无线超声波测距
简述超声波测距的原理。

简述超声波测距的原理。
《超声波测距原理》超声波测距是一种常用的测距技术,广泛应用于工业、医疗、科学研究等领域。
它利用超声波的特性,通过测量声波传播时间,来计算目标物体与测距设备之间的距离。
超声波是一种频率高于人耳可听到的声波,它的频率一般在20kHz到200kHz之间。
超声波在空气、液体和固体中的传播速度不同,一般为340米/秒至1500米/秒之间。
这些特点使超声波成为一种适合测距的工具。
超声波测距的原理非常简单。
首先,发送器会发出一个短暂的超声波信号,这个信号会被目标物体反射回来。
接收器会接收到反射的信号,并记录下信号从发送到接收所经过的时间。
通常情况下,超声波测距设备会有一个内置的计时器来测量这段时间。
根据声波传播的速度和时间,可以使用基本的物理公式来计算目标物体与测距设备之间的距离。
公式如下:距离 = (声波传播速度 ×传播时间)/ 2其中,传播速度是超声波在特定介质中的传播速度,传播时间是信号从发送到接收所经过的时间。
由于声波在不同介质中的传播速度不同,测距设备需要根据具体的应用场景来选择适当的传播速度。
超声波测距具有准确性高、测量范围广的优点。
它可以测量离测距设备几个毫米到几十米的距离,而且误差一般在几个毫米左右。
此外,超声波测距设备的结构简单,体积小型,重量轻,易于携带和安装。
超声波测距技术广泛应用于工业领域,用于测量物体的距离、位置和速度。
在自动控制和导航系统中,超声波测距设备可以用于避障和目标定位。
在医疗领域,超声波测距设备被用于医学影像学,如超声心动图和超声造影等。
总之,超声波测距通过测量声波传播时间,利用声波传播的速度,来计算目标物体与测距设备之间的距离。
它具有准确性高、测量范围广的优点,广泛应用于工业、医疗和科学研究等领域,为人们的生活和工作提供了更多便利。
超声波测距的原理

超声波测距的原理超声波测距是一种智能测距技术,它利用声速的不同以及发射接收信号的时间差,来计算距离的测量技术。
1.原理超声波测距的原理是通过发射声波,测量声波传播的时间来计算距离。
根据声波在介质中的传播速度,计算出发射点至接收点的距离。
原理公式:距离=声速×时间即:Distance=Speed × Time其中,声速即声波在介质中的传播速度,其值为343m/s;时间即发射声波至接收声波的时间,单位为秒(s)。
2.测距方法(1)双抛物线法发射设备发出短促的超声波,声波以某一固定的速度传播,声波开始发射时,传播的距离为零,传播距离随着时间增长而增长,当该声波正好从目标点穿越而去时,应用接收设备接收该声波,利用计算机处理作出声波传播距离的图形,从双抛物线拟合计算出测量值。
(2)回波法发射设备发出一次超声波信号,当发射的超声波信号到达目标物时,目标物会把超声波信号接收并反射回来,接收设备接收反射的超声波信号,将发射信号及反射信号的时间差作为距离的测量参数进行计算,从而计算出距离的测量值。
回波计算距离的公式:Distance=Time×V/2其中,Time为声波发射到接收的时间差,V为声波在介质空气中的传播速度。
三、超声波测距应用超声波测距技术在智能汽车、工业控制与安全监控、建筑物安全管理等领域有着广泛的应用,其中包括以下几种:(1)智能汽车:超声波测距技术可以帮助智能汽车检测前方障碍物的距离,从而进行安全护栏的移动,同时也能帮助智能汽车检测行驶路线,以便安全驾驶。
(2)工业控制与安全监控:超声波测距技术可以帮助工业设备检测具体物体的距离,从而进行控制和安全监控,保障工业生产的安全运行。
(3)建筑物安全管理:超声波测距技术可以帮助建筑物检测具体的安全距离,从而保障建筑物的安全管理。
