24.3 正多边形和圆(第2课时)
正多边形和圆(第2课时)课件

正多边形的所有内角和总是等于 (n-2) × 180°,其中 n 是多边形的边数。
3 外角和
正多边形的所有外角和总是等于 360°。
如何绘制正多边形?
1
步骤 2
2
使用直尺和量角器,将圆上的点与中心
点相连,得到多边形的顶点。
3
步骤 1
确定中心点,并绘制一个半径 r 的圆。
步骤 3
连接相邻的顶点,得到正多边形。
正多边形和圆的关系
1
圆内接正多边形
2
在一个圆内,可以找到多边形的边与圆
的各边相切的情况,这种多边形称为圆
内接正多边形。
3
逼近圆
通过增加正多边形的边数,正多边形可 以越接近圆的形状,从而用来逼近圆。
圆外切正多边形
在一个圆外,可以找到多边形的边与圆 的各边相切的情况,这种多边形称为圆 外切正多边形。
弧长和扇形
圆的弧长是圆上某段弧的长度,扇形是由圆心 和两个圆弧端点所围成的区域。
直径和半径
圆的直径是通过圆心并且两端点都在圆上的一 条线段,半径是从圆心到圆上的一点的线段。
切线
切线是与圆上的一点相切且在该点垂直于半径 的直线。
圆的绘制方法
要绘制一个圆,可以使用以下方法之一: 1. 以圆心为中心,使用固定长度的半径绘制圆上的点并连接,直到得到一个 闭合的形状。 2. 使用圆规和直尺来绘制圆上的点,然后连接这些点以得到圆的形状。 无论哪种方法,都需要保持手的稳定和规范的绘图工具。
正多边形和圆(第2课 时)ppt课件
本课时介绍正多边形的定义、性质以及如何绘制。另外,还将探讨如何用正 多边形近似刻画圆,以及圆的定义、性质和长相等、所有内角相等的多边形。它们的美丽和对称性 使得它们在数学和几何中备受推崇。
人教版九年级数学上册24.3.2《正多边形和圆(2)》说课稿

人教版九年级数学上册24.3.2《正多边形和圆(2)》说课稿一. 教材分析人教版九年级数学上册24.3.2《正多边形和圆(2)》这一节主要介绍了正多边形的性质以及正多边形与圆的关系。
在教材中,通过图形的观察和推理,引导学生发现正多边形的性质,并且能够运用这些性质解决实际问题。
教材内容紧凑,逻辑清晰,通过丰富的例题和练习题,帮助学生巩固所学知识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和推理能力有一定的掌握。
但是,对于正多边形的性质以及与圆的关系的理解还需要进一步的引导和培养。
因此,在教学过程中,需要关注学生的学习情况,针对学生的特点进行教学设计和调整。
三. 说教学目标1.知识与技能:通过学习,使学生了解正多边形的性质,能够运用这些性质解决实际问题;培养学生对圆的性质的理解,能够运用圆的性质解决几何问题。
2.过程与方法:通过观察、推理、交流等方法,培养学生的图形认知能力和逻辑思维能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 说教学重难点1.教学重点:正多边形的性质,以及正多边形与圆的关系。
2.教学难点:正多边形的性质的证明,以及如何运用这些性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究,积极思考。
2.教学手段:利用多媒体课件,直观展示图形的性质和变化,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示一些生活中的正多边形和圆的图形,引导学生对正多边形和圆的性质产生兴趣,激发学生的学习热情。
2.新课导入:介绍正多边形的定义和性质,通过示例和练习,使学生掌握正多边形的性质。
3.知识拓展:引导学生发现正多边形与圆的关系,通过示例和练习,使学生理解正多边形与圆的性质。
4.课堂练习:设计一些具有挑战性的练习题,引导学生运用所学的知识解决实际问题。
5.小结:通过总结本节课所学的内容,帮助学生巩固知识,提高学生的总结能力。
24.3_正多边形和圆(2课时)

