2019-2020学年广东省深圳市龙岗区龙城中学、新梓学校八年级下学期期中数学试卷 (解析版)
2019-2020学年八年级下学期期中考试数学试卷附解答

2019-2020学年八年级下学期期中考试数学试卷一、选择题(每小题3分,共30分 1.(3分)如图分别给出了变量x 与y 之间的对应关系,其中y 不是x 的函数是( )A .B .C .D .2.(3分)下列式子中,属于最简二次根式的是( ) A .12B .23C .0.3D .73.(3分)已知三角形三边的长分别为3、2、5,则该三角形的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法确定4.(3分)下列判断错误的是( ) A .对角线相等四边形是矩形B .对角线相互垂直平分四边形是菱形C .对角线相互垂直且相等的平行四边形是正方形D .对角线相互平分的四边形是平行四边形 5.(3分)当0b <时,一次函数2y x b =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限 6.(3分)如图,一个梯子AB 斜靠在一竖直的墙AO 上,测得2AO m =.若梯子的顶端沿墙下滑0.5m ,这时梯子的底端也恰好外移0.5m ,则梯子的长度AB 为( )m .A .2.5B .3C .1.5D .3.57.(3分)已知点1(2,)y -,(1,0),2(3,)y 都在一次函数2y kx =-的图象上,则1y ,2y ,0的大小关系是( ) A .120y y <<B .120y y <<C .120y y <<D .210y y <<8.(3分)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若3EF=,4BD=,则菱形ABCD的周长为()A.4B.46C.47D.289.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D的坐标为(2,0),E为AB上的点,当CDE∆的周长最小时,点E的坐标为()A.(1,3)B.(3,1)C.(4,1)D.(3,2)10.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,则ABC∆的周长最小是()A.12B.4522+C.55D.2542+二、填空题(每小题3分,共15分)11.(3分)函数2xyx+=的自变量x的取值范围是.12.(3分)如图,平行四边形ABCD的对角线AC,BD交于点O,已知10AD=,14BD=,8AC=,则OBC∆的周长为.13.(3分)若方程组2x y b x y a +=⎧⎨-=⎩的解是13x y =-⎧⎨=⎩,则直线2y x b =-+与直线y x a =-的交点坐标是 .14.(3分)已知:如图,90ABC ADC ∠=∠=︒,M 、N 分别是AC 、BD 的中点,10AC =,8BD =,则MN = .15.(3分)如图1,在平面直角坐标系中,将ABCD Y 放置在第一象限,且//AB x 轴.直线y x =-从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度n 与直线在x 轴上平移的距离m 的函数图象如图2所示,则ABCD Y 的面积为 .三、解答题(共8题,共75分)16.(10分)(1)计算132728712483⨯-÷+- (2)已知21x =-,21y =+,求代数式22x y xy +的值. 17.(8分)已知一次函数的图象经过(3,8)A 和(3,4)B --两点. (1)求这个一次函数的关系式;(2)若点(,21)P a a -+在这个函数的图象上,求a 的值.18.(9分)如图,点D ,C 在BF 上,//AC DE ,A E ∠=∠,BD CF =. (1)求证:AB EF =;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.19.(9分)如图,在边长为1的小正方形组成的网格中,四边形ABCD 的四个顶点都在格点上,请按要求完成下列各题.(1)线段AB 的长为 ,BC 的长为 ,CD 的长为 ;(2)连接AC ,通过计算说明ACD ∆和ABC ∆是什么特殊三角形.20.(9分)某汽车出发前油箱内有油42L ,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量()Q L 与行驶时间()t h 之间的函数关系如图所示. (1)汽车行驶 h 后加油,加油量为 L ;(2)求加油前油箱剩余油量Q 与行驶时间t 之间的函数关系式;(3)如果加油站离目的地还有200km ,车速为40/km h ,请直接写出汽车到达目的地时,油箱中还有多少汽油?21.(9分)某市在城中村改造中,需要种植A 、B 两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A 、B 两种树苗的成本价及成活率如表: 品种 购买价(元/棵)成活率 A 28 90%B4095%设种植A 种树苗x 棵,承包商获得的利润为y 元. (1)求y 与x 之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少? 22.(10分)如图,在ABC ∆中,点O 是AC 边上的一个动点,过点O 作直线//MN BC ,设MN 交BCA ∠的角平分线于点E ,交BCA ∠的外角平分线于点F . (1)求证:EO FO =;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(3)当点O 运动到何处,且ABC ∆满足什么条件时,四边形AECF 是正方形?并说明理由.23.(11分)如图,已知直线334y x =+与坐标轴交于B ,C 两点,点A 是x 轴正半轴上一点,并且15ABC S ∆=,点F 是线段AB 上一动点(不与端点重合),过点F 作//FE x 轴,交BC 于E .(1)求AB 所在直线的解析式;(2)若FD x ⊥轴于D ,且点D 的坐标为(,0)m ,请用含m 的代数式表示DF 与EF 的长; (3)在x 轴上是否存在一点P ,使得PEF ∆为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分 1.(3分)如图分别给出了变量x 与y 之间的对应关系,其中y 不是x 的函数是( )A .B .C .D .【考点】2E :函数的概念【分析】函数的意义反映在图象上简单的判断方法是:做垂直x 轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B中y不是x的函数.故选:B.【点评】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.2.(3分)下列式子中,属于最简二次根式的是()A.12B.23C.0.3D.7【考点】74:最简二次根式【分析】根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可.【解答】解:A、1223=,不是最简二次根式,故本选项错误;B、21633=,不是最简二次根式,故本选项错误;C、10.33010=,不是最简二次根式,故本选项错误;D、7是最简二次根式,故本选项正确;故选:D.【点评】本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.3.(3分)已知三角形三边的长分别为3、2、5,则该三角形的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【考点】KS:勾股定理的逆定理【分析】两小边的平方和等于最长边的平方,即可由勾股定理的逆定理证明三角形是直角三角形.【解答】解:2222(5)3+=Q,∴该三角形是直角三角形,故选:B.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足222a b c+=,那么这个三角形就是直角三角形.知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.4.(3分)下列判断错误的是()A.对角线相等四边形是矩形B.对角线相互垂直平分四边形是菱形C.对角线相互垂直且相等的平行四边形是正方形D.对角线相互平分的四边形是平行四边形【考点】7L:平行四边形的判定与性质;LC:矩形的判定;9L:菱形的判定;LF:正方形的判定【分析】利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项. 【解答】解:A 、对角线相等四边形是矩形,错误; B 、对角线相互垂直平分四边形是菱形,正确;C 、对角线相互垂直且相等的平行四边形是正方形,正确;D 、对角线相互平分的四边形是平行四边形,正确; 故选:A .【点评】本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大. 5.(3分)当0b <时,一次函数2y x b =+的图象经过(( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 【考点】7F :一次函数图象与系数的关系【分析】根据一次函数系数的正负,可得出一次函数图象经过的象限,由此即可得出结论. 【解答】解:10k =>Q ,0b <,∴一次函数y x b =+的图象经过第一、三、四象限.故选:D . 【点评】本题考查了一次函数图象与系数的关系,解题的关键是找出函数图象经过的象限.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数图象与系数的关系找出函数图象经过的象限是关键. 6.(3分)如图,一个梯子AB 斜靠在一竖直的墙AO 上,测得2AO m =.若梯子的顶端沿墙下滑0.5m ,这时梯子的底端也恰好外移0.5m ,则梯子的长度AB 为( )m .A .2.5B .3C .1.5D .3.5 【考点】KU :勾股定理的应用【分析】设BO xm =,利用勾股定理用x 表示出AB 和CD 的长,进而求出x 的值,即可求出AB 的长度.【解答】解:设BO xm =,依题意,得0.5AC =,0.5BD =,2AO =. 在Rt AOB ∆中,根据勾股定理得 222222AB AO OB x =+=+, 在Rt COD ∆中,根据勾股定理22222(20.5)(0.5)CD CO OD x =+=-++, 22222(20.5)(0.5)x x ∴+=-++,解得 1.5x =,22215 2.5AB ∴=+=g ,答:梯子AB 的长为2.5m .故选:A .【点评】本题考查了勾股定理在实际生活中的应用,本题中找到AB CD =为梯子长等量关系是解题的关键.7.(3分)已知点1(2,)y -,(1,0),2(3,)y 都在一次函数2y kx =-的图象上,则1y ,2y ,0的大小关系是( ) A .120y y <<B .120y y <<C .120y y <<D .210y y <<【考点】8F :一次函数图象上点的坐标特征【分析】先根据点(1,0)在一次函数2y kx =-的图象上,求出20k =>,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论. 【解答】解:Q 点(1,0)在一次函数2y kx =-的图象上, 20k ∴-=,20k ∴=>,y ∴随x 的增大而增大, 213-<<Q ,120y y ∴<<.故选:B . 【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质. 8.(3分)如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF .若3EF =,4BD =,则菱形ABCD 的周长为( )A .4B .46C .47D .28【考点】KX :三角形中位线定理;8L :菱形的性质【分析】首先利用三角形的中位线定理得出AC ,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【解答】解:EQ,F分别是AB,BC边上的中点,3EF=,223AC EF∴==,Q四边形ABCD是菱形,AC BD ∴⊥,132OA AC==,122OB BD==,227AB OA OB∴=+=,∴菱形ABCD的周长为47.