初中九年级数学 正多边形和圆

合集下载

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计一. 教材分析人教版九年级数学上册《第二十四章圆24.3正多边形和圆》的内容包括正多边形的定义、性质和圆的定义、性质。

本章节的目的是让学生理解正多边形和圆的关系,掌握正多边形的计算方法,以及了解圆的性质和应用。

本节课的教学内容是24.3正多边形和圆,主要包括正多边形的定义、性质和圆的定义、性质。

二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对于图形的理解和计算能力有一定的基础。

但是,对于正多边形和圆的关系,以及圆的性质和应用可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索正多边形和圆的性质,提高他们的空间想象能力和思维能力。

三. 教学目标1.知识与技能:使学生掌握正多边形的定义、性质,理解圆的定义、性质,能够运用正多边形和圆的知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:正多边形的定义、性质,圆的定义、性质。

2.难点:正多边形和圆的关系,圆的性质和应用。

五. 教学方法1.情境教学法:通过实物、图片、几何画板等直观教具,引导学生观察、操作、思考,激发学生的学习兴趣。

2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。

3.合作学习法:学生进行小组讨论,培养学生的团队合作意识和交流能力。

4.归纳总结法:引导学生通过总结归纳,形成系统的知识结构。

六. 教学准备1.教学课件:制作精美的课件,包括图片、几何画板等直观教具。

2.教学素材:准备相关的实物、图片等教学素材。

3.教学用具:准备黑板、粉笔、直尺、圆规等教学用具。

七. 教学过程1.导入(5分钟)利用实物、图片等教学素材,引导学生观察正多边形和圆的实例,激发学生的学习兴趣。

九年级数学同步辅导与测试——正多边形和圆

九年级数学同步辅导与测试——正多边形和圆

九年级数学同步辅导与测试——正多边形和圆重点、难点:1. 正多边形的定义:各边相等、各内角也相等的多边形叫正多边形。

2. 正多边形与圆的关系(1)把圆分成n (n ≥3)等份,有如下结论:其一:依次连结各分点所得的多边形是这个圆的内接正n 边形,这圆是正n 边形的外接圆。

其二:经过各分点作圆的切线以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形,这圆是正n 边形的内切圆。

(2)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

3. 有关的概念(1)正多边形的中心 (2)正多边形的半径 (3)正多边形的边心距 (4)正多边形的中心角4. 正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形。

这里我们设:正n 边形的中心角为α,半径为R ,边心距为r ,边长为a n ,周长为P n ,面积为S n ,则有();();();();();();136022*********4561212222α=︒=⋅︒=⋅︒=⋅=⋅=⋅⋅=⋅na R nr R nR r a P n a S n r a r P n n n n n n n sin cos()正多边形的每一个内角,内角和721802180=-⋅︒=-⋅︒()().n n n5. 每一个正多边形都是轴对称图形,当边数为偶数时,它还是中心对称图形。

6. 重点和难点:(1)重点是正多边形的计算问题,计算通常是通过解直角三角形来解决的,所以在解这类题时,要尽量创造直角三角形,把所求的问题放到直角三角形中去,尤其是含30°、60°角的直角三角形和等腰直角三角形更重要。

(2)难点是灵活运用正多边形的知识和概念解题。

〖知识总结〗正多边形的定义要理解后记牢,这里各边都相等,各角都相等,缺一不可,边数一样多的正多边形是相似多边形。

对于任意三角形来讲都有外接圆和内切圆,但注意只有正三角形的外接圆和内切圆是同心圆。

有关正多边形的计算实质是把问题转化为解直角三角形的计算,所以这里要用到三角函数及勾股定理等有关知识。

初三数学正多边形和圆公式

初三数学正多边形和圆公式

初三数学正多边形和圆公式
正多边形和圆是中学数学学习中一个重要的课题,其中正多边形和圆的公式是学生必须掌握的知识点。

一、正多边形的公式
1、行心角公式:Σinterior angles = (n - 2 )×180°
其中,Σinterior angles表示角之和,n表示多边形内角的个数。

2、每内角度数公式:interior angle = (n - 2 )×180°/n
3、外角之和公式:Σexterior angles = 360°
其中,Σexterior angles表示外角之和。

4、外角度数公式:exterior angle= 360°/n
5、正多边形的周长公式:P= a × n
二、圆的公式
1、定义公式:圆:(x-a)^2+(y-b)^2=r^2
其中,a和b表示圆心坐标,r表示圆的半径。