四、总结超声波测距是一项智能测距技术,原理是利用声波的传播速度及传播时间差,来计算出两点之间的距离。
超声波测距公式

超声波测距公式
超声波测距公式是用于计算超声波在空气中传播时所需时间和距离的公式。
这种测距技术广泛应用于工业、医疗、环境监测等领域。
超声波在空气中传播的速度是固定的,一般为340米/秒。
因此,我们可以通过测量超声波从发射器到接收器的时间来计算距离。
超声波测距公式为:
距离= 传播速度×时间/ 2
其中,传播速度为340米/秒,时间为超声波从发射器到接收器的时间,除以2是因为超声波需要往返传播。
例如,如果超声波从发射器发出后,经过2秒钟才被接收器接收到,那么距离可以计算为:
距离= 340米/秒×2秒/ 2 = 340米
这就是超声波测距公式的应用。
需要注意的是,在实际应用中,还需要考虑超声波在传播过程中可能会受到多种因素的影响,如空气湿度、温度、压力等,这些
因素都可能会对测量结果产生影响,需要进行校准和修正。
超声波测距的应用原理

超声波测距的应用原理超声波测距是一种常见的测距技术,主要利用超声波在传播过程中的特性来进行测量。
超声波测距主要应用于工业、医疗、航空航天等领域,具有非接触、精确和灵敏等特点。
超声波测距的原理是利用声波在空气或其他介质中传播的特性。
声波是一种机械波,通过分子间的碰撞传播。
超声波是频率高于人耳可听到的声波,通常在20kHz 到1MHz的范围内。
超声波的传播速度与介质的密度和弹性有关。
超声波测距的基本原理是测量超声波从发射器发出后,到达目标物体并被返回的时间间隔,然后根据声波的传播速度计算出距离。
具体步骤如下:1. 发射超声波:发射器产生一束超声波,并将其发送出去。
超声波的频率和幅度通常在设备中进行调节。
2. 超声波传播:超声波在空气或其他介质中以大约340米/秒的速度传播。
当超声波遇到目标物体时,一部分能量会被反射回来。
3. 接收超声波:接收器接收到反射回来的超声波信号,然后将其转化为电信号。
接收器通常包含一个共振腔和一个压电传感器。
4. 计算时间差:测量超声波从发射到返回的时间间隔,即超声波传播的时间差。
可以使用计时器或传感器来测量时间。
5. 计算距离:根据超声波的传播速度和时间差来计算距离。
传播速度通常根据介质类型和温度进行校准。
超声波测距的应用非常广泛。
在工业领域,超声波测距可以用于测量液体或粉末的液位、测量物体的尺寸和厚度、检测管道中的堵塞物等。
在医疗领域,超声波测距常用于医学影像设备如超声诊断仪,用于检测人体内部器官的位置和形状。
航空航天领域中,超声波测距可用于测量飞行器与地面或其他物体之间的距离,以确定安全飞行的高度。
总之,超声波测距利用声波的传播特性进行测量,具有非接触、精确和灵敏的优点。
通过测量超声波的传播时间差,可以计算出目标物体与发射器之间的距离。
目前超声波测距技术已经广泛应用于各个领域,为实现精确测量提供了有效的工具。
超声波测距模块原理

超声波测距模块原理
超声波测距模块是一种常用的测距设备,其原理是利用超声波在空气中传播的特性来实现距离测量。
超声波是一种高频机械波,其频率通常在20kHz~100kHz之间。
超声波在空气中传播时,会遇到物体阻挡,产生反射,反射回来的超声波经过接收器接收,从而实现测距。
超声波测距模块通常由发射器和接收器两部分组成。
发射器会发出一定频率的超声波,经过一段时间后,超声波会遇到障碍物,被反射回来。
接收器会接收到反射回来的超声波,通过计算反射回来的时间,可以算出障碍物距离测量点的距离。
超声波测距模块的精度和测距范围受到多种因素的影响,如超声波发射功率、传播介质(空气、水等)、温度、声速等。
因此,在使用超声波测距模块时,需要注意这些因素的影响,以保证测量精度和测距范围的准确性。