A A A A A A A . A2 3 n A3 4 1 A4 5 2 A1 A2 n 1
先说A1
A
D
B
C
弦相等(多边形的边相等)
弧相等—
圆周角相等(多边形的角相等)
—多边形是正多边形
我们把一个正多边形的外接圆的圆心叫做 这个正多边形的中心.
外接圆的半径叫做正多边形的半径. 正多边形每一边所对的圆心角 叫做正多边形的中心角.
F E
若正多边形的周长为l, 边心距为r,则:
A
O
D
lr S=_________。 2
1
B
C
例 有一个亭子,它的地基半径为4m的正六 边形,求地基的周长和面积(精确到0.1m2).
360 解: 如图由于ABCDEF是正六边形,所以它的中心角等于 60, 6
△OBC是等边三角形,从而正六边形的边长等于它的半径.
B
D
小结:画正多边形的方法
1.用量角器等分圆 画正多边形的方法 2.尺规作图等分圆
A
如图:
已知点A、B、C、D、 E是⊙O 的5等分点, 画出⊙O的内接和外 切正五边形
B O C D
E
1、判断题。
①各边都相等的多边形是正多边形。( × ) ②一个圆有且只有一个内接正多边形.( ×) 2、证明题。
A
D.24m
B C
D
怎样画一个正多边形呢? 问题1:已知⊙O的半径为2cm,求作圆的 内接正三角形.
A
120 ° O C B
①用量角器度量,使 ∠AOB=∠BOC=∠C OA=120°. ②用量角器或30°角 的三角板度量,使 ∠BAO=∠CAO=30° .
你能用以上方法画出正四边形、正五边 形、正六边形吗?
人教版九年级数学上册《24.3 正多边形和圆》 教案 第2课时

第二十四章圆24.3 正多边形和圆第2课时一、教学目标1.巩固正多边形与圆的关系.2.掌握用尺规画图作正多边形.二、教学重点及难点重点:画特殊的正多边形.难点:利用直尺与圆规作特殊的正多边形.三、教学用具多媒体课件,三角板、直尺、圆规、量角器.四、相关资源五、教学过程【复习回顾,引入新课】师生活动:教师展示复习的课件,让学生回顾上节课所学知识.设计意图:通过复习正多边形与圆相关定义,为本节课学习正多边形画法作好铺垫.【合作探究,形成新知】实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关,我们一起探究正六边形的画法.我们可以用量角器画正六边形吗?如果可以,请说说作图原理.师生活动:四人一组,小组讨论、交流,一名学生回答,全班订正.学生回答不足的地方,教师补充.归纳用“量角器等分圆”:依据:同圆中相等的圆心角所对应的弧相等.操作:两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个圆心角,然后在圆上依次截取等于该圆心角所对弧的等弧,于是得到圆的等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正多边形的边长误差较大.【例题分析,深化提升】例有没有其他作正六边形的方法?你能用尺规作出圆的内接正六边形吗?试试看.师生活动:教师组织学生思考作图的方法,先让学生独立思考,再与小组同学协作完成,有方法的小组通过实物投影展示,对完成较好的同学给予表扬.教师引导学生观察正六边形,从而使其回忆起正六边形的边长等于半径,找到作图的方法,然后学生自己动手作图.设计意图:充分发挥学生的发散思维,让学生充分利用手中的工具,实际操作,认真思考,从而培养学生的动手能力.【练习巩固,综合应用】已知⊙O的半径为1 cm,求作⊙O的内接正八边形.解:(1)如图所示,作直径AC,使AC=2 cm.(2)作AC的中垂线BD交⊙O于B,D两点.(3)连接AD,作AD的中垂线交AD于M点.,,的中点E,F,G.(4)用同样的方法作出AB BC CD(5)依次连接各分点,即得正八边形.正八边形AEBFCGDM即为所求作的⊙O的内接正八边形.设计意图:巩固正多边形画法.六、课堂小结学完这节课你有哪些收获?1.量角器画正多边形2.尺规作正多边形师生活动:学生自己总结,不全面的由其他学生补充完善.教师重点关注:不同层次学生对本节知识的理解、掌握程度.设计意图:让学生总结出自己的收获,理清思路、整理经验,从而形成良好的学习习惯,同时也提出自己的疑问和困惑便于教师及时反馈.七、板书设计24.3 正多边形和圆(2)1.量角器画正多边形2.尺规作正多边形。
人教版数学九年级上册24.3正多边形和圆(第2课时)教学设计