2、圆的周长公式:C=2πr
3、圆的面积公式:S=πr^2
4、弦长公式:L=2πr × 角度
5、弦长公式:A=2πR × (1-cosα)
以上就是高中数学关于正多边形和圆的公式,希望可以帮助到大家学习和掌握。

人教版数学九年级上册24.3.2《正多边形和圆》教案

人教版数学九年级上册24.3.2《正多边形和圆》教案

人教版数学九年级上册24.3.2《正多边形和圆》教案一. 教材分析《正多边形和圆》是人民教育出版社出版的数学九年级上册第24章第三节的内容。

本节内容主要介绍了正多边形的定义、性质以及与圆的关系。

通过学习正多边形和圆,学生能够理解圆的定义,掌握圆的性质,并能够运用圆的知识解决实际问题。

二. 学情分析九年级的学生已经掌握了多边形的基本概念和性质,具备一定的逻辑思维能力。

但是对于正多边形和圆的关系的理解可能存在一定的困难。

因此,在教学过程中,需要通过实例和图形的演示,帮助学生建立直观的认识,引导学生主动探究正多边形和圆的性质。

三. 教学目标1.知识与技能:–能够理解正多边形的定义和性质。

–能够理解圆的定义和性质。

–能够运用正多边形和圆的知识解决实际问题。

2.过程与方法:–通过观察和操作,培养学生的观察能力和动手能力。

–通过小组合作,培养学生的合作能力和沟通能力。

3.情感态度与价值观:–培养学生对数学的兴趣和好奇心。

–培养学生的自主学习能力和解决问题的能力。

四. 教学重难点•正多边形的定义和性质。

•圆的定义和性质。

•正多边形和圆的关系的理解。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正多边形和圆的性质。

2.通过实例和图形的演示,帮助学生建立直观的认识。

3.采用小组合作的学习方式,培养学生的合作能力和沟通能力。

六. 教学准备1.准备相关的图形和图片,用于演示和解释正多边形和圆的性质。

2.准备练习题和实际问题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)–利用图片和实例,引导学生回顾多边形的基本概念和性质。

–提出问题,引导学生思考正多边形和圆的关系。

2.呈现(15分钟)–通过图形和实例,展示正多边形的定义和性质。

–解释正多边形和圆的关系,引导学生理解圆的定义和性质。

3.操练(15分钟)–学生分组合作,进行实际操作,探究正多边形和圆的性质。

–教师引导学生进行讨论和交流,解答学生的疑问。

人教版初中九年级上册数学课件 《正多边形和圆》圆

人教版初中九年级上册数学课件 《正多边形和圆》圆
18
解:要使△PCD 的周长最小,即 PC+PD 的值最小.根
据正多边形的性质,得点 C 关于 BE 的对称点为点 A,连接 AD
交 BE 于点 P,那么有 PC+PD=AD 最小.易知四边形 ABCD
为等腰梯形,∠BAD=∠CDA=60°.作 BM⊥AD 于点 M,CN
⊥AD 于点 N.∵AB=2,∴AM=12AB=1,∴DN=AM=1,∴
能超过( A )
A.12 mm
B.12 3 mm
C.6 mm
D.6 3 mm
3.已知圆内接正三角形的面积为 3,则该圆的内接正六边形的边心距是( B )
A.2
B.1
C. 3
D.
3 2
7
4.【贵州贵阳中考】如图,正六边形 ABCDEF 内接于⊙O,连接 BD.则∠CBD 的度数是( A )
A.30° C.60°
10
8.【教材P106练习T3变式】如图,正八边 形ABCDEFGH的半径为2,求它的面积.
11
解:连接 AO、BO、CO、AC. ∵正八边形 ABCDEFGH 的半径为 2,∴AO= BO=CO=2,∠AOB=∠BOC=360°×18=45°,∴∠AOC=90°,∴AC=2 2,此时 AC⊥BO,∴S 四边形 ABCO=12BO·AC=12×2×2 2=2 2,∴正八边形 ABCDEFGH 的面 积为 2 2×4=8 2.
B.45° D.90°
8
5.如图,正六边形 ABCDEF 内接于半径为 4 的圆,则 B、E 两点间的距离为___8___.
9
6.将一个边长为 1 的正六边形补成如图所示的矩形,则矩形的周长等于 ___4_+__2__3____.(结果保留根号)
43 7.【山东滨州中考】若正六边形的内切圆半径为 2,则其外接圆半径为___3___.