- 1 -。
超声波雷达的测距原理

超声波雷达的测距原理超声波雷达是一种利用高频超声波进行测距的无线电波雷达。
它的原理是利用超声波在空气中的传播速度与距离的关系,通过发射和接收超声波信号来测量距离。
超声波的频率通常在20kHz到200kHz之间,这种频率的声波在空气中传播时,具有较强的穿透力和折射力。
因此,超声波雷达可以穿透一定的障碍物,如烟雾、雾气、沙尘等,进行远距离的测量。
超声波雷达的测距原理主要分为两种:时间测距和频率测距。
一、时间测距时间测距是利用超声波在发射和接收之间传播的时间来计算距离。
超声波发射器向目标发射超声波信号,当信号遇到目标时,会被反射回来,经过接收器接收。
接收器接收到信号后,会将信号转换为电信号,然后计算发射和接收之间的时间差,再根据声波在空气中的传播速度计算出距离。
时间测距的优点是精度高,可以达到毫米级别。
但是,它的缺点是受到环境影响较大,如温度、湿度等因素会影响声波在空气中的传播速度,从而影响测距精度。
二、频率测距频率测距是利用超声波的频率变化来计算距离。
当超声波发射器向目标发射超声波信号时,信号会被目标反射回来,经过接收器接收。
接收器接收到信号后,会将信号转换为电信号,并进行频率分析。
由于声波在空气中传播时会受到多次反射和折射,所以接收到的信号会受到多普勒效应的影响,导致频率发生变化。
根据多普勒效应的原理,可以计算出发射器和目标之间的相对速度,进而计算出距离。
频率测距的优点是受环境影响较小,可以适应多种环境条件。
但是,它的缺点是精度较低,一般只能达到厘米级别。
总的来说,超声波雷达的测距原理是利用超声波在空气中的传播速度与距离的关系,通过发射和接收超声波信号来测量距离。
时间测距和频率测距是两种常用的测距方法,它们各有优缺点,需要根据具体的应用场景选择合适的方法。
超声波测距的应用原理
超声波测距的应用原理1. 介绍超声波测距是一种常见的测量距离的技术,广泛应用于工业自动化、智能家居、机器人等领域。
本文将介绍超声波测距的原理及其在实际应用中的一些案例。
2. 超声波测距原理超声波测距利用声波在空气中传播的特性进行测量。
其原理主要包括发射超声波脉冲、接收超声波反射信号以及计算测距距离三个步骤。
2.1 发射超声波脉冲超声波传感器会发射一个超声波脉冲信号,通常频率在20kHz到200kHz之间。
脉冲信号在空气中传播,并在目标物体上发生反射。
2.2 接收超声波反射信号当超声波脉冲信号被目标物体反射后,超声波传感器会接收到反射信号。
接收到的信号经过放大和滤波处理后,被转换成数字信号。
2.3 计算测距距离根据超声波传感器发送脉冲信号到接收到反射信号的时间间隔,可以计算出测距距离。
测距公式如下:距离 = (声速 × 时间间隔) / 2其中,声速通常使用常数值343m/s,时间间隔以秒为单位。
3. 超声波测距的应用案例3.1 工业自动化超声波测距广泛应用于工业自动化领域,例如在机器人的导航和避障中。
通过使用超声波传感器,机器人可以测量到周围的障碍物距离,从而做出相应的动作或路径调整。
3.2 智能家居超声波测距也被应用于智能家居系统中。
例如,在智能安防系统中,超声波传感器可以检测到入侵者的接近,并触发相应的报警系统。
此外,超声波测距还可以用于智能灯光系统中,自动调节灯光的亮度和发散角度。
3.3 车辆辅助系统超声波测距在车辆辅助系统中也得到了广泛应用。
例如,在倒车雷达系统中,超声波传感器可以探测到车辆后方的障碍物,提供给驾驶员倒车时的参考,并发出警告信号。
3.4 液位测量超声波测距还可以用于液位测量领域。
传感器发射超声波脉冲进入液体,当脉冲到达液体表面后会发生反射,传感器接收到反射信号后可以计算出液位的高度。