4.强调数学知识在实际生活中的应用,激发学生学习数学的兴趣。
五、作业布置
为了巩固本节课所学的正多边形和圆的知识,以及提高学生的应用能力和思维能力,特布置以下作业:
1.基础巩固题:请同学们完成课本第XX页的练习题1-5,重点复习正多边形的性质、内角和、外角和的计算方法,以及正多边形与圆的相互关系。
4.思考题:请同学们思考以下问题,下节课进行分享和讨论:
(1)为什么正多边形的外角和为360°?
(2)如何判断一个多边形是否为正多边形?
(3)正多边形与圆的性质在解决实际问题时有什么优势?
5.预习作业:预习下一节课的内容,了解圆的内接多边形和外切多边形的性质,为课堂学习做好准备。
作业要求:
1.请同学们按时完成作业,保持字迹工整,确保作业质量。
4.借助几何画板等教学工具,直观展示正多边形和圆的性质,加深学生对知识的理解。
(三)学生小组讨论,500字
在学生小组讨论环节,我将组织学生进行以下活动:
1.将学生分成若干小组,每组讨论一个问题,如正多边形内角和的计算方法、正多边形与圆的关系等。
2.每个小组派代表汇报讨论成果,其他小组进行补充和评价。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-正多边形的性质及其与圆的关系。
-运用圆的性质解决正多边形相关问题。
-正多边形周长和面积的计算方法。
2.教学难点:
-正多边形内角和、外角和的计算。
-正多边形与圆结合的综合问题解决。
-空间想象能力的培养。
(二)教学设想
1.教学方法:
-采用启发式教学法,引导学生通过观察、探索、讨论等方式发现正多边形的性质,培养学生自主学习能力。
九年级数学上册24.3正多边形和圆(第2课时)教案新人教版

24.3 正多边形和圆教学内容24.3 正多边形和圆(2).教学目标1.理解正多边形的性质.2.会画正多边形,了解依次连结圆的n等分点所得的多边形是正多边形,过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.教学重点正多边形的画法.教学难点对正n边形中泛指“n”的理解.教学步骤一、导入新课实际生活中,经常遇到画正多边形的问题,比如画一个六角螺帽的平面图、画一个五角星等,这些问题都与等分圆周有关.二、新课教学我们知道,依次连结圆的五等分点所得的圆内接五边形是正五边形.如果n等分圆周,(n ≥3)、n=6,n=8……是否也正确呢?教师引导学生充分讨论.因为在同圆中,弧等弦等,n等分圆就得到n条弦等,也就是n边形的各边都相等.又n 边形的每个内角对圆的(n-2)条弧,而每一内角所对的弧都相等,根据弧等、圆周角相等,证明了n边形的各角都相等,因此圆内接正五边形的证明具有代表性.定理:把圆分成n(n≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形.为何要“依次"连结各分点呢?缺少“依次”二字会出现什么现象?大家讨论讨论看看.我们还可以用圆心角来等分圆周.由于同圆中相等的圆心角所对的弧相等,因此作相等的圆心角就可以等分圆周,从而得到相应的正多边形.例如,画一个边长为1。
5 cm 的正六边形时,可以以 1.5 cm为半径作一个⊙O,用量角器画一个等360 =60°的圆心角,它对着一段弧,然后在圆上依次截取与这条弧于6相等的弧,就得到圆的6个等分点,顺次连接各分点,即可得到正六边形(如下图).对于一些特殊的正多边形,还可以用圆规和直尺来作.如,用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作出正方形(下图).三、巩固联系教材第108页练习.四、课堂小结今天学习了什么,有什么收获?五、布置作业习题24.3 第4、6题.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
人教版九年级数学上册《正多边形和圆(第2课时)》示范教学课件

例1 如图,画⊙O 的内接正三角形.
解:先画⊙O 的内接正六边形,再在 正六边形的基础上,选择不相邻的三个顶 点,顺次连接,即可作正三角形.如图, △DBF是⊙O 的内接正三角形.
E
D
F
O
C
A
B
例2 如图,画⊙O 的内接正八边形.
解:先画圆的内接正四边形,再在正 四边形的基础上用直尺和圆规分别作与正 四边形相邻两边垂直的直径,即可作正八 边形.如图,八边形 AHBFCGDE 是⊙O 的内接正八边形.
E
D
F
O
C
A
B
探究 如图,作⊙O 的内接正方形.
解:用直尺和圆规作两条相互垂直的直径,就可以把圆四等分,
从而作出⊙O 的内接正方形,如图所示. D
AO
C
B
归纳
用等分圆周画正多边形的方法:
1.只用量角器:在半径为 R 的圆中,用量角器把 360°圆心
角 n 等分,即可把半径为 R 的圆周 n 等分,顺次连接各分点即可得
H
A
B
O
E
F
D
C
G
按照此方法可以作出正十六边形、正三十二边形、正六十四边 形……也可以作出正十二边形、正二十四边形……
许多图案设计都和圆有关,下图就是一些利用等分圆周设计出 的图案.
其中一个图案的设计过程如下:
利用某些正多边形可以镶嵌整个平面的性质,还可以设计出一 些美丽的图案,如图.
练习 试一试:利用圆或正多边形设计一些图案.
分,然后顺次连接各分点即可.
如何等分圆周? 因为同圆中相等的圆心角所对的弧相等,所以作相等的圆心角 就可以等分圆周.
解:方法 1 (1)作一个⊙O ;
人教版九年级数学上册《正多边形和圆》第2课时教学课件