故选:C.【点评】此题考查菱形的性质,三角形的中位线定理,勾股定理,掌握菱形的性质是解决问题的关键.9.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D的坐标为(2,0),E为AB上的点,当CDE∆的周长最小时,点E的坐标为()A.(1,3)B.(3,1)C.(4,1)D.(3,2)【考点】5D:坐标与图形性质;LB:矩形的性质;PA:轴对称-最短路线问题【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时CDE∆的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时CDE∆的周长最小.(2,0)DQ,(3,0)A,(4,0)H∴,设直线CH解析式为y ax b=+,则404a bb+=⎧⎨=⎩,解得:14ab=-⎧⎨=⎩,故直线CH解析式为4y x=-+,3x∴=时,341y=-+=,∴点E坐标(3,1)故选:B.【点评】本题考查矩形的性质、坐标与图形的性质、轴对称-最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.10.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,则ABC∆的周长最小是()A.12B.4522++C.55D.2542【考点】5D:坐标与图形性质;PA:轴对称-最短路线问题【分析】根据轴对称作最短路线得出AE B E=',进而得出B O C O∆的周'=',即可得出ABC长最小时C点坐标进而可求出ABC∆的周长.【解答】解:作B点关于y轴对称点B'点,连接AB',交y轴于点C',此时ABC∆的周长最小,Q点A、B的坐标分别为(1,4)和(3,0),∴'点坐标为:(3,0)AE=,B-,4则4B E'=,即B E AE'=,Q,'C O AE//∴'='=,3B OC O∆的周长最小为∴点C'的坐标是(0,3),此时ABC2222'+=+++=+.AB AB44244225故选:D.【点评】此题主要考查了利用轴对称求最短路线以及平行线的性质和勾股定理的运用,根据已知得出C 点位置是解题关键. 二、填空题(每小题3分,共15分)11.(3分)函数2x y x+=的自变量x 的取值范围是 2x -…且0x ≠ . 【考点】4E :函数自变量的取值范围【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:20x +…且0x ≠, 解得:2x -…且0x ≠.故答案为:2x -…且0x ≠. 【点评】本题考查函数自变量的取值范围,知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.(3分)如图,平行四边形ABCD 的对角线AC ,BD 交于点O ,已知10AD =,14BD =,8AC =,则OBC ∆的周长为 21 .【考点】5L :平行四边形的性质【分析】由平行四边形的性质得出4OA OC ==,7OB OD ==,10BC AD ==,即可求出OBC ∆的周长.【解答】解:Q 四边形ABCD 是平行四边形,4OA OC ∴==,7OB OD ==,10BC AD ==,OBC ∴∆的周长471021OB OC AD =++=++=.故答案为:21【点评】本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.13.(3分)若方程组2x y b x y a +=⎧⎨-=⎩的解是13x y =-⎧⎨=⎩,则直线2y x b =-+与直线y x a =-的交点坐标是 (1,3)- .【考点】FE :一次函数与二元一次方程(组)【分析】根据两个函数图象的交点就是两个函数组成的方程组的解可得答案.【解答】解:因为方程组2x y b x y a +=⎧⎨-=⎩的解是13x y =-⎧⎨=⎩, 所以直线2y x b =-+与直线y x a =-的交点坐标是(1,3)-,故答案为:(1,3)-,【点评】此题主要考查了二元一次方程(组)与一次函数的关系,关键是掌握两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.14.(3分)已知:如图,90ABC ADC ∠=∠=︒,M 、N 分别是AC 、BD 的中点,10AC =,8BD =,则MN = 3 .【考点】KP :直角三角形斜边上的中线【分析】根据在直角三角形中,斜边上的中线等于斜边的一半得到5BM DM ==,根据等腰三角形的性质得到4BN =,根据勾股定理得到答案.【解答】解:连接BM 、DM ,90ABC ADC ∠=∠=︒Q ,M 是AC 的中点,152BM DM AC ∴===, N Q 是BD 的中点,MN BD ∴⊥,142BN BD ∴==, 由勾股定理得:2222543MN BM BN =-=-=,故答案为:3.【点评】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.15.(3分)如图1,在平面直角坐标系中,将ABCD Y 放置在第一象限,且//AB x 轴.直线y x =-从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度n 与直线在x 轴上平移的距离m 的函数图象如图2所示,则ABCD Y 的面积为 10 .【考点】7E :动点问题的函数图象【分析】根据图象可以得到当移动的距离是3时,直线经过点A ,当移动距离是7时,直线经过D ,在移动距离是8时经过B ,则835AB =-=,当直线经过D 点,设交AB 与N ,则22DN =,作DM AB ⊥于点M .利用三角函数即可求得DM 即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A ,当移动距离是7时,直线经过D ,在移动距离是8时经过B ,则835AB =-=, 当直线经过D 点,设交AB 与N ,则22DN =,如图,作DM AB ⊥于点M .y x =-Q 与x 轴形成的角是45︒,又//AB x Q 轴,45DNM ∴∠=︒,2sin 452222DM DN ∴=︒=⨯=g , 则平行四边形的面积是:5210AB DM =⨯=g ,故答案为:10.【点评】本题考查了函数的图象,根据图象理解AB 的长度,正确求得平行四边形的高是关键.三、解答题(共8题,共75分) 16.(10分)(1)计算132728712483⨯-÷+- (2)已知21x =-,21y =+,求代数式22x y xy +的值.【考点】7A :二次根式的化简求值;76:分母有理化【分析】(1)利用二次根式运算法则计算即可;(2)先分解因式,然后代入求值.【解答】解:(1)原式924343=-+-11=;(2)22x y xy +()xy x y =+ (21)(21)(2121)=-+-++122=⨯22=.【点评】本题考查了二次根式的化简求值,熟练分解因式是解题的关键.17.(8分)已知一次函数的图象经过(3,8)A 和(3,4)B --两点.(1)求这个一次函数的关系式;(2)若点(,21)P a a -+在这个函数的图象上,求a 的值.【考点】8F :一次函数图象上点的坐标特征;FA :待定系数法求一次函数解析式【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)把点P 的坐标代入函数解析式,利用方程求得a 的值.【解答】解:(1)设直线AB 的表达式为y kx b =+,Q 一次函数的图象经过(3,8)A 和(3,4)B --两点,∴3834k b k b +=⎧⎨-+=-⎩, 解得22k b =⎧⎨=⎩∴直线AB 的表达式为22y x =+;(2)由(1)知,直线AB 的表达式为22y x =+,把(,21)P a a -+代入,得2221a a +=-+解得14a =-. 【点评】主要考查了待定系数法求函数解析式,一次函数图象上点的坐标特征,解本题的关键是用方程的思想解决问题.18.(9分)如图,点D ,C 在BF 上,//AC DE ,A E ∠=∠,BD CF =.(1)求证:AB EF =;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.【考点】KD :全等三角形的判定与性质【分析】(1)利用AAS 证明ABC EFD ∆≅∆,再根据全等三角形的性质可得AB EF =;(2)首先根据全等三角形的性质可得B F ∠=∠,再根据内错角相等两直线平行可得到//AB EF ,又AB EF =,可证出四边形ABEF 为平行四边形.【解答】(1)证明://AC DE Q ,ACD EDF ∴∠=∠,BD CF =Q ,BD DC CF DC ∴+=+,即BC DF =,在ABC ∆与EFD ∆中ACD EDF A EBC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EFD AAS ∴∆≅∆,AB EF ∴=;(2)猜想:四边形ABEF 为平行四边形,理由如下:由(1)知ABC EFD ∆≅∆,B F ∴∠=∠,//AB EF ∴,又AB EF =Q ,∴四边形ABEF 为平行四边形.【点评】此题主要考查了全等三角形的判定与性质,平行四边形的判定,解决问题的关键是证明ABC EFD ∆≅∆.19.(9分)如图,在边长为1的小正方形组成的网格中,四边形ABCD 的四个顶点都在格点上,请按要求完成下列各题.(1)线段AB 的长为5 ,BC 的长为 ,CD 的长为 ;(2)连接AC ,通过计算说明ACD ∆和ABC ∆是什么特殊三角形.【考点】KQ :勾股定理;KS :勾股定理的逆定理【分析】(1)把线段AB 、BC 、CD 、放在一个直角三角形中利用勾股定理计算即可;(2)根据勾股定理的逆定理求出AC AD =,即可判断ACD ∆的形状;由勾股定理的逆定理得出ABC ∆是直角三角形.【解答】解:(1)由勾股定理得:22215AB =+=,22345BC =+=,222222CD =+=;故答案为:5,5,22;(2)222425AC =+=Q ,222425AD ==+=,AC AD ∴=,ACD ∴∆是等腰三角形;22252025AB AC BC +=+==Q ,ABC ∴∆是直角三角形.【点评】此题主要考查了勾股定理、勾股定理的逆定理以及等腰三角形的判定;熟练掌握勾股定理是解决问题的关键.20.(9分)某汽车出发前油箱内有油42L ,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量()Q L 与行驶时间()t h 之间的函数关系如图所示.(1)汽车行驶 5 h 后加油,加油量为 L ;(2)求加油前油箱剩余油量Q 与行驶时间t 之间的函数关系式;(3)如果加油站离目的地还有200km ,车速为40/km h ,请直接写出汽车到达目的地时,油箱中还有多少汽油?【考点】FH :一次函数的应用【分析】(1)根据函数图象的横坐标,可得答案;根据函数图象的纵坐标,可得加油量;(2)根据待定系数法,可得函数解析式;(3)根据汽车每小时的耗油量乘以汽车行驶200km 所需时间,可得汽车行驶200km 的耗油量,再用36升减去行驶200km 的耗油量,可得答案.【解答】解:(1)由横坐标看出,汽车行驶5小时后加油,由纵坐标看出,加了361224L -=油.故答案为5,24;(2)设解析式为Q kt b =+,将(0,42),(5,12)代入函数解析式,得42512b k b =⎧⎨+=⎩,解得642k b =-⎧⎨=⎩. 故加油前油箱剩余油量Q 与行驶时间t 之间的函数关系式为642Q t =-+;(3)汽车每小时耗油量为421265-=升, 汽车行驶200km ,车速为40/km h ,需要耗油20063040⨯=升, 36306-=升.故汽车到达目的地时,油箱中还有6升汽油.