4. 总结超声波测距技术通过发射和接收超声波信号来测量目标物体的距离。
它在工业自动化、智能家居、车辆辅助系统以及液位测量等领域有着广泛的应用。
超声波测距的应用价值和原理
超声波测距的应用价值和原理超声波测距作为一种先进的距离测量技术,具有广泛的应用价值和实用前景。
其原理主要是利用超声波在空气中的传播特性,通过发送和接收超声波的时间差来计算距离。
以下是超声波测距的应用价值和原理详细介绍:应用价值:1. 工业领域:超声波测距广泛应用于工业生产中,如测量机器人的距离、位置和速度,从而实现自动化控制和精确定位。
2. 汽车行业:超声波雷达应用于汽车倒车雷达、自动驾驶等领域,有助于提高驾驶安全性和驾驶便利性。
3. 无人机领域:超声波测距可用于无人机导航、避障、着陆等操作,提高无人机飞行安全性。
4. 智能家居:超声波测距可用于智能家居设备的定位和监控,如智能机器人、智能门锁等。
5. 医疗领域:超声波测距技术在医疗设备中也有广泛应用,如超声波成像、测量胎儿发育等。
6. 农业领域:超声波测距可用于农业自动化,如无人驾驶拖拉机、智能灌溉系统等。
7. 环境监测:超声波测距技术可应用于大气、水质等环境监测领域,实时掌握环境变化。
8. 军事领域:超声波测距在军事上有重要应用,如雷达探测、导航定位等。
原理:超声波测距原理主要包括以下几个步骤:1. 超声波发生:通过压电式超声波发生器产生超声波,该发生器利用压电晶体的谐振来工作。
2. 超声波发射:将产生的超声波发射到空气中,使其传播。
3. 超声波接收:接收器接收从物体表面反射回来的超声波。
4. 计算距离:根据发送和接收超声波的时间差,结合超声波在空气中的传播速度,计算出物体与测量设备之间的距离。
综上所述,超声波测距技术具有广泛的应用价值和实用前景,其在各个领域的应用不断拓展,为人们的生活带来诸多便利。
同时,随着科技的进步,超声波测距技术也将不断完善,提高测距精度和可靠性。
超声波测距报警器实验报告
超声波测距报警器实验报告一、实验目的本实验旨在设计并实现一个基于超声波的测距报警器,通过测量物体与传感器之间的距离,当距离小于设定的阈值时,触发报警装置,以实现对特定区域的距离监测和预警功能。
二、实验原理超声波测距是通过测量超声波在空气中的传播时间来计算距离的。
超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,碰到障碍物后反射回来,接收器收到反射波就立即停止计时。
已知超声波在空气中的传播速度为 340 米/秒,根据计时器记录的时间 t,就可以计算出发射点距障碍物的距离 s,计算公式为:s = 340t/2 。
三、实验设备与材料1、超声波传感器模块(包括发射器和接收器)2、微控制器(如 Arduino 开发板)3、蜂鸣器4、显示屏(用于显示测量距离)5、杜邦线若干6、电源(如电池盒或 USB 电源)四、实验步骤1、硬件连接将超声波传感器的 VCC 引脚连接到电源的正极端,GND 引脚连接到电源的负极端。
将超声波传感器的 Trig 引脚连接到微控制器的数字输出引脚,Echo 引脚连接到微控制器的数字输入引脚。
将蜂鸣器的正极连接到微控制器的数字输出引脚,负极连接到电源的负极端。
将显示屏连接到微控制器的相应引脚。
2、软件编程使用 Arduino 开发环境编写控制程序。
首先,设置微控制器的引脚模式,包括输入和输出引脚。
然后,在主循环中,通过向 Trig 引脚发送一个短脉冲来触发超声波传感器发送超声波。
等待 Echo 引脚变为高电平,开始计时;当 Echo 引脚变为低电平时,停止计时,并根据时间计算距离。
