的方法,先让学生独立思考,再与小组同学协作完成,有方法的小组通过实物投影展示,对完成较好的同学给予表扬.教师引导学生观察正六边形,从而使其回忆起正六边形的边长等于半径,找到作图的方法,然后学生自己动手作图.设计意图:充分发挥学生的发散思维,让学生充分利用手中的工具,实际操作,认真思考,从而培养学生的动手能力.
【练习巩固,综合应用】
已知⊙O的半径为1 cm,求作⊙O的内接正八边形.
解:(1)如图所示,作直径AC,使AC=2 cm.
(2)作AC的中垂线BD交⊙O于B,D两点.
(3)连接AD,作AD的中垂线交AD于M点.
,,的中点E,F,G.
(4)用同样的方法作出AB BC CD
(5)依次连接各分点,即得正八边形.
正八边形AEBFCGDM即为所求作的⊙O的内接正八边形.
设计意图:巩固正多边形画法.
六、课堂小结
学完这节课你有哪些收获?
1.量角器画正多边形
2.尺规作正多边形
师生活动:学生自己总结,不全面的由其他学生补充完善.教师重点关注:不同层次学生对本节知识的理解、掌握程度.
设计意图:让学生总结出自己的收获,理清思路、整理经验,从而形成良好的学习习惯,同时也提出自己的疑问和困惑便于教师及时反馈.
七、板书设计
24.3 正多边形和圆(2)
1.量角器画正多边形
2.尺规作正多边形。