2023-2024学年九年级上数学:正多边形和圆(精讲教师版)

2023-2024学年九年级上数学:正多边形和圆(精讲教师版)

2023-2024学年九年级上数学:第24章圆
24.3
正多边形和圆
正多边形和圆
(1)正多边形与圆的关系
只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.
一个正多边形的外接圆的圆心叫作这个正多边形的中心,外接圆的半径叫作这个正多边形的半径;正多边形每一边所对的圆心角叫作正多边形的中心角;中心到正多边形的一边的距离叫做正多边形的边心距.
把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.
第1页(共15页)。

九年级数学正多边形和圆

九年级数学正多边形和圆

A
求证: 正五边形的对角线相等
B D
E
C
类比联想
怎样找圆的内接正三角 形?怎样找圆的外切正 三角形? •怎样找圆的内接正方 形?怎样找圆的外切正 方形?
A
D
B
H
A D
C
E B F CG来自•怎样找圆的内接正n边 形?怎样找圆的外切正 n边形?
把圆分成n(n≥3)等份: ⑴依次连结各分点所得的多边形是这 个圆的内接正多边形; ⑵经过各分点作圆的切线,以相邻切 线的交点为顶点的多边形是这个圆的 外切正多边形。
有没有外接圆和内切圆? 怎样作出这两个圆? 这两个圆有什么位置关系?
那么,正n边形呢?
定理
任何正多边形都有一个外接圆和一个 内切圆,并且这两个圆是同心圆。
正多边形的外接圆(或内切圆)的圆心叫 做正多边形的中心,外接圆的半径叫做正 多边形的半径,内切圆的半径叫做正多边 形的边心距。正多边形各边所对的外接圆 的圆心角叫做正多边形的中心角。正n边 形的每个中心角都等于360°/n。
P B
A
T E O S
∵TP、PQ、QR分别是以A、B、C
为切点的⊙O的切线 ∴∠OAP=∠OBP=∠OBQ=∠OCQ
Q
C R D
∴∠PAB=∠PBA=∠QBC=∠QCB
⌒ ⌒ 又∵AB=BC
∴AB=BC
∴△PAB与△QBC是全等 的等腰三角形。 ∴∠P=∠Q PQ=2PA 同理∠Q=∠R=∠S=∠T QR=RS=ST=TP=2PA 又∵五边形PQRST的各边都与 ⊙O相切, ∴五边形PQRST的是O外切正五 边形。
1、判断题。
×) ②一个圆有且只有一个内接正多边形。 ( × ) P A F
①各边都相等的多边形是正多边形。 ( 2、证明题。

九年级数学上册教学课件《正多边形和圆》

九年级数学上册教学课件《正多边形和圆》
A
B
4.如图,要拧开一个边长为a=6mm的正六边形螺帽,扳手张开的开口b至少为多少?
解:如图,∠ABC=120°. AB=BC=a, AC=b.过B作BD⊥AC于点D,则AD=DC= b.在Rt△ABD中,∠BAC=30°,∴BD= AB=3mm.∴b=2AD=6 mm.即扳手张开的开口b至少要6 mm.