【点评】本题考查了一次函数的应用,利用待定系数法求一次函数的解析式.观察函数图象的横坐标得出时间,观察函数图象的纵坐标得出剩余油量是解题关键.21.(9分)某市在城中村改造中,需要种植A 、B 两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A 、B 两种树苗的成本价及成活率如表:品种购买价(元/棵) 成活率 A28 90% B 40 95%设种植A 种树苗x 棵,承包商获得的利润为y 元.(1)求y 与x 之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?【考点】9C :一元一次不等式的应用;FH :一次函数的应用【分析】(1)根据题意和表格中的数据可以得到y 与x 的函数关系式;(2)根据题意可以的得到相应的不等式,从而可以解答本题.【解答】解:(1)由题意可得,1500002840(3000)3000012y x x x =---=+,即y 与x 之间的函数关系式是1230000y x =+;(2)由题意可得,90%95%(3000)300093%x x +-⨯…,解得,1200x …,1230000y x =+Q ,∴当1200x =时,y 取得最大值,此时44400y =,即承包商购买A 种树苗1200棵,B 种树苗1800棵时,能获得最大利润,最大利润是44400元.【点评】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和不等式.22.(10分)如图,在ABCMN BC,∆中,点O是AC边上的一个动点,过点O作直线//设MN交BCA∠的角平分线于点E,交BCA∠的外角平分线于点F.(1)求证:EO FO=;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当点O运动到何处,且ABC∆满足什么条件时,四边形AECF是正方形?并说明理由.【考点】LD:矩形的判定与性质;LF:正方形的判定【分析】(1)由平行线的性质和角平分线的定义得出OCE OEC∠=∠,得∠=∠,OCF OFC出EO CO=,即可得出结论;=,FO CO(2)先证明四边形AECF是平行四边形,再由对角线相等,即可得出结论;(3)由正方形的性质得出45ACB ACE∠=∠=︒即可.∠=︒,得出290ACE【解答】解:(1)Q,MN BC//∴∠=∠,32又CF∠,Q平分GCO∴∠=∠,12∴∠=∠,13∴=,FO CO同理:EO CO=,EO FO∴=.(2)当点O运动到AC的中点时,四边形AECF是矩形.Q当点O运动到AC的中点时,AO CO=,又EO FOQ,=∴四边形AECF是平行四边形,由(1)可知,FO CO=,∴===,AO CO EO FO=,AO CO EO FO∴+=+,即AC EF∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且ABC∠为直角的直角三角形时,四边形∆满足ACBAECF是正方形.Q 由(2)知,当点O 运动到AC 的中点时,四边形AECF 是矩形,//MN BC Q ,AOE ACB ∴∠=∠90ACB ∠=︒Q ,90AOE ∴∠=︒,AC EF ∴⊥,∴四边形AECF 是正方形.【点评】本题考查了平行线的性质、等腰三角形的判定、矩形的判定、菱形的判定、正方形的性质;熟练掌握平行线的性质和矩形、菱形的判定方法,并能进行推理论证是解决问题的关键.23.(11分)如图,已知直线334y x =+与坐标轴交于B ,C 两点,点A 是轴正半轴上一点,并且15ABC S ∆=,点F 是线段AB 上一动点(不与端点重合),过点F 作//FE x 轴,交BC 于E .(1)求AB 所在直线的解析式;(2)若FD x ⊥轴于D ,且点D 的坐标为(,0)m ,请用含m 的代数式表示DF 与EF 的长;(3)在x 轴上是否存在一点P ,使得PEF ∆为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【考点】FI :一次函数综合题【分析】(1)由直线334y x =+可求得B 、C 坐标,再结合15ABC S ∆=,则可求得A 点坐标,利用待定系数法可求得直线AB 的解析式;(2)根据直线AB 解析式可求得F 点的纵坐标,即可表示出DF 的长,由//EF x 轴则可得出E 点纵坐标,代入直线BC 解析式可求得E 点横坐标,从而可表示出EF 的长;(3)设(,0)P t ,当90PFE ∠=︒时,则有PF EF =,则可得到关于x 的方程,可求得P 点坐标;当90PEF ∠=︒时,则有PE EF DF ==,可求得P 点坐标;当90EPF ∠=︒时,过P 作PH EF ⊥,由等腰直角三角形的性质可知12PH EF =,可求得D 点坐标,从而可求得P 点坐标.【解答】解:(1)在334y x =+中,令0x =可得3y =,令0y =可求得4x =-, (0,3)B ∴,(4,0)C -,3OB ∴=,4OC =,15ABC S ∆=Q ,∴1152AC OB =g ,即1(4)3152OA +⨯=,解得6OA =, (6,0)A ∴,设直线AB 解析式为y kx b =+,∴603k b b +=⎧⎨=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线AB 解析式为132y x =-+; (2)FD x ⊥Q 轴,且(,0)D m ,F ∴点横坐标为m , 在132y x =-+中,令x m =,可得132y m =-+, 132DF m ∴=-+, //EF x Q 轴,E ∴点纵坐标为132m -+, 在334y x =+中,令132y m =-+,可得133324m x -+=+,解得23x m =-, F Q 在线段AB 上,06m ∴<<2533EF m m m ∴=+=; (3)假设存在满足条件的点P ,设其坐标为(,0)t ,PEF ∆Q 为等腰直角三角形,∴有90PFE ∠=︒、90PEF ∠=︒和90EPF ∠=︒三种情况,①当90PFE ∠=︒时,则有PF EF =,由(2)可得132PF t =-+,53EF t =, 15323t t ∴-+=,解得1813t =, 18(13P ∴,0); ②当90PEF ∠=︒时,则有PE EF =, 在334y x =+中,令x t =可得334y t =+, 334PE t ∴=+, 在132y x =-+中,令334y t =+,可得313342t x +=-+,解得32x t =-, 35()22EF t t t ∴=-+-=-,∴35342t t +=-,解得1213t =-, 12(13P ∴-,0); ③当90EPF ∠=︒时,如图,过P 作PH EF ⊥于点H ,则PH HF PD EH DF ====,由(2)可知132DF m =-+,53EF m =, 1153223m m ∴-+=⨯,解得94m =, 19153248PD DF ∴==-⨯+=,94OD =, 9153488OP OD PD ∴=-=-=, 3(8P ∴,0); 综上可知存在满足条件的点P ,其坐标为18(13,0)或12(13-,0)或3(8P ,0). 【点评】本题为一次函数的综合应用,涉及三角形的面积、待定系数法、函数图象上点的坐标特征、等腰直角三角形的性质、方程思想及分类讨论思想.在(1)中求得A 点坐标是解题的关键,在(2)中分别表示出E 、F 的坐标是解题的关键,在(3)中确定出P 点的位置,利用等腰直角三角形的性质得到关于P 点坐标的方程是解题的关键,注意分三种情况.本题考查知识点较多,综合性较强,难度适中.。
广东省2019-2020学年八年级数学下学期期中测试卷一(含答案)

广东省 2019-2020学年下学期期中测试卷八年级数学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列四个式子中,x的取值范围为x≥2的是( )A. B. C. D.2.一直角三角形的两直角边长为12和16,则斜边长为( )A.12 B.16 C.18 D.203.如图,在□ ABC D中,已知AD=5 cm,AB=3 cm,AE平分∠BAD交BC边于点E,则EC 等于( )A.1 cm B.2 cm C.3 cm D.4 cm4.用配方法解方程x2-4x-7=0,原方程应变形为()A. (x+2)2=11B. (x-2)2=11C.(x+4)2=23D.(x-4)2=235.如图,点P是平面坐标系中一点,则点P到原点的距离是( )A.3 B. 2 C.7 D.536.下列根式中,是最简二次根式的是( )A.0.2bB.12a-12bC.x2-y2D.5ab27.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( ) A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形8.已知菱形ABC D中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.16 3 B.16 C.8 3 D.89.如图,在四边形ABC D中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD 的面积为8,则BE=( )A.2 B.3 C.2 2 D.2 310.如图所示,A(-3,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为( )A.74B. 2C. 3 D.2二、填空题(本大题共7小题,每小题4分,共28分)11.已知(x-y+3)2+2-y=0,则x+y=________.12.已知最简二次根式4a+3b与可以合并,则ab=________.13.下面四组数:①4,5,6;②6,8,10;③8,15,17;④9,40,41,其中有一组与其他三组规律不同的是________.14.如图,已知△AB C中,AB=5 cm,BC=12 cm,AC=13 cm,那么AC边上的中线BD的长为________cm.15.如图,在矩形ABC D中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则DF的长为________.16.如图,已知在Rt△AB C中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于________.17.如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a 于点F,若DE=4,BF=3,则EF的长为________.三、解答题(本大题共8小题,共62分.解答应写出文字说明、证明过程或演算步骤) 18.(6分)计算: (1) 212+3113-513-2348; (2)48-54÷2+(3-3)(1+13).19.(6分)已知x 、y 为实数,且y +1,求(-y )x的值20.(6分)在解答“判断由长为65、2、85的线段组成的三角形是不是直角三角形”一题中,小明是这样做的:解:设a =65,b =2,c =85.又因为a 2+b 2=(65)2+22=13625≠6425=c 2,所以由a 、b 、c 组成的三角形不是直角三角形,你认为小明的解答正确吗?请说明理由.21.(8分)如图,铁路上A、B两点相距25 km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15 km,CB=10 km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在离A站多少km处?22.(8分)如图,E、F、G、H分别是边AB、BC、CD、DA的中点.(1)判断四边形EFGH的形状,并证明你的结论;(2)当BD、AC满足什么条件时,四边形EFGH是正方形.(不要求证明)23.(8分)如图,四边形ABCD是一个菱形绿地,其周长为40 2 m,∠ABC=120°,在其内部有一个四边形花坛EFGH,其四个顶点恰好在菱形ABCD各边的中点,现在准备在花坛中种植茉莉花,其单价为10元/m2,请问需投资金多少元?(结果保留整数)24.