∴ = ,
∴
1
∠ = ∠ = 60°,
2
∴ △ 是等边三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
30°
30°
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
方法
用量角器度量,使∠ = ∠ = 30°.
但画图的误差积累到最后一个等分点,误差较大.
3
尺规作图,虽然精确,但不是任意等分圆周都能用这种
方法,而且作图时存在误差.
4
本节课提到的其他一些方法只适用于某些特殊的正多边形.
练习
1
如何在半径为 的⊙ 中作出内接正九边形呢?
40°
练习
2
如何借助圆画出一个五角星呢?
72°
72°
练习
情境引入
实际生活中,经常遇到画正多边形的问题,比如画一个
六角螺帽的平面图,画一个五角星等,这些问题都与等分圆
周有关. 要制造如下图中的零件,也需要等分圆周.
引入新知
已知⊙ 的半径为 ,画圆的内接正三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
3
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
方法
用圆规在⊙ 上顺次截取两条长度等于 3 的弦,连
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.探究新知
已知⊙O 的半径为 2 cm,画圆的内接正三角形. 度量法②: 用量角器度量,使∠AOB=∠BOC=∠COA=120°.
B O C A
2.探究新知
已知⊙O 的半径为 2 cm,画圆的内接正三角形. 度量法③: 用圆规在⊙、BC、CA 即可.
九年级
上册
24.3 正多边形和圆(第2课时)
课件说明
• 由于正多边形在生产和生活中有着广泛的应用,因此 很多时候需要画正多边形.利用等分圆周的方法,可 以画出任意的正多边形;利用尺规作图,可以画出一 些特殊的正多边形.等分圆周方法画正多边形体现了 正多边形与圆的关系;尺规作图画正多边形体现了一 些特殊的正多边形的性质.
先画半径为 2 cm 的圆,然后把 360°的圆心角 9 等 分,每一份 40°,顺次连接圆心和各等分点.
2.探究新知
如何用尺规作图的方法画圆的内接正方形? 只要作出已知⊙O 的互相垂直的直径,就可以把圆 四等分,从而作出圆内接正方形,再过圆心作各边的垂 线与⊙O 相交,或作各中心角的角平分线与⊙O 相交, 即可以作出圆内接正八边形,照此方法依次可作正十六 边形、正三十二边形、正六十四边形……
3.课堂小结
(1)如何用等分圆周的方法画正多边形? (2)举例说明如何利用尺规作图画一些特殊的正 多边形.
4.布置作业
尝试用不同的方法画一个正六边形.
B O C A
2.探究新知
如何用等分圆周的方法画正多边形? 其一:依次画出相等的中心角来等分圆. 比较准确,但是麻烦. 其二:先用量角器画一个中心角,然后在圆上依次 截取等于该中心角所对弧的等弧,于是得到圆的等分点. 方便,但画图的误差积累到最后一个等分点,误差 较大.
2.探究新知
你能把半径为 2 cm 的 ⊙O 九等分吗?
1.创设情境,导入新知
正多边形和圆有什么关系? 你能借助圆画一个正多边形吗?
2.探究新知
已知⊙O 的半径为 2 cm,画圆的内接正三角形.
O
2.探究新知
已知⊙O 的半径为 2 cm,画圆的内接正三角形. 度量法①: 用量角器或 30°角的三角板度量,使∠BAO= ∠CAO=30°.
B O C 1 2 A
课件说明
• 学习目标: 1.理解正多边形和圆的关系,会利用等分圆周的方 法画正多边形,会利用尺规作图的方法画一些特 殊的正多边形; 2.在画正多边形和利用正多边形设计图案的过程中, 发展观察、比较、分析、概括及归纳的思维能力, 体验数学与生活的紧密相连,感受正多边形和圆 的和谐美. • 学习重点: 利用等分圆周画正多边形.