利用勾股定理,可得边心距
亭子地基的面积
怎样画一个正多边形呢? 问题1:已知⊙O的半径为2cm,求作圆的内接正三角形.
120°
①用量角器度量,使∠AOB=∠BOC=∠COA=120°.②用量角器或30°角的三角板度量,使∠BAO=∠CAO=30°.
A
O
C
B
有关正多边形的作图
知识点3
你能用以上方法画出正四边形、正五边形、正六边形吗?
3. 分别求半径为R的圆内接正三角形、正方形的边长、边 心距和面积.
【教材P106练习 第3题】
解:半径为R的圆内接正三角形的边长为 R,边心距为 R,面积为 R2.
半径为R的圆内接正方形的边长为 R,边心距为 R,面积为2R2.
即x2+8x-16=0.
6.如图,已知正五边形ABCDE中,BF与CM相交于点P,CF=DM.(1)求证:△BCF≌△CDM;(2)求∠BPM的度数.
综合应用
(1)证明:在正五边形ABCDE中, BC=CD,∠BCF=∠CDM, 又CF=DM, ∴△BCF≌△CDM.(2)解:由(1)知∠FBC=∠MCD, ∴∠BPM=∠FBC+∠BCM =∠MCD+∠BCM =∠BCF= ×180°=108°.
5.如图,正方形的边长为4cm,剪去四个角后成为一个正八边形,求这个正八边形的边长和面积.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.3 正多边形和圆
教学任务分
板书设
课后反
问题与情境
师生行为
设计意图
活动一:复习提问
1.什么样的图形叫做正多边形?
展示图片(课本P 113页图片),你还能举出一些这样的例子吗?
2.正多边形与圆有什么关系呢? (引出课题)
活动二:等分圆周
问题:为什么等分圆周就能得到正多边形呢?
教师提出问题,学生进行回答:各边相等,各角相等的多边形叫做正多边形.并举出
生活中的例子.
教师可再展示一些图片让学生欣赏.
学生根据教师提出的问题进行思考,回忆圆的有关知识,进而回答教师提出的问题.即等分圆周,就可以得到圆内接正多边形,这个圆叫做这个正多边形的外接圆. 教师提出问题后,学生认真思考、交流,充分发表自己的见解,并互相补充.教师在
学生归纳的基础上进行补充,并以正五边形为例进行证明. 复习正多边形的概念,为今天的课程做准备.
激发学生的学习兴趣.
培养学生的思维品质,将正多边形与圆联系起来.并由此引出今天的课题.
问题与情境 师生行为 设计意图
活动三:如何等分圆周呢? 问题: 已知⊙O 的半径为2cm ,求作圆的内接正三角形.
教师在学生思考、交流的基础上板书证明过程: 如图, ∵AB BC CD DE EA ====
∴AB BC CD DE EA ====
3BAD CAE AB ==
∴ C D ∠=∠
同理可证:A B C D E ∠=∠=∠=∠=∠
∴ 五边形ABCDE 是正五边形.
∵A 、B 、C 、D 、E 在⊙O 上,
∴五边形ABCDE 是圆内接正五边形.
教师提出问题后,学生思考、交流自己
的见解,教师组织学生进行作图,方法不限.
以下为解决问题的参考方案:(上课时
教师归纳学生的方法)
(1)度量法:①用量角器或30°角的三角板度量,使∠BAO =∠CAO =30°,如图1.
②用量角器度量,使∠AOB =∠BOC =∠COA =120°,如图2.
(2)尺规作图:用圆规在⊙O 上截取长度等
于半径(2cm )的弦,连结AB 、BC 、
CA 即可,如图3.
(3)计算与尺规作图结合法:由正三
角形的半径与边长的关系可得,正三角形的边长=3 R=23(cm ),用圆规在⊙O
使学生理
解、体会圆与正多边形的内在联系.
充分发
展学生的发散思维.
让学生充
分利用手中
的工具,实际
操作,认真思
考,从而培养学生的动手能力.
O
E
D
C
B
A
B
O
C A
O B
A
C
O C
A
B
图1 图2 图3
教学过程设计
在师生共同作图的基础上,归纳出:正多边形与圆有着密切的联系.如:圆既是轴对称图形,又是中心对称图形,且它的每一条直径所在的直线都是它的对称轴,圆具有旋转不变性.正多边形也是轴对称图形,正n 边形有n 条对称轴,当n 为偶数时,它也是中心对称图形,且绕中
心旋转360n
,都能
和原来的图形重合.结合图4,给出正多边形的中心、半径、中心角、边心距等概念.
同样说明正多边形与圆有着很多内在的联系.
活动四:实际应用
参照图5,按照一定比例,画一个停车让行的交通标志的外缘. 在学生作图的基础上,教师归纳出等分圆周的方法:
1.用量角器等分圆:
依据:同圆中相等的圆心角所对应的弧相等.
操作:两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个圆心角,然后在圆上依次截取等于该圆心角所对弧的等弧,于是得到圆的等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正多边形的边长误差较大. 2.用尺规等分圆:
(1)作正四边形、正八边形.
教师组织学生,分析、作图.归纳:只要做出已知⊙O 的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O 相交,或作各中心角的角平分线与⊙O 相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形…… (2)作正六、三、十二边形. 教师组织学生,分析、作图.
归纳:先做出正六边形,则可作正三角形,正十二边形,正二十四边形……理论上我们可以一直画下去,但大家不难发现,随着边数的增加,正多边形越来越接近于圆,正多边形将越来越难画.
教师提出问题后,学生认真思考,并在笔记本上试着作图,再与同学进行交流.
教给学生等分圆周的方法,尤其是尺规作正方形、正六边形.
使学生体会随着正多边形边数的增多,正多边形越来越接近圆.
问题与情境
师生行为 设计意图
教学过程设计
边心距r 半径R 中心角F O E D C
B A 图4
扩展资料:
活动五:方案设计
某学校在教学楼前的圆形广场中,准备建造一个花园,并在花园内分别种植牡丹、月季和杜鹃三种花卉。