将计算得到的距离与设定的阈值进行比较,如果小于阈值,驱动蜂鸣器报警,并在显示屏上显示距离和报警信息。
3、调试与测试编译并上传程序到微控制器。
进行实物测试,逐步调整传感器的位置和方向,以及阈值的大小,观察报警效果和距离测量的准确性。
五、实验结果与分析1、距离测量结果在不同距离下进行多次测量,记录测量值。
超声波测距原理模型
超声波测距原理模型
超声波测距是一种利用声波在空气中传播的特性来测量距离的技术。
它的基本原理是通过发射一个短暂的高频声波脉冲,并测量该脉冲发出后被障碍物反射回来所需的时间,根据声速和往返时间就可以计算出障碍物与发射源之间的距离。
超声波测距系统通常由三个主要部分组成:
1. 发射器:通常是一个压电陶瓷换能器,它将电信号转换为高频声波脉冲,发射出去。
2. 接收器:也是一个压电陶瓷换能器,它接收反射回来的声波脉冲,并将其转换为电信号。
3. 控制电路:包括定时器、放大器和数据处理单元。
它负责控制发射和接收的时序,测量脉冲的往返时间,并根据声速计算出距离。
测距过程如下:
1. 控制电路发出一个短暂的触发脉冲,驱动发射器发出一个高频声波脉冲。
2. 声波脉冲在空气中传播,当遇到障碍物时会被反射回来。
3. 接收器接收到反射回来的脉冲信号,并将其转换为电信号。
4. 控制电路测量发射脉冲和接收脉冲之间的时间差,即往返时间。
5. 根据已知的声速(在空气中约为340米/秒),控制电路计算出障碍物的距离。
距离 = (声速 × 往返时间) / 2
需要注意的是,温度、湿度和气压等环境因素会影响声速,因此在实际应用中需要对声速值进行校正,以提高测距精度。
超声波测距技术广泛应用于自动驾驶、机器人避障、液位测量、停车辅助等领域。
它的优点是结构简单、成本低廉、测距范围适中。
但也存在一些局限性,如测距范围有限、受环境噪声干扰等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福州大学物理与信息工程学院
电子系统设计报告
设计题目:基于80C52单片机的超声波无线测距显示
(无线发送模块)
专业:电子科学与技术班级:7班
姓名:韩少炜学号:111100709
同组姓名:魏霖涛学号:111100727
指导老师:吴新坤
2014年06月
一、设计要求和目的
1.1设计要求:采用一种单片机STC89C52控制HC-SR04实现的无线超声波测距系统。
通过简单的无线通信协议,实现可靠性与功耗平衡,该系统能实现对距离的检测,是可以实现远程控制的无线超声波测距系统。
低功耗实时性的无线超声波测距是该设计的最大特点。
无线传输采用nRF24L01模块传输,用LCD1602实现温度显示。
该系统结构简单可靠功耗较低,成本低,是一种无线传感器的解决方案。
1.2设计目的:
(1)熟悉系统设计步骤以及超声波的特性
(2)能够运用所学数电、模电电路知识对电路进行合理的调试
(3)增强模块化的思想,掌握无线模块的SPI时序特点
(4)加强动手能力、培养团队合作意识
二、系统设计原理
1主控芯片方案
采用传统的STC89C52 单片机作为主控芯片。
此芯片价格便宜、操作简便,低功耗,比较经济实惠。
单片机最小系统
单片机控制模块由STC89C52最小系统组成,其中包括单片机,晶振电路和复位电路。
(1)、晶振电路:晶振电路由两个30pF电容和一个12MHz晶体振荡器构成,接入单片机的X1、X2引脚。
(2)、复位电路:单片复位端低电平有效。
单片机最小电路原理图如图1:
2 无线通信模块方案
采用nRF24L01无线射频模块进行通信,nRF24L01是一款高速低功耗的无线通信模块。
他能传输上千米的距离(加PA),而且价格较便宜,采用SPI总线通信模式电路简单,操作方便。
