几种常见的超声波测距原理图

合集下载

(完整)超声波测距原理及简介

(完整)超声波测距原理及简介

超声波测距原理及简介超声波测距是什么由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。

利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人研制上也得到了广泛的应用。

为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。

本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。

超声波测距原理1、超声波发生器为了研究和利用超声波,人们已经设计和制成了许多超声波发生器.总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。

电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。

它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。

目前较为常用的是压电式超声波发生器。

2、压电式超声波发生器原理压电式超声波发生器实际上是利用压电晶体的谐振来工作的。

超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板.当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。

反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。

3、超声波测距原理超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。

超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 .这就是所谓的时间差测距法。

超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离.由此可见,超声波测距原理与雷达原理是一样的。

超声波测距原理

超声波测距原理

一、超声波测距原理超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。

超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S ,即:S = v·△t /2 ①这就是所谓的时间差测距法。

由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。

在使用时,如果温度变化不大, 则可认为声速是基本不变的。

常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。

如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。

已知现场环境温度T 时, 超声波传播速度V 的计算公式为:V = 331.45 + 0.607T ②声速确定后,只要测得超声波往返的时间,即可求得距离。

这就是超声波测距仪的机理。

二、系统硬件电路设计图2 超声波测距仪系统框图基于单片机的超声波测距仪框图如图2所示。

该系统由单片机定时器产生40KHZ的频率信号、超声波传感器、接收处理电路和显示电路等构成。

单片机是整个系统的核心部件,它协调和控制各部分电路的工作。

工作过程:开机,单片机复位,然后控制程序使单片机输出载波为40kHz的10个脉冲信号加到超声波传感器上,使超声波发射器发射超声波。

当第一个超声波脉冲群发射结束后,单片机片内计数器开始计数,在检测到第一个回波脉冲的瞬间,计数器停止计数,这样就得到了从发射到接收的时间差△t;根据公式①、②计算出被测距离,由显示装置显示出来。

下面分别介绍各部分电路:1 、超声波发射电路超声波发射电路如图3所示,89C51通过外部引脚P1.0 输出脉冲宽度为250μs , 40kHz的10个脉冲串通过超声波驱动电路以推挽方式加到超声波传感器而发射出超声波。

超声波测距

超声波测距

2.3 超声波测距原理和方法超声波测距方法从原理上可分为共振式、脉冲反射式[4]两种。

由于共振法的应用要求复杂,一般采用脉冲反射式。

超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时(也有发射后开始计时,看各种情况不同运用方式),超声波在空气中传播,碰到障碍物就立即反射回来,超声波接收器收到反射波就立即停止计时(也有在接到最后一个返回波后停止计时,看设计者出发点而定)。

图2-6 超声波测距原理图在已知超声波在空气中的传播速度为V 的前提下,利用:12S VT = (2-1)即可计算得传感器与反射点之间的距离S ,测量距离:22()2hd s =- (2-2)当S>>h 时,则d ≈S ,即根据计时器记录的测出发射与接收回波的时间差T ,就可以计算出发射点距障碍物的距离S ,即:12d VT = (2-3)这就是所谓的时间差测距法。

由于超声波也是一种声波,其声速V 与温度有关,附表列出了几种不同温度下的声速。

在使用时,如果温度变化不大,则可认为声速是基本不变的。

如果测距精度要求很高,则应通过温度补偿法加以校正。

以下给出声速与温度的关系表2-1:表2-1 声速与温度的关系表温度/℃ -30 -20 -1 声速:m/s3338344350386声速确定后,只要测得超声波往返的时间,即可求得距离,这就是超声波测距原理。

在理想状态下的超声波测距原理如图2-7所示:图2-7 理想状态下的超声波测距原理2.4系统涉及的主要参数2.4.1传感器的指向角传感器的指向角是声束半功率点的夹角,是影响测距的一个重要技术参数,记为θ,它直接影响测量的分辨率。

对圆片传感器来说,它的大小与工作波长λ,传感器半径r 有关。

由:(2π/λ)* r *sin (θ/2)=1.615 (2-4)当040f kHz =时,λ=C/0f =8.5mm 。

当0f 选定后,指向角θ近似与传感器半径成反比。

超声波测距原理

超声波测距原理

一、引言由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。

利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。

为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。

本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。

二、超声波测距原理1、超声波发生器为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。

总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。

电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。

它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。

目前较为常用的是压电式超声波发生器。

2、压电式超声波发生器原理压电式超声波发生器实际上是利用压电晶体的谐振来工作的。

超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。

当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。

反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。

3、超声波测距原理超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。

超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 图1 超声波传感器结构这就是所谓的时间差测距法。

三、超声波测距系统的电路设计本系统的特点是利用单片机控制超声波的发射和对超声波自发射至接收往返时间的计时,单片机选用8751,经济易用,且片内有4K的ROM,便于编程。