为了美观,种植要求如下:
(1)种植4块面积相等的牡丹、4块面积相等的
月季和一块杜鹃。

(注意:面积相等必须由数学知识作保证)
(2)花卉总面积等于广场面积
(3)花园边界只能种植牡丹花,杜鹃花种植在花园中间且与牡丹花没有公共边。

请你设计种植方案:(设计的方案越多越好;不同的方案类型不同.)
活动六:课堂小结
1.本节课中,你有什么收获与大家交流?
2. 布置作业:P 116页:练习;P 117页:2,4.并与大家交流.
教师要关注学生对问题的理解,对等分圆周方法的掌握程度.
教师提出
问题后,让学生认真思考
后,设计出最美的图案,并用实物投影展示自己的作
品. 要求①尺规作图;②说
明画法;③指出作图依据;
④学生独立完
成. 教师巡视,对画的好的学生给予表扬,对有问题的学生给予指导.
学生归纳总结本节课的内容,教师作补充.
教师布置作业,学生记录.
应用等分圆周的方法作图.
发展学生作图的能力,对学生进行美的教育,发展学生作图能力.
巩固本节课所学的内容.

图5
1.我国民间相传有五边形的近似画法,画法口诀是:“九五顶五九,八五两边分”,它的意义如图:如果正五边形的边长为10,作它的中垂线AF ,取AF =15.4,在AF 上取FM =9.5,则AM =5.9,过点M 作BE AF ,在BE 上取BM =ME =8.连结AB 、BC 、DE 、EA 即可.
例:用民间相传画法口诀,画边长为20mm 的正五边形.
分析:要画边长20mm 的正五边形,关键在于计算出口诀中各部分的尺寸,由于要画的正五边形与口诀正五边形相似,所以要画的正五边形的各部分应与口诀正五边形各部分对应成比例.由已知知道要画正五边形的边CD =20mm .请同学们算出各部分的尺寸,并按口诀画出正五边形ABCDE .
2.尺规作正五边形
(1) 在⊙O 中作互相垂直的两条直径AB 和CD ;
(2) 取半径OB 的中点F ,以点F 为圆心,AF 为半径作弧,
交OA 于点E ;
(3) 以点D 为圆心,AE 为半径作弧,交⊙O 于M 、N ; (4) 分别心M 、N 为圆心,以AE 为半径作弧,交⊙O 于P 、
Q .
则D 、M 、P 、Q 、N 就是⊙O 的五等分点.
3. 小圆覆盖大圆
“覆盖问题”在实际中经常遇到,如三颗同步通信卫星就可以覆盖整个地球,一个物体能否覆盖住另一个物体等等.下面举一个日常生活中的问题:在一场演出中,根据需要必须用灯光照亮舞台中一个半径为2米的圆形区域,但不巧,当时没有这样的灯,舞台监督要求用另一种可照半径l 米的灯光代替,使其灯光照到指定区域的每一点.那么这样至少需几盏代用灯?
我们用数学语言叙述即最少需要几个半径为l 的圆才能完全覆盖半径为2的圆?(各圆可相互叠放)
设半径为2的圆的圆心是O ,在圆周上作正六边形ABCDEF ,其边长都是2.再分别以各边中点为圆心作六个半径为l 的圆(见图)各圆的圆周除相交于A ,B ,C ,D ,E ,F
O
E
M P
Q
F
各点外,还相交于A l,B l,C l,D l,E l,F l各点并构成边长为l的正六边形的顶点.涂线部分只要以O为圆心并以半径l作圆即可覆盖,一共要七个圆.
不难看出只用六个小圆是不行的.大圆的圆周必需有六个小圆才能盖满,这时中央的小圆是不可缺少的.。

相关文档
最新文档