2.1 nRF24L01芯片概述
nRF24L01是一款新型单片射频收发器件,工作于2.4 GHz~2.5 GHz ISM频段。
内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,融合了增强型shockbust技术,中输出功率和通信频道可通过程序进行配置。
nRF24L01功耗低,以-6 dBm的功率发射时,作电流也只有9 mA;收时,工作电流只有12.3 mA,多种低功率工作模式(掉电模式和空闲模式)使节能设计更方便。
nRF24L01主要特性如下:
●GFSK调制;
●硬件集成OSI链路层;
●具有自动应答和自动再发射功能;
●片内自动生成报头和CRC校验码;
●数据传输率为l Mb/s或2Mb/s;
●SPI速率为0 Mb/s~10 Mb/s;
●125个频道;
●与其他nRF24系列射频器件相兼容;
●QFN20引脚4 mm×4 mm封装;
●供电电压为1.9 V~3.6 V。
引脚功能及描述
nRF24L01的封装及引脚排列如图2所示,各引脚功能如下:
图2 nRF24L01封装图
●CE:使能发射或接收;
●CSN,CK,MOSI,MISO:SPI引脚端,通过此引脚配置nRF24L01:
●IRQ:中断标志位;
●VDD:电源输入端;
●VSS:电源地;
●XC2,XC1:晶体振荡器引脚;
●DD_PA:为功率放大器供电,输出为1.8 V;
●ANT1,ANT2:天线接口;
●IREF:参考电流输入。
2.2 工作原理
发射数据时,首先将nRF24L01配置为发射模式,接收节点地址TX_ADDR 和有效数据TX_PLD按照时序由SPI口写入nRF24L01缓存区,TX_PLD必须在CSN为低时连续写入,而TX_ADDR在发射时写入一次即可,然后CE置为高电平并保持至少10μs,延迟130μs后发射数据;自动应答开启,那么nRF24L01在发射数据后立即进入接收模式,接收应答信号(自动应答接收地址应该与接收节点地址TX_ADDR一致)。
如果收到应答,则认为此次通信成功,TX_DS置高,同时TX_PLD从TX FIFO中清除;未收到应答,则自动重新发射该数据(自动重发已开启),若重发次数(ARC)达到上限,MAX_RT 置高,TX FIFO中数据保留以便在次重发;AX_RT或TX_DS置高时,使IRQ 变低,产生中断,通知MCU。
最后发射成功时,若CE为低则nRF24L01进入空闲模式1;若发送堆栈中有数据且CE为高,则进入下一次发射;若发送堆栈中无数据且CE为高,则进入空闲模式2。
接收数据时,首先将nRF24L01配置为接收模式,接着延迟130μs进入接收状态等待数据的到来。
当接收方检测到有效的地址和CRC时,就将数据包存储在RX FIFO中,同时中断标志位RX_DR置高,IRQ变低,产生中断,通知MCU去取数据。
若此时自动应答开启,接收方则同时进入发射状态回传应答信号。
最后接收成功时,若CE变低,则nRF24L01进入空闲模式1。
在写寄存器之前一定要进入待机模式或掉电模式。
如下图3和图4给出SPI操作及时序图:
图3 SPI读操作
图4 SPI 写操作
3 超声波测距方案
HC-SR04超声波测距模块可提供2cm-400cm的非接触式距离感测功能,测距精度可达高到3mm;模块包括超声波发射器、接收器与控制电路。
基本工作原理:
(1)采用IO 口TRIG 触发测距,给最少10us 的高电平信呈。
(2)模块自动发送8 个40 kHz 的方波,自动检测是否有信号返回;
(3)有信号返回,通过IO 口ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。