(10分)如图,在平行四边形ABC D中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.25.(10分)如图,在Rt△AB C中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2) 四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.广东省2019-2020学年八年级数学下学期期中测试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列四个式子中,x的取值范围为x≥2的是( )A. B. C. D.【答案】C【解析】A、x-2≥0,且x-2≠0,解得:x>2,故此选项错误;B、x-2>0,解得:x>2,故此选项错误;C、x-2≥0,解得x≥2,故此选项正确;D、2-x≥0,解得x≤2,故此选项错误;2.一直角三角形的两直角边长为12和16,则斜边长为( )A.12 B.16 C.18 D.20【答案】D【解析】因为知道两个直角边长,根据勾股定理可求出斜边长.∵三角形的两直角边长为12和16,∴斜边长为:162+122=20.故选D3.如图,在□ ABC D中,已知AD=5 cm,AB=3 cm,AE平分∠BAD交BC边于点E,则EC 等于( )A.1 cm B.2 cm C.3 cm D.4 cm【答案】B【解析】本题难度中等,考查平行四边形中的计算.根据平行四边形的性质,可得AD∥BC,AD=BC=5,再根据AE平分∠BAD,可得△ABE是等腰三角形,BE=AB=3.所以EC=BC-BE =5-3=2,答案选择B.一般情况下,在几何图形中有平行线和角平分线就会得出等腰三角形.4.用配方法解方程x2-4x-7=0,原方程应变形为()A. (x+2)2=11B. (x-2)2=11C.(x+4)2=23D.(x-4)2=23【答案】B【解析】解:x2-4x=7,x2-4x+4=11,所以(x-2)2=11.故选B.5.如图,点P是平面坐标系中一点,则点P到原点的距离是( ) A.3 B. 2 C.7 D.53【答案】A【解析】连接PO,∵点P的坐标是(,),∴点P到原点的距离= =3故选A.6.下列根式中,是最简二次根式的是( )A.0.2bB.12a-12bC.x2-y2D.5ab2【答案】C【解析】因为:A、 =;B、 =2D、 = |b|;所以这三项都可化简,不是最简二次根式.故选C.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( ) A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形【答案】D【解析】A:正确,一组邻边相等的平行四边形是菱形;B:正确,对角线互相垂直的平行四边形是菱形;C:正确,有一专个角为90°的平行四边形是矩形;D:不正确,对角线相等的平行四边形是矩形而不属是正方形;故选D.8.已知菱形ABC D中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.16 3 B.16 C.8 3 D.8【答案】C【解析】∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC= ×4=2,∠BAC= ∠BAD= ×120°=60°,∴AC=4,∠AOB=90°,∴∠ABO=30°,∴AB=2,OA=4,OB=2,∴BD=2OB=4,∴该菱形的面积是:AC•BD=×4×4 =8,故选C.9.如图,在四边形ABC D中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD 的面积为8,则BE=( )A.2 B.3 C.2 2 D.2 3【答案】C【解析】解:过B点作BF⊥CD,与DC的延长线交于F点,∵∠FBC+∠CBE=90°,∠ABE+∠EBC=90°,∴∠FBC=∠ABE,在△BCF和△BE A中∴△BCF≌△BEA(AAS),则BE=BF,S四边形ABCD=S正方形BEDF=8,∴BE==2.故答案为2.10.如图所示,A(-3,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为( )A.74B. 2C. 3 D.2【答案】C【解析】解:过P点作PD⊥x轴,垂足为D,由A(-,0)、B(0,1),得OA=,OB=1,∵△ABC为等边三角形,由勾股定理,得AB==2,∴S△ABC=×2×=,又∵S△ABP=S△AOB+S梯形BODP-S△ADP=××1+ ×(1+a)×3- ×(+3)×a= ,由2S△ABP=S△ABC,得 +3- a=,∴a=.故选C.二、填空题(本大题共7小题,每小题4分,共28分)11.已知(x-y+3)2+2-y=0,则x+y=________.【答案】1【解析】∵(x-y+3)2+ =0,∴x-y+3=02-y=0 ,解得x=-1y=2 ,则x+y=-1+2=1,故答案为1.12.已知最简二次根式4a+3b与可以合并,则ab=________.【答案】1【解析】∵最简二次根式与可是同类二次根式,∴b+1=2 , 4a+3b=2a-b+6 ,解得:a=1,b=1,故=1.13.下面四组数:①4,5,6;②6,8,10;③8,15,17;④9,40,41,其中有一组与其他三组规律不同的是________.【答案】③【解析】第三组.因为第三组无法构成三角形14.如图,已知△AB C中,AB=5 cm,BC=12 cm,AC=13 cm,那么AC边上的中线BD的长为________cm.【答案】【解析】∵AB=5cm,BC=12cm,AC=13cm,由勾股定理的逆定理得,△ABC是直角三角形,∴BD= AC= cm.15.如图,在矩形ABC D中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则DF的长为________.【答案】6【解析】解:∵四边形ABCD是矩形,∴AB=DC=8,∠D=90°,∵将矩形ABCD沿CE折叠后,点B落在AD边的F点上,∴CF=BC=10,在Rt△CDF中,由勾股定理得:DF= = =617.如图,已知在Rt△AB C中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于________.【答案】2π【解析】S1= πAC2,S2= πBC2,所以S1+S2= π(AC2+BC2)= πAB2=2π.故答案为:2π.17.如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a 于点F,若DE=4,BF=3,则EF的长为________.【答案】7【解析】解:∵ABCD 是正方形 ∴AB =AD ,∠B =∠A =90° ∵∠B +∠ABF =∠A +∠DAE ∴∠ABF =∠DAE在△权AFB 和△AE D 中,∠ABF =∠DAE ,∠AFB =∠AED ,AB =AD ∴△AFB ≌△AED ∴AF =DE =4,BF =AE =3 ∴EF =AF +AE =4+3=7.三、解答题(本大题共8小题,共62分.解答应写出文字说明、证明过程或演算步骤) 18.(6分)计算: (1) 212+3113-513-2348; (2)48-54÷2+(3-3)(1+13). 【解析】(1)原式=4+2 -- =2 (2)原式= 4-+(1-)=4- -219.(6分)已知x 、y 为实数,且y 2014x -2014x - +1,求(-y )x的值【解析】x -2014≥0,2014-x ≥0; 解得:x =2014y =1(-y ) x = (-1)2014=120.(6分)在解答“判断由长为65、2、85的线段组成的三角形是不是直角三角形”一题中,小明是这样做的:解:设a =65,b =2,c =85.又因为a 2+b 2=(65)2+22=13625≠6425=c 2, 所以由a 、b 、c 组成的三角形不是直角三角形,你认为小明的解答正确吗?请说明理由.【解析】设a =,b =2,c =.∵a 2+b 2=()2+22 =,c 2=()2 = ,∴a 2+b 2≠c 2,∴这三条线段组成的三角形不是直角三角形.21.(8分)如图,铁路上A 、B 两点相距25 km ,C 、D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA =15 km ,CB =10 km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C 、D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?【解析】解:∵使得C ,D 两村到E 站的距离相等.∴DE =CE ,∵ DA ⊥AB 于A ,CB ⊥AB 于B ,∴∠A =∠B =90°,∴=,=∴=,设AE=x,则BE=AB-AE=(25-x),∵DA=15km,CB=10km,∴x2+152=(25-x)2+102,解得:x=10,∴AE=10km;22.(8分)如图,E、F、G、H分别是边AB、BC、CD、DA的中点.(1)判断四边形EFGH的形状,并证明你的结论;(2)当BD、AC满足什么条件时,四边形EFGH是正方形.(不要求证明) 【解析】(1)在△AB C中,E、F分别是边AB、B C中点,所以EF∥AC,且EF=AC,同理有GH∥AC,且GH=AC,∴EF∥GH且EF=GH,故四边形EFGH是平行四边形.(2)EH∥BD且EH= BD,若AC=BD,则有EH=EF,又因为四边形EFGH是平行四边形,∴四边形EFGH是菱形,∵AC⊥BD,∴∠EHG=90°,即:当AC=BD且AC⊥BD时,四边形EFGH是正方形.23.(8分)如图,四边形ABCD是一个菱形绿地,其周长为40 2 m,∠ABC=120°,在其内部有一个四边形花坛EFGH,其四个顶点恰好在菱形ABCD各边的中点,现在准备在花坛中种植茉莉花,其单价为10元/m2,请问需投资金多少元?(结果保留整数)【解析】连接BD,AC,∵菱形ABCD的周长为40m,∴菱形ABCD的边长为10m,∵∠ABC=120°,∴△ABD,△BCD是等边三角形,∴对角线BD=10m,AC=10m,∵E,F,G,H是菱形ABCD各边的中点,∴四边形EFGH是矩形,矩形的边长分别为5m,5m,∴矩形EFGH的面积为5×5=50(m2),即需投资金为50×10=500≈866(元).答:需投资金为866元.24.(10分)如图,在平行四边形ABC D中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.【解析】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∵点F为DC的延长线上的一点,∴AB∥DF,∴∠BAE=∠CFE,∠ECF=∠EBA,∵E为B C中点,∴BE=CE,则在△BAE和△CFE中,∠BAE=∠CFE∠ECF=∠EBABE=CE∴△BAE≌△CFE,∴AB=CF.(2)当BC=AF时,四边形ABFC是矩形.理由如下:∵AB∥CF,AB=CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.25.(10分)如图,在Rt△AB C中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2) 四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【解析】证明:(1)∵在Rt△AB C中,∠B=90°,AC=60cm,∠A=60°,∴∠C=90°-∠A=30°.∵CD=4t cm,AE=2t cm,又∵在直角CDF中,∠C=30°,∴DF=CD=2t cm,∴DF=AE;(2)能,∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60-4t=2t,解得:t=10,即当t=10时,□AEFD是菱形(3)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,∵∠A=60°,∴∠AED=30°,∴AD=AE=t,又AD=60-4t,即60-4t=t,解得t=12;②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AE D中∠A=60°,则∠ADE=30°,∴AD=2AE,即60-4t=4t,解得t=;③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当t=s或12s时,△DEF为直角三角形。
2020-2021学年广东省深圳市龙岗区八年级(下)期中数学试卷(学生版+解析版)

2020-2021学年广东省深圳市龙岗区八年级(下)期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)2021年3月,华为在深圳发布《华为创新和知识产权白皮书2020》,华为对遵循5G 标准的单台手机专利许可费不高于2.5美元,则下面表示专利许可费x 的不等关系正确的是( ) A . 2.5x >B . 2.5x <C . 2.5xD . 2.5x2.(3分)下列交通标志中既是中心对称图形,又是轴对称图形的是( )A .B .C .D .3.(3分)已知a b <,下列不等式中,变形正确的是( ) A .33a b ->-B .33a b> C .33a b ->- D .3131a b ->-4.(3分)下列等式中,从左到右的变形是因式分解的是( ) A .22(1)22x x x x -=- B .223(2)3x x x x -+=-+ C .222()2x y x xy y +=++D .22(2)x x x x -+=--5.(3分)不等式组24020x x -⎧⎨+>⎩的解集在数轴上表示正确的是( )A .B .C .D .6.(3分)在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x 题,可列不等式为( )A .105(20)80x x --B .105(20x x +- )80C .105(20)80x x -->D .105(20x x +- )80>7.(3分)下列说法,正确的是( )A .一个三角形两边的垂直平分线的交点到这个三角形三边的距离相等B .“若a b >,则22a b >”的逆命题是真命题C .在角的内部到角的两边距离相等的点一定在这个角的平分线上D .用反证法证明“三角形中必有一个角不大于60︒”,先假设这个三角形中有一个内角大于60︒8.(3分)如图,在ABC ∆中,45A ∠=︒,30B ∠=︒,尺规作图如下:分别以点B 、点C 为圆心,大于12BC 为半径作弧,连接两弧交点的直线交AB 于点D ,连接CD ,则ACD ∠的度数为( )A .45︒B .65︒C .60︒D .75︒9.(3分)如图,已知在ABC ∆中,CD 是AB 边上的高线,BE 平分ABC ∠,交CD 于点E ,5BC =,2DE =,则BCE ∆的面积等于( )A .10B .5C .4D .710.(3分)如图,点P 为定角AOB ∠平分线上的一个定点,且MPN ∠与AOB ∠互补.若MPN ∠在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论:①PM PN =;②OM ON +的值不变;③MN 的长不变;④四边形PMON 的面积不变,其中,正确结论的是( )A .①②③B .①②④C .①③④D .②③④二.填空题(共5小题,满分15分,每小题3分) 11.(3分)分解因式:23a a += .12.(3分)等腰三角形的一个内角为70︒,则这个等腰三角形的顶角为 .13.(3分)某商店对一商品进行促销活动,将定价为10元的商品,按以下方式优惠销售:若购买不超过5件按原价付款;若一次性购买5件以上,超过部分打8折.现有98元钱,最多可以购买该商品 件.14.(3分)如图,已知函数1y x =+和3y ax =+的图象交于点P ,点P 的横坐标为1,则关于x 的不等式13x ax ++的解集是 .15.(3分)如图,在Rt ABC ∆中,90C ∠=︒,23BC =,2AC =,点D 是BC 的中点,点E 是边AB 上一动点,沿DE 所在直线把BDE ∆翻折到△B DE '的位置,B D '交AB 于点F .若△AB F '为直角三角形,则AE 的长为 .三.解答题(共7小题,满分55分) 16.(6分)因式分解: (1)2015a ax --;(2)2(3)(26)a a ---. 17.(8分)解不等式(组): (1)3294x x +<-; (2)51414123x x x x <+⎧⎪⎨-+-⎪⎩①②.18.(6分)按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及ABC ∆的顶点都在格点上. (1)图中线段AB 的长度为 ;(2)将ABC ∆先向下平移2个单位长度,再向右平移5个单位长度得到△111A B C ,画出△111A B C ;(3)将ABC ∆绕点B 逆时针旋转90︒,画出旋转后得到的△222A B C ,直接写出点2A 、2C 的坐标.19.(8分)如图,在ABC ∆中,AB AC =,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE CF =,BD CE =.(1)求证:DEF ∆是等腰三角形; (2)当40A ∠=︒时,求DEF ∠的度数.20.(8分)如图,AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,垂足分别为点E ,F ,DB DC =.(1)求证:BE CF =;(2)如果//BD AC ,15DAF ∠=︒,求证:2AB DF =.21.(9分)某公司在疫情复工准备工作中,为了贯彻落实“生命重于泰山、疫情就是命令、防控就是责任”的思想,计划同时购买一定数量的甲、乙品牌消毒液,若购进甲品牌消毒液20瓶和乙品牌消毒液10瓶,共需资金1300元;若购进甲品牌消毒液10瓶和乙品牌消毒液10瓶,共需资金800元.(1)甲、乙品牌消毒液的单价分别是多少元?(2)该公司计划购进甲、乙品牌消毒液共50瓶,而可用于购买这两种商品的资金不超过1900元,且要求购买甲品牌消毒液的数量不少于乙品牌消毒液数量的一半.试问:该公司有哪几种购买方案?哪种方案花费资金最少?22.(10分)如图1,在平面直角坐标系中,直线AB 与x 轴、y 轴相交于(6,0)A 、(0,2)B 两点,动点C 在线段OA 上,将线段CB 绕着点C 顺时针旋转90︒得到CD ,此时点D 恰好落在直线AB 上时,过点D 作DE x ⊥轴于点E . (1)求证:BOC CED ∆≅∆;(2)求经过A 、B 两点的一次函数表达式.如图2,将BCD ∆沿x 轴正方向平移得△B C D ''',当直线B C ''经过点D 时,求点D 的坐标及△B C D '''的面积;(3)在x 轴上是否存在点P ,使得以C 、D 、P 为顶点的三角形是等腰三角形?若存在,请写出P 点的坐标.2020-2021学年广东省深圳市龙岗区八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)2021年3月,华为在深圳发布《华为创新和知识产权白皮书2020》,华为对遵循5G 标准的单台手机专利许可费不高于2.5美元,则下面表示专利许可费x 的不等关系正确的是( ) A . 2.5x >B . 2.5x <C . 2.5xD . 2.5x【解答】解:专利许可费不高于2.5美元, ∴专利许可费 2.5x .故选:C .2.(3分)下列交通标志中既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【解答】解:根据轴对称图形与中心对称图形的概念,知:A :是轴对称图形,而不是中心对称图形;B 、C :两者都不是;D :既是中心对称图形,又是轴对称图形.故选:D .3.(3分)已知a b <,下列不等式中,变形正确的是( ) A .33a b ->- B .33a b> C .33a b ->- D .3131a b ->-【解答】解:a b <,33a b ∴-<-,∴选项A 不正确;a b <,∴33a b <, ∴选项B 不正确;a b <, 33a b ∴->-,∴选项C 正确;a b <, 33a b ∴<, 3131a b ∴-<-,∴选项D 不正确.故选:C .4.(3分)下列等式中,从左到右的变形是因式分解的是( ) A .22(1)22x x x x -=- B .223(2)3x x x x -+=-+ C .222()2x y x xy y +=++D .22(2)x x x x -+=--【解答】解:A 、是整式的乘法,不是因式分解,故本选项不符合题意;B 、不是积的形式,不是因式分解,故本选项不符合题意;C 、是整式的乘法,不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选:D .5.(3分)不等式组24020x x -⎧⎨+>⎩的解集在数轴上表示正确的是( )A .B .C .D .【解答】解:24020x x -⎧⎨+>⎩①②,解不等式①,得2x , 解不等式②,得2x >-, ∴不等式组的解集是22x -<,在数轴上表示为:,故选:C .6.(3分)在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x 题,可列不等式为( )A .105(20)80x x --B .105(20x x +- )80C .105(20)80x x -->D .105(20x x +- )80>【解答】解:设答对x 道题,根据题意可得: 105(20)80x x --,故选:A .7.(3分)下列说法,正确的是( )A .一个三角形两边的垂直平分线的交点到这个三角形三边的距离相等B .“若a b >,则22a b >”的逆命题是真命题C .在角的内部到角的两边距离相等的点一定在这个角的平分线上D .用反证法证明“三角形中必有一个角不大于60︒”,先假设这个三角形中有一个内角大于60︒【解答】解:A 、一个三角形两边的垂直平分线的交点到这个三角形三个顶点的距离相等,故本选项说法错误,不符合题意;B 、“若a b >,则22a b >”的逆命题是若22a b >,则a b >,是假命题,例如22(2)0->,而20-<,故本选项说法错误,不符合题意;C 、在角的内部到角的两边距离相等的点一定在这个角的平分线上,本选项说法正确,符合题意;D 、用反证法证明“三角形中必有一个角不大于60︒”,先假设这个三角形中每一个内角都大于60︒,故本选项说法错误,不符合题意; 故选:C .8.(3分)如图,在ABC ∆中,45A ∠=︒,30B ∠=︒,尺规作图如下:分别以点B 、点C 为圆心,大于12BC 为半径作弧,连接两弧交点的直线交AB 于点D ,连接CD ,则ACD ∠的度数为( )A .45︒B .65︒C .60︒D .75︒【解答】解:分别以点B 、点C 为圆心,大于12BC 为半径作的弧交BC 于点M ,MD ∴是BC 的垂直平分线,CD BD ∴=, 30B BCD ∴∠=∠=︒. 30B ∠=︒,545A ∠==︒, 180105ACB A B ∴∠=︒-∠-∠=︒,1053075ACD ACB BCD ∴∠=∠-∠=︒-︒=︒,故选:D .9.(3分)如图,已知在ABC ∆中,CD 是AB 边上的高线,BE 平分ABC ∠,交CD 于点E ,5BC =,2DE =,则BCE ∆的面积等于( )A .10B .5C .4D .7【解答】解:作EF BC ⊥于F ,BE 平分ABC ∠,EF BC ⊥,ED AB ⊥,2EF DE ∴==,BCE ∴∆的面积152BC EF =⨯⨯=. 故选:B .10.(3分)如图,点P 为定角AOB ∠平分线上的一个定点,且MPN ∠与AOB ∠互补.若MPN ∠在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论:①PM PN =;②OM ON+的值不变;③MN 的长不变;④四边形PMON 的面积不变,其中,正确结论的是( )A .①②③B .①②④C .①③④D .②③④【解答】解:如图作PE OA ⊥于E ,PF OB ⊥于F .90PEO PFO ∠=∠=︒, 180EPF AOB ∴∠+∠=︒, 180MPN AOB ∠+∠=︒, EPF MPN ∴∠=∠, EPM FPN ∴∠=∠,OP 平分AOB ∠,PE OA ⊥于E ,PF OB ⊥于F , 90PEO PFO ∴∠=∠=︒,在POE ∆和POF ∆中, POE POF PEO PFO PO PO ∠=∠⎧⎪∠=∠⎨⎪=⎩,()POE POF AAS ∴∆≅∆,OE OF ∴=,PE PF =,在PEM ∆和PFN ∆中,MPE NPF PE PFPEM PFN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()PEM PFN ASA ∴∆≅∆,EM NF ∴=,PM PN =,故①正确,PEM PNF S S ∆∆∴=,PMON PEOF S S ∴==四边形四边形定值,故④正确,()2OM ON OE ME OF NF OE +=++-=,是定值,故②正确,在旋转过程中,PMN ∆是等腰三角形,形状是相似的,因为PM 的长度是变化的,所以MN 的长度是变化的,故③错误,故选:B .二.填空题(共5小题,满分15分,每小题3分)11.(3分)分解因式:23a a += (3)a a + .【解答】解:23(3)a a a a +=+.故答案为:(3)a a +.12.(3分)等腰三角形的一个内角为70︒,则这个等腰三角形的顶角为 70︒或40︒ .【解答】解:本题分两种情况,①当70︒角为顶角时,顶角的度数为70︒,②当70︒角为底角时,顶角的度数为18027040︒-⨯︒=︒;∴这个等腰三角形的顶角为40︒或70︒.故答案为:70︒或40︒.13.(3分)某商店对一商品进行促销活动,将定价为10元的商品,按以下方式优惠销售:若购买不超过5件按原价付款;若一次性购买5件以上,超过部分打8折.现有98元钱,最多可以购买该商品 11 件. 【解答】解:设可以购买x 件该商品,根据题意得:510100.8(5)98x ⨯+⨯-,解得:11x . 答:用98元钱最多可以购买该商品11件. 故答案是:11.14.(3分)如图,已知函数1y x =+和3y ax =+的图象交于点P ,点P 的横坐标为1,则关于x 的不等式13x ax ++的解集是 1x .【解答】解:由图知:当直线1y x =+的图象在直线3y ax =+的上方时,不等式13x ax ++成立;由于两直线的交点横坐标为:1x =,观察图象可知,当1x 时,13x ax ++,即不等式13x ax ++的解集为1x .故答案为:1x .15.(3分)如图,在Rt ABC ∆中,90C ∠=︒,23BC =,2AC =,点D 是BC 的中点,点E 是边AB 上一动点,沿DE 所在直线把BDE ∆翻折到△B DE '的位置,B D '交AB 于点F .若△AB F '为直角三角形,则AE 的长为 3或145.【解答】解:90C ∠=︒,23BC =,2AC =,3tan 23AC B BC ∴==,30B ∴∠=︒,24AB AC ∴==,点D 是BC 的中点,沿DE 所在直线把BDE ∆翻折到△B DE '的位置,B D '交AB 于点FDB DC ∴==EB EB '=,30DB E B ∠'=∠=︒,设AE x =,则4BE x =-,4EB x '=-,当90AFB ∠'=︒时,在Rt BDF ∆中,cos BF B BD =, 32BF ∴︒=, 35(4)22EF x x ∴=--=-, 在Rt △B EF '中,30EB F ∠'=︒,2EB EF ∴'=, 即542()2x x -=-,解得3x =,此时AE 为3; 当90AB F ∠'=︒时,作EH AB ⊥'于H ,连接AD ,如图,DC DB =',AD AD =,Rt ADB Rt ADC ∴∆'≅∆,2AB AC ∴'==,9030120AB E AB F EB F ∠'=∠'+∠'=︒+︒=︒,60EB H ∴∠'=︒,在Rt EHB ∆'中,11(4)22B H B E x '='=-,)EH H x ='=-, 在Rt AEH ∆中,222EH AH AE +=, ∴22231(4)[(4)2]42x x x -+-+=,解得145x =,此时AE 为145. 综上所述,AE 的长为3或145. 故答案为3或145.三.解答题(共7小题,满分55分)16.(6分)因式分解:(1)2015a ax --;(2)2(3)(26)a a ---.【解答】解:(1)2015a ax --5(43)a x =-+;(2)2(3)(26)a a ---2(3)2(3)a a =---(3)(5)a a =--.17.(8分)解不等式(组):(1)3294x x +<-;(2)51414123x x x x <+⎧⎪⎨-+-⎪⎩①②. 【解答】解:(1)移项得:3492x x +<-,合并同类项得:77x <,把x 的系数化为1得:1x <;(2)由①得1x <, 由②得115x -, ∴不等式组的解集为115x -. 18.(6分)按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及ABC ∆的顶点都在格点上.(1)图中线段AB 的长度为 10 ;(2)将ABC ∆先向下平移2个单位长度,再向右平移5个单位长度得到△111A B C ,画出△111A B C ;(3)将ABC ∆绕点B 逆时针旋转90︒,画出旋转后得到的△222A B C ,直接写出点2A 、2C 的坐标.【解答】解:(1)如图,221310AB =+=;(2)如图,△111A B C 为所作;(3)如图,△222A B C 为所作,点2A 的坐标为(0,0),点2C 的坐标为(3,2).19.(8分)如图,在ABC ∆中,AB AC =,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE CF =,BD CE =.(1)求证:DEF ∆是等腰三角形;(2)当40A ∠=︒时,求DEF ∠的度数.【解答】证明:AB AC =,ABC ACB ∴∠=∠,在DBE ∆和ECF ∆中BE CF ABC ACB BD CE =⎧⎪∠=∠⎨⎪=⎩,DBE ECF ∴∆≅∆,DE EF ∴=,DEF ∴∆是等腰三角形;(2)DBE ECF ∆≅∆,13∴∠=∠,24∠=∠,180A B C ∠+∠+∠=︒,1(18040)702B ∴∠=︒-︒=︒ 12110∴∠+∠=︒32110∴∠+∠=︒70DEF ∴∠=︒20.(8分)如图,AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,垂足分别为点E ,F ,DB DC =.(1)求证:BE CF =;(2)如果//BD AC ,15DAF ∠=︒,求证:2AB DF =.【解答】证明:(1)AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,DE DF ∴=,90E DFC ∠=∠=︒;在Rt BDE ∆和Rt DFC ∆中,BD CD DE DF =⎧⎨=⎩, Rt BDE Rt DFC(HL)∴∆≅∆,BE CF ∴=;(2)AD 平分BAC ∠,15DAF ∠=︒,30BAC ∴∠=︒,BAD DAF ∠=∠,//BD AC ,30DBE BAC ∴∠=∠=︒,DAF BDA ∠=∠,BAD BDA ∴∠=∠,AB BD ∴=,在Rt BDE ∆中,30DBE ∠=︒,2BD DE ∴=,2AB D E ∴=, AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,DE DF ∴=,2AB DF ∴=.21.(9分)某公司在疫情复工准备工作中,为了贯彻落实“生命重于泰山、疫情就是命令、防控就是责任”的思想,计划同时购买一定数量的甲、乙品牌消毒液,若购进甲品牌消毒液20瓶和乙品牌消毒液10瓶,共需资金1300元;若购进甲品牌消毒液10瓶和乙品牌消毒液10瓶,共需资金800元.(1)甲、乙品牌消毒液的单价分别是多少元?(2)该公司计划购进甲、乙品牌消毒液共50瓶,而可用于购买这两种商品的资金不超过1900元,且要求购买甲品牌消毒液的数量不少于乙品牌消毒液数量的一半.试问:该公司有哪几种购买方案?哪种方案花费资金最少?【解答】解:(1)设甲、乙品牌的消毒液的单价分别为x元,y元,由题意可得,201013001010800x yx y+=⎧⎨+=⎩,解得5030xy=⎧⎨=⎩.∴甲品牌的消毒液的单价为50元,乙品牌的消毒液的单价为30元.(2)设购进甲品牌的消毒液a瓶,则购进乙品牌的消毒液(50)a-瓶,由题意可得,5030(50)19001(50)2a aa a+-⎧⎪⎨-⎪⎩,解得50203a,a为正整数,a∴可取17,18,19,20,设购买消毒液共花费W元,则5030(50)201500W a a a=+-=+,200>,W∴随a的增大而增大,∴当17a=时,W的值最小,最省钱为1840元,此时5033a-=(个),∴共有4种方案,其中最省钱的方案是购进甲品牌的消毒液17瓶,则购进乙品牌的消毒液33瓶.22.(10分)如图1,在平面直角坐标系中,直线AB与x轴、y轴相交于(6,0)A、(0,2)B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90︒得到CD,此时点D恰好落在直线AB上时,过点D作DE x⊥轴于点E.(1)求证:BOC CED∆≅∆;(2)求经过A、B两点的一次函数表达式.如图2,将BCD∆沿x轴正方向平移得△B C D''',当直线B C''经过点D时,求点D的坐标及△B C D'''的面积;(3)在x轴上是否存在点P,使得以C、D、P为顶点的三角形是等腰三角形?若存在,请写出P点的坐标.【解答】解:(1)90BOC BCD CED ∠=∠=∠=︒, 90OCB DCE ∴∠+∠=︒,90DCE CDE ∠+∠=︒, BCO CDE ∴∠=∠,BC CD =,Rt BOC Rt CED(AAS)∴∆≅∆;(2)设直线AB 解析式为y kx b =+,把(6,0)A 、(0,2)B 代入上式得062k b b =+⎧⎨=⎩,解得132k b ⎧=-⎪⎨⎪=⎩, 故直线AB 的解析式为123y x =-+, 由BOC CED ∆≅得:CO DE =,设CO DE m ==, 而2OB CE ==,(2,)D m m ∴+点D 在直线123y x =-+上,把(2,)D m m +代入上式并解得1m =, (3,1)D ∴,点(1,0)C ,△B C D '''的面积BCD =∆的面积()112123221 2.522BCO BOED S S ∆=-=⨯+⨯-⨯⨯⨯=梯形;(3)存在,理由:设点P 的坐标为(,0)t ,而点C 、D 的坐标分别为(1,0)、(3,1), 由点P 、C 、D 的坐标得:22(1)PC t =-,22(3)1PD t =-+,22215CD =+=, 当PC PD =时,则22(1)(3)1t t -=-+,解得94t =,当PC CD =时,则2(1)5t -=,解得:1t =± 当PD CD =时,则2(3)15t -+=,解得1t =(舍去)或5,故点P 的坐标为9(4,0)或(10)或(10)或(5,0).。
2019-2020学年度第二学期八年级数学期中试卷及答案

二、填空题(本大题共8小题,每小题3分,共24分)
9. 10. 11. 12.
13.114.6015.616.
三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)
17.(6分)解:(1) × = = =4―――2分
(2) ―――2分
(第14题)(第15题)(第16题)
三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)
17.(6分)计算:(1) × (2) (3) ÷
18.(6分)计算:(1) × (2)
19.(8分)作出反比例函数 的图象,结合图象回答:
(1)当 时, 的值;
(2)当 时, 的取值范围.
根据题意,得 ―――3分
解得:
经检验 是原方程的解,且符合题意,―――3分
答:第一批某品牌盒装粽子每盒的进价是 元.―――2分
(过程不规范不整齐的,酌情扣1-2分.文字书写不一定要完备,但要有)
26.(12分)解:(1)由题意得: , ,代入反比例函数关系 中,
解得: ,
所以函数关系式为: .―――6分
(3) ―――2分
18.(6分)解:(1)原式= × +2 × = +6 ―――2分
(2)原式= 2- 2=3-2=1―――2分
19.(8分)解:(1)图略. .―――6分(图4分)
(2) .―――2分
20.(8分)解:(1) ―――2分
(2) ―――2分
(3) · = ―――2分
(4) ÷ = பைடு நூலகம் ―――2分
1.下面图形中,不是中心对称图形的是(▲)
A. B. C. D.
2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学年八年级第二学期期中数学试卷一、填空题(共6小题).1.(3 分)计算6X24^=.2.(3分)已知一个直角三角般的两直角边长分别为3和4,则斜边长是.3.(3分)要使式子J市有意义,则x的取值范围是.4.(3分)如国,在ZUBC中,。
、E分别为A3、4c边的中点,若DE=2,则8c边的长为.5.(3分)如图,一棵大树在离地面3加、5加两处折成三段,中间一段43恰好与地面平行,大树顶部落在离大树底部6加处,则大树折断前的高度是.6.(3分)菱形A3CO的对角线AC=4, 30=2,以AC为边作正方形ACEF,则3尸的长为____ 二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.任B.C. V2QD./8.(4分)判断下列各组数能作为直角三角形三边的是()A. 3, 4, 6B. 4, 5, 7C. 2, 3, ^7D. 7, 6, A/139.(4分)如图,已知菱形A3CD的对角线交于点O, DB=6f AD=5,则菱形A3CD的面积为()10. (4 分)在 RtAABC 中,ZABC=90° , 0 为斜边 AC 的中点,30=5,则 AC=()11. (4分)下列计算中,正确的是( A.收-3) 2二 ±3 B.历+ 如二9C.D.卑一心V 212. (4分)不能判定四边形A3CD 为平行四边形的条件是(13. (4分)如图,延长翅形A5co 的边BC 至点E,使CE=CA,连接AE,若N5AC=三、解答题(本大题共9小题,共70分)15. (6分)计算:倔+(证-3)°-导(2%)216. (6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60々加小,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m 处有一个车速检测仪, 过了 4s 后,测得小汽车距禺测速仪65m.这辆小汽车超速了吗?通过计算说明理由(lw/s=3.6k”i/h)17. (8分)如图,四边形43。
2019-2020学年度第二学期八年级期中数学试题

2019~2020学年度下学期八年级期中测试数 学 试 题一、选择题(本大题共16个小题,1~10题每小题3分,11~16题每2题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1x 的取值范围是( ) A .x ≥1且x ≠2 B .x ≤1 C .x >1且x ≠2 D .x <1 2.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,2C .6,8,11D .5,12,23 3.在□ABCD 中,∠A =70°,则∠B 的度数为( )A .110°B .100°C .70°D .20°4)A .﹣4B .4C .±4D .25.在平行四边形ABCD 中,已知AB =5,BC =3,则它的周长为( )A .8B .10C .14D .16 6.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分 7.下列式子中,为最简二次根式的是( )ABCD8.已知直角三角形的一个锐角为60度,斜边长为2,那么此直角三角形的周长是( )A .2.5B .3 C2 D39.如图1,在□ABCD 中,已知AD =12cm ,AB =8cm ,AE 平分∠BAD 交BC 边于点E ,则CE 的长等于( ) A .8cm B .6cm C .4cm D .2cm 10.如图2,点E 在正方形ABCD 的边AB 上,若EB =1,EC =2,那么正方形ABCD 的面积为( ) AB .3CD .511.等腰三角形腰长为13,底边长为10,则它的面积高为( ) A .90 B .60 C .30 D .25 12.如图3,在△ABC 中,∠C =90°,AC =2,点D 在BC∠ADC =2∠B ,AD BC 的长为( )A .3﹣1B .3 +1C .5﹣1D .5 +1图3 DABE2 1 图2A B E CD 图113.如图4,将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度h cm,则h的取值范围是()A.h≤17cm B.h≥8cmC.7cm≤h≤16cm D.15cm≤h≤16cm14.如图5,把一个长方形的纸片对折两次,然后剪下一个角.要得到一个正方形,剪口与折痕所成锐角的大小为()A.30°B.45°C.60°D.90°15.如图6,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是()A.(0,-5)B.(0,-6)C.(0,-7)D.(0,-8)16.如图7所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC的中点,若EF=1,则AB=(A.6 B.4C.2 D二、填空题(本大题共4个小题;每小题3分,共12分.把正确答案填在横线上)17.18.如图8,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积和为19.在平面直角坐标系xOy中,若A的坐标为(1OA为边长的菱形的周长为.20.如图9,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为.三.解答题(本大题共6个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)21.(每小题6分,满分12分)(1)计算:2122⎛⎫-⎪⎝⎭.图5A BFCM图7 EA BCDF图9E(2)已知2x =2y =+22x xy y ++的值. 22.(每小题满分8分)已知a 、b 、c 是△ABC 的三边,且满足422422a b c b a c +=+,试判断△ABC 的形状.阅读下面解题过程:解:由422422a b c b a c +=+得:442222a b a c b c -=-①2222222()()()a b a b c a b +-=-②即222a b c +=③∴△ABC 为Rt △.④试问:以上解题过程是否正确: .若不正确,请指出错在哪一步? (填代号) 错误原因是 . 本题的结论应为 .23.(每题满分10分) 如图10,□ABCD 中,以B 为圆心,BA 的长为半径画弧,交BC 于点F ,作∠BAC的角平分线,交AD 于点E ,连接EF . (1)求证:四边形ABFE 是菱形;(2)若AB =4,∠ABC =60°,求四边形ABFE 的面积.A B C F图10 E24.(本题满分10分)如图11,在△ABC 中,AB =AC ,△ABC 的高BD ,CE 交于点F . (1)求证:FB =FC .(2)若FB =5,FD =3,求AB .A BCD F 图11 E如图12,点E 在□ABCD 内部,AF ∥BE ,DF ∥CE . (1)求证:△BCE ≌△ADF ; (2)设□ABCD 的面积为S ,四边形AEDF 的面积为T ,求ST 的值.ABCF图12E已知:如图13,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.图13AB C备用图1AB C备用图2。
广东省2019-2020学年八年级数学下学期期中测试卷二(含答案)

广东省2019-2020学年下学期期中测试卷八年级数学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.若二次根式2-x 在实数范围内有意义,则x 满足的条件是( ) A .x ≤2 B .x ≥2 C .x <2 D .x >22.如图,在四边形ABC D 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是( )A. AB ∥CD ,AD ∥BCB. OA =OC ,OB =ODC. AD =BC ,AB ∥CDD. AB =CD ,AD =BC3.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了( )步(假设2步为1米)路,却踩坏了花草.A .1B .2C .3D .44.在□ABC D 中,∠A :∠B =1:3,则∠B 的度数为( ) A .45° B .60° C .120° D .135°5.已知23x =,则代数式((2743233x x +⋅++的值是( ) A .0 B 3 C .23 D .236.下列二次根式中,可以合并的是( )A .a a 232aB 2a 23aC .3a 1a aD 43a 22a 7.在ABC △中,A ∠,B ∠,C ∠的对边分别是a ,b ,c ,则下列条件中不能判定ABC△为直角三角形的为( )A .ABC ∠=∠-∠B .::1:3:5A BC ∠∠∠= C .::1:2:3a b c =D .222a c b += 8.如图,将ABCD 沿对角线AC 折叠,使点B 落在点B '处,若1244∠=∠=︒,则B∠为( )A .66︒B .104︒C .114︒D .124︒9.在ABC △中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E ,F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形10.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,若60AOB ∠=︒,16AC =,则图中长度为8的线段为( )A .2条B .4条C .5条D .6条二、填空题(本大题共7小题,每小题4分,共28分)1122__________(结果保留根号). 12.在△AB C 中,D ,E 分别是边AB ,AC 的中点,若DE =3,则BC 的长为 .13.小明家住在10楼,一天,他与妈妈去买竹竿,如果电梯的长、宽、高分别是2米、2米、3米,那么,能放入电梯内的竹竿的最大长度是__________米.14.若x +y 为有理数,且|x +1|+(2x -y +4)2=0,则代数式x 5y +xy 5=______.15.ABC △的三边长分别为21m -,2m ,21m +,则最大角的度数为__________.16.如图,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B ,D 作BF a ⊥于点F ,DE a ⊥于点E ,若DE =7,BF =4,则EF 的长为__________.17.如图,▱ABC D 中,AE ⊥BC 于E ,AF ⊥CD 于F .若AE =2,AF =3,▱ABCD 的周长为25,则▱ABCD 的面积为__________.DFCE B A三、解答题(本大题共8小题,共62分.解答应写出文字说明、证明过程或演算步骤)18.(6分)计算:(11224532533 (2)()321321.19.(6分)已知31a =,3b =()()22ab a b a b a b ab b a b a b +-+⋅-+--.20.(6分)如图,▱ABCD 的对角线AC ,BD 交与点O .E ,F 分别是OA 、OC 的中点.求证:BE =DF .21.(8分)如图,在Rt ABC △中,90B ∠=︒,点E 是AC 的中点,2AC AB =,BAC ∠的平分线AD 交BC 于点D ,作AF BC ∥,连接DE 并延长交AF 于点F ,连接FC ,求证:四边形ADCF 是菱形.22.(8分)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E .(1)证明:四边形ACDE 是平行四边形.(2)若8AC =,6BD =,求ADE △的周长.23.(8分)如图,在四边形ABCD 中,AB CD ∥,AB CD ≠,BD AC =.(1)求证:AD BC =;(2)若E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点.求证:线段EF 与线段GH 互相垂直平分.24.(10分)如图,在Rt ABC △中,90C ∠=︒,BD 是Rt ABC △的一条角平分线,点O ,E ,F 分别在BD 、BC 、AC 上,且四边形OECF 是正方形.(1)求证:点O 在BAC ∠的平分线上;(2)若5AC =,12BC =,求OE 的长.25.(10分)如图,在ABCD 中,60DAB ∠=︒,点E 、F 分别在CD 、AB 的延长线上,且AE AD =,CF CB =.