超声波测距电路图

超声波测距电路图

超声波测距电路图超声波测距电路原理和制作由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。

利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。

为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。

本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。

二、超声波测距原理1、超声波发生器为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。

总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。

电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。

它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。

目前较为常用的是压电式超声波发生器。

2、压电式超声波发生器原理压电式超声波发生器实际上是利用压电晶体的谐振来工作的。

超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。

当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。

反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。

3、超声波测距原理超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。

超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2图1 超声波传感器结构这就是所谓的时间差测距法。

三超声波测距原理的应用

三超声波测距原理的应用

三超声波测距原理的应用一、引言三超声波测距技术是一种常用的测量距离的方法,它利用超声波的特性实现了准确、可靠的距离测量。

本文将介绍三超声波测距原理以及其在实际应用中的一些案例。

二、三超声波测距原理三超声波测距原理是基于声波在空气中传播的特性进行测距的方法。

该方法通过利用超声波在空气中传播的速度快、传播路径直线的特点,实现对距离的准确测量。

三超声波测距的原理可以简述为以下几个步骤: 1. 发射超声波信号:通过发射设备发射超声波信号。

2. 超声波传播:超声波信号在空气中以固定的速度传播。

3. 接收超声波信号:在目标物体上反射的超声波信号由接收设备接收。

4. 处理信号:通过电子设备对接收到的超声波信号进行处理。

5. 计算距离:根据超声波的传播速度和信号的传播时间计算得到距离。

三、三超声波测距的应用案例三超声波测距技术在实际应用中有着广泛的应用。

以下是几个应用案例:1. 智能车辆避障系统智能车辆避障系统是利用三超声波测距技术实现的一种自动避障功能。

通过在车辆前方安装超声波传感器,系统可以实时感知到前方障碍物的距离,并通过对距离数据的处理,实现自动停车或转向避开障碍物。

2. 工业自动化生产线在工业生产线上,三超声波测距技术被广泛应用于测量产品的位置和距离。

通过在生产线上布置多个超声波传感器,可以准确地测量产品的位置,并实现对产品的自动处理。

3. 室内定位系统室内定位系统是指在室内环境中使用三超声波测距技术进行定位和导航。

通过在建筑物内安装多个超声波传感器,系统可以实时测量用户在建筑物内的位置,为用户提供室内导航和定位服务。

4. 无人机导航无人机导航是利用三超声波测距技术实现的一种无人机定位和导航功能。

通过在无人机上安装超声波传感器,系统可以实时测量无人机与地面或障碍物的距离,并根据距离数据控制无人机的飞行轨迹,实现自动避障和定位。

四、总结三超声波测距技术是一种准确、可靠的测量距离的方法,其原理基于超声波在空气中的传播特性。

超声波测距仪原理

超声波测距仪原理

超声波测距仪原理
超声波测距仪是一种利用超声波的特性来测量距离的仪器。

它的测量原理基于声波在不同介质中传播速度不同的特点。

超声波是一种高频声波,其频率通常在20kHz到1GHz之间。

超声波测距仪通过发射超声波并接收其反射信号,来计算测量物体与测距仪之间的距离。

超声波测距仪由发射器和接收器两部分组成。

发射器发射出超声波脉冲,然后接收器接收到脉冲的反射信号。

测距仪通过计算脉冲信号的往返时间,并结合声波在空气中的传播速度,来确定物体与测距仪之间的距离。

具体测量过程如下:
1. 发射器发出一个超声波脉冲。

2. 超声波脉冲在空气中迅速传播,当遇到物体时会发生一部分反射。

3. 接收器接收到反射的超声波信号。

4. 通过计算脉冲的往返时间,即从发射到接收的时间间隔,可以得到声波在空气中行进的时间。

5. 根据声波在空气中的传播速度(通常为343米/秒),可以
利用时间和速度的关系来计算出物体与测距仪之间的距离。

超声波测距仪的精确度取决于发射器和接收器的性能,以及环境的影响。

例如,超声波在不同介质中的传播速度会有所不同,因此在不同介质中测量距离时需要进行相应的校正。

总的来说,超声波测距仪利用声波的传播速度和往返时间的关系来测量距离。

它被广泛应用于工业领域中的测量和控制系统中,常见的应用包括距离测量、物体检测和障碍物避免等。

超声波测距原理模型

超声波测距原理模型

超声波测距原理模型
1. 发射器:
发射器是一种能够产生高频率超声波脉冲的装置,通常采用压电陶瓷材料制成。

当施加电压时,压电陶瓷会产生机械振动,从而发射出超声波脉冲。

2. 传播介质:
超声波在传播介质(通常为空气)中以一定的速度传播。

在标准大气压和20℃环境下,声速约为343米/秒。

3. 反射:
当超声波脉冲遇到障碍物时,会发生反射。

反射波携带着目标物体距离信息,返回到接收器。

4. 接收器:
接收器也是由压电陶瓷制成,能够将机械振动转换为电信号。

当反射波到达接收器时,压电陶瓷会产生相应的电信号。

5. 时间测量:
测距系统会精确记录发射脉冲和接收反射波之间的时间间隔。

已知声速,根据时间间隔即可计算出目标物体的距离。

6. 距离计算:
距离计算公式为:距离 = (时间间隔 × 声速) / 2
由于声波需要往返传播,因此时间间隔需要除以2。

超声波测距原理模型的优点是结构简单、成本低廉、测距精度较高。

但也存在一些局限性,如测距范围有限、受环境噪声和温度影响较大等。

在实际应用中,需要进行适当的校准和优化,以提高测距的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种常见的超声波测距原理图
超声波测距原理
超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。

超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 。

这就是所谓的时间差测距法。

超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。

由此可见,超声波测距原理与雷达原理是一样的。

测距的公式表示为:L=C&TImes;T
式中L为测量的距离长度;C为超声波在空气中的传播速度;T为测量距离传播的时间差(T为发射到接收时间数值的一半)。

相关文档
最新文档