测试距离=(高电平时间*声速(340M/S))/2;
图5 HC-SR04引脚及封装
如下图接线,VCC 供5V电源, GND 为地线,TRIG 触发控制信号输入,ECHO 回响信号输出等四个接口端。
图6 超声波时序图:
4 显示模块方案
采用字符液晶LCD1602显示信息,1602是一款比较通用的字符液晶模块,能显示字符和数字等信息,且价格便宜,容易控制
接收端显示模块
本设计在接收端部分采用LCD1602液晶显示模块来显示温度,P0由上拉电阻提高驱动能力,作为数据输出并作为LCD的驱动,P2口的P2.7-P2.6分别作为液晶显示模块的使能信号E,数据/命令选择RS,R/W端则配置成写。
具体电路如图:
VCC
5系统方案方框图
发送:
接收:
三、设计任务
这次任务我跟同组的魏霖涛是分工合作,其中我做的是硬件里面的无线发射模块。
这一块的任务主要是无线超声波的收发设置,51单片机数据处理模块和NRF24L01数据发送模块。
无线超声波收发装置其实就是一个类似与声纳的装置,通过超声波的发送和接收到的时间差以及超声波的速度来得到相关的模拟信号。
51单片机的数据处理模块主要是通过调用数据处理代码来对由超声波无线装置传来的的信号进行处理,得到相关的有效数据。
无线NRF24L01发送模块用的是数据的的无线传送协议,通过对由51单片机传来的数据进行特定处理,然后发送出去。
在设计这三个模块的时候,我跟同组的魏霖涛商量好这个模块的设置的注意事项,因为魏霖涛复杂的是无线接收模块。
在接收端用到的模块也是NRF24L01,所以可以实现数据的实时的发送接收。
在设计的过程中,还需要给单片机填入代码,用来处理数据,这边的代码,也就是这次的设计的软件模块,我是从网上找到的代码,进行填入,通过调试,整改相关的代码段,实现对数据进行目标处理。
整个模块的设计过程由于没有用到pcb来设计,所以设计过程我们并没有进行仿真,而是直接在出现问题时用万能表进行线路的简单检查。
四、设计调试与结果
发送端软件设计与调试
本系统发送端采用HC-SR04超声波测距模块采集距离参数,经STC89C5C2收集处理数据再由nRF24L01模块发送到接收端。
其中包括HC-SR04和nRF24L01模块的初始化配置。
五、总结及存在问题和改进
整个系统的工作都是依靠超声波以及无线信号来进行数据采集和数据的传播,所以系统工作的环境对温度、湿度以及光照等因素都有不同程度的要求以及限制,我们可以通过在电路上做出一些适当的改进,加入一些滤波电路或者适当的逻辑电路对信号进行整流和放大,提高信号的稳定性和可靠性。
六、心得体会
这一次的实践过程是一个充满挑战的过程,它让我明白了耐心以及细心的重要性。
在没通电之前,先用万用表检查线路的正确性,并核对元器件的型号、规格是否符合要求。
特别注意电源的正负极以及电源之间是否有短路,晶体振荡器和电容应尽可能靠近单片机芯片安装,以减少寄生电容,更好是保证振荡器稳定和可靠地工作。
在本系统中我们都进行了仔细的检杏,所以此步骤不会发生故障,这一步如果检查不细通电后可能会造成不可想象的后果,所以这一步也至关重要。
另外,由于模块的分散性,各个模块都是通过杜邦线连接的,需要足够的耐心以及细心才能保证连线的正确性。
通电后检查各器件引脚的电位,仔细测量各点电位是否正常,尤其应注意单片机的插座上的各点电位,若有高压,将有可能损坏单片机以及相关模块。
同样,如果电压过低就没有能力驱动其负载。
最后我明白了成功都不是一蹴而成的,在调试结果成功出来之前,都得经过千辛万苦的调试以及修改,在这过程中,是一个自己与自己不断对抗的过程,通过不断质疑自己的判断,最后终于得到一个正确以及合理的结果,这是一个很棒
的体验!。