(1)求证:四边形AFCE 是平行四边形.(2)若去掉已知条件“60DAB ∠=︒”,上述的结论还成立吗?若成立,写出证明过程;若不成立.请说明理由.期中测试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.若二次根式2-x 在实数范围内有意义,则x 满足的条件是( ) A .x ≤2B .x ≥2C .x <2D .x >2【答案】B【解析】根据题意得:x -2≥0,求得x ≥2.故选B .2.如图,在四边形ABC D 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是( )A.AB∥CD,AD∥BCB.OA=OC,OB=ODC.AD=BC,AB∥CDD.AB=CD,AD=BC【答案】C【解析】A、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、根据对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选C.3.如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了()步(假设2步为1米)路,却踩坏了花草.A.1 B.2 C.3 D.4【答案】4【解析】解:根据勾股定理可得斜边长是 =5m.则少走的距离是3+4- 5=2m,∵2步为1米,∴少走了4步,故答案为4.4.在□ABC D中,∠A:∠B=1:3,则∠B的度数为()A.45° B.60° C.120° D.135°【答案】D【解析】设∠A=x,则∠B=3x,∠A+∠B=4x=180°,解得:x=45°,∴∠D=∠B=3x=135°.故答案为:135°.5.已知23x =-,则代数式()()2743233x x +⋅+++的值是( )A .0B .3C .23+D .23- 【答案】C【解析】∵7+=(2+)2, ∴(7+4)x 2+(2+ )x + =(2+ )2(2- )2+(2+ )(2- )+ =[(2+)(2- )]2+1+ =1+1+=2+ ,故答案案为2+6.下列二次根式中,可以合并的是( )A .a a 和232aB .2a 和23aC .3a a 和21a a D .43a 和22a 【答案】C【解析】A 、a 和不能合并,故此选项错误;B 、, =|a |,不是同类二次根式,不能合并,故此选项错误; C 、3a ,a 2 = a 2 , 是同类二次根式,能合并,故此选项正确;D 、,=|a | 是同类二次根式,不能合并,故此选项错误;故选: C. 7.在ABC △中,A ∠,B ∠,C ∠的对边分别是a ,b ,c ,则下列条件中不能判定ABC △为直角三角形的为( )A .ABC ∠=∠-∠B .::1:3:5A BC ∠∠∠= C .::23a b c =D .222a c b +=【答案】C【解析】解:A 、由∠A =∠B -∠C 得到:∠B =∠A +∠C , 所以∠B =90° ,故能判定△ABC 是直角三角形,故本选项错误;B 、∠A :∠B : ∠C =1:3:4,又∠A +∠B +∠C =180°,则∠C =90° ,故能判定△ABC 是直角三角形,故本选项错误;C.因为12+( )2≠32,所以不能判定△ABC 是直角三形,故本选项正确; D 、由勾股定理的逆定理判定△ABC 是直角三角形,故本选项错误;故选:C.8.如图,将ABCD 沿对角线AC 折叠,使点B 落在点B '处,若1244∠=∠=︒,则B∠为( )A .66︒B .104︒C .114︒D .124︒【答案】C 【解析】∵四边形ABCD 是平行四边形∴AB ∥CD∴∠ACD =∠BAC,由折叠的性质得:∠BAC =∠B 'AC∴∠BAC =∠ACD =∠B 'AC =1/2∠1=22°∠B =180°- ∠2 -∠BAC =180° - 44° - 22°=114°答案: C9.在ABC △中,点D 是边BC 上的点(与B ,C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E ,F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形【答案】D【解析】解:若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误; 若AD 垂直平分BC ,则四边形AEDF 是菱形,不-定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分∠BAC ,则四边形AEDF 是菱形;正确;故选: D .10.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,若60AOB ∠=︒,16AC =,则图中长度为8的线段为( )A .2条B .4条C .5条D .6条【答案】D 【解析】∵在矩形ABC D 中,AC =16,∴AO =BO =CO =DO = ×16=8.∵AO =BO ,∠AOB =60°,∴AB =AO =8,∴CD =AB =8,∴共有6条线段为8.故选D .二、填空题(本大题共7小题,每小题4分,共28分)11.把222+进行化简,得到的最简结果是__________(结果保留根号). 【答案】2【解析】原式=+=2. 故答案为:212.在△AB C 中,D ,E 分别是边AB ,AC 的中点,若DE =3,则BC 的长为 .【答案】6【解析】∵点D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线。
2019-2020学年广东省深圳高级中学八年级(下)期中数学试卷

2019-2020学年广东省深圳高级中学八年级(下)期中数学试卷一、选择题(每题3分,共36分)1.(3分)(2020春•罗湖区校级期中)在下列四个图案中,是中心对称图形的是()A.B.C.D.2.(3分)(2014春•琼海期末)若a<b,则下列结论正确的是()A.﹣a<﹣b B.2a>2b C.a﹣1<b﹣1D.3+a>3+b3.(3分)(2020•广州模拟)下列分解因式正确的是()A.x2﹣3x+1=x(x﹣3)+1B.a2b﹣2ab+b=b(a﹣1)2C.4a2﹣1=(4a+1)(4a﹣1)D.(x﹣y)2=x2﹣2xy+y24.(3分)(2013春•内江期末)要使分式有意义,x必须满足的条件是()A.x≠0B.x≠1C.x≠﹣2D.x≠﹣2且x≠1 5.(3分)(2019春•平谷区期末)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)(2015•济南)化简﹣的结果是()A.m+3B.m﹣3C.D.7.(3分)(2020春•罗湖区校级期中)下列命题中,真命题的个数为()①平行四边形的对角线相等;②有两组对边分别相等的四边形是平行四边形;③连接一个任意四边形四边的中点所构成的四边形一定是平行四边形;④十边形内角和为1800°.A.1个B.2个C.3个D.4个8.(3分)(2020•连山区三模)今年2月,某种口罩单价,上涨3元,同样花费120元买这种口罩,涨价前可以比涨价后多买2个,设涨价后每个口罩x元,可列出的正确的方程是()A.=2B.=2C.=3D.=39.(3分)(2019春•虹口区期中)如图所示,在平行四边形中,EF过对角线的交点,若AB =4,BC=7,OE=3,则四边形EFDC的周长是()A.14B.11C.17D.1010.(3分)(2020春•罗湖区校级期中)若a2+6a+b2﹣4b+13=0,则a b的值是()A.8B.﹣8C.9D.﹣911.(3分)(2020春•罗湖区校级期中)如图,把△ABC绕点C逆时针旋转90°得到△DCE,若BE=17,AD=7,则BC为()A.3B.4C.5D.612.(3分)(2020春•罗湖区校级期中)如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S=S△ABE.其中正确△BEF的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共12分)13.(3分)(2013•黄冈)分解因式:ab2﹣4a=.14.(3分)(2014秋•泰山区期末)当x时,分式的值为零.15.(3分)(2017春•山亭区期末)如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是.16.(3分)(2020春•罗湖区校级期中)如图,已知线段AB=4,O为AB的中点,P是平面内的一个动点,在运动过程中保持OP=1不变,连接BP,将PB绕点P逆时针旋转90°到PC,连接BC、AC,则线段AC长的最大值是.三、解答题(共52分)17.(6分)(2017•西青区校级模拟)解不等式组:,并在数轴上表示不等式组的解集.18.(8分)(2020春•罗湖区校级期中)(1)因式分解:a2﹣4a+4﹣b2;(2)解分式方程:.19.(5分)(2020春•罗湖区校级期中)先化简,再求值:,其中a=2.20.(8分)(2016春•瑞昌市期中)如图,根据图中信息解答下列问题:(1)关于x的不等式ax+b>0的解集是.(2)关于x的不等式mx+n<1的解集是.(3)当x为何值时,y1≤y2?(4)当x为何值时,0<y2<y1?21.(8分)(2020春•罗湖区校级期中)如图,在△ABC中,∠ACB=90°,AC=BC,D 为BC边的中点,过点B作BF⊥AB交AD的延长线于点F,CE平分∠ACB交AD于点E.(1)求证:判断四边形CEBF的形状,并证明;(2)若AD=,求BF及四边形CEBF的面积.22.(8分)(2020春•罗湖区校级期中)为了帮助湖北省武汉市防控新冠肺炎,某爱心组织筹集了部分资金,计划购买甲、乙两种救灾物资共2000件送往灾区,已知每件甲种物资的价格比每件乙种物资的价格贵10元,用350元购买甲种物资的件数恰好与用300元购买乙种物资的件数相同.(1)求甲、乙两种救灾物资每件的价格各是多少元?(2)经调查,灾区对甲种物资的需求量不少于乙种物资的1.5倍,该爱心组织总共需要购买2000件物资,请问该爱心组织如何购买这2000件物资,才能使得购买资金最少?23.(9分)(2020春•罗湖区校级期中)如图1,已知正方形ABCD的顶点A,B分别在y 轴和x轴上,边CD交x轴的正半轴于点E.(1)若A(0,a),且|a|=4,求A点的坐标;(2)在(1)的条件下,若3AO=4EO,求D点的坐标;(3)如图2,连接AC交x轴于点F,点H是A点上方y轴上一动点,以AF、AH为边作平行四边形AFGH,使G点恰好落在AD边上,试探讨BF,HG与DG的数量关系,并证明你的结论.2019-2020学年广东省深圳高级中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.【解答】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.2.【解答】解:A、a<b,则﹣a>﹣b,故本选项错误;B、a<b,则2a>2b,故本选项错误;C、a<b,a﹣1<b﹣1,故本选项正确;D、a<b,3+a>3+b,故本选项错误.故选:C.3.【解答】解:A、x2﹣3x+1=x(x﹣3)+1,不符合因式分解的定义,故此选项错误;B、a2b﹣2ab+b=b(a﹣l)2,故此选项正确;C、4a2﹣1=(2a+1)(2a﹣1),故此选项错误;D、(x﹣y)2=x2﹣2xy+y,不符合因式分解的定义.故选:B.4.【解答】解:要使分式有意义,则x﹣1≠0,解得x≠1,故选:B.5.【解答】解:由①得,x≤,由②得,x>﹣2,故此不等式组的解集为:﹣2<x≤,在数轴上表示为:故选:C.6.【解答】解:原式===m+3.故选:A.7.【解答】解:①平行四边形的对角线互相平分但不一定相等,故原命题错误,是假命题,不符合题意;②有两组对边分别相等的四边形是平行四边形,正确,是真命题,符合题意;③连接一个任意四边形四边的中点所构成的四边形一定是平行四边形,正确,是真命题,符合题意;④十边形内角和为1440°,故原命题错误,是假命题,不符合题意,真命题有2个,故选:B.8.【解答】解:设涨价后每个口罩x元,可列出方程为:=2.故选:B.9.【解答】解:∵四边形ABCD为平行四边形,∴OB=OD,AD∥BC,AB=CD=4,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴BE=DF,OE=OF=3,∴CE+DF=CE+BE=BC=7,∴四边形EFDC的周长=DF+EF+CE+CD=BC+OE+OF+CD=7+3+3+4=17,故选:C.10.【解答】解:已知等式变形得:(a2+6a+9)+(b2﹣4b+4)=0,即(a+3)2+(b﹣2)2=0,可得a+3=0,b﹣2=0,解得:a=﹣3,b=2,则原式=(﹣3)2=9.故选:C.11.【解答】解:∵△ABC绕点C逆时针旋转90°得到△DCE,∴AC=CE,CD=BC,设AC=CE=x,CD=BC=y,∵BE=17,AD=7,∴x+y=17.x﹣y=7,∴x=12,y=5,∴BC=5,故选:C.12.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE,BC=AD,∴△ABC≌△EAD(SAS);①正确;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),=S△ABC,∴S△FCD又∵△AEC与△DEC同底等高,∴S=S△DEC,△AEC∴S=S△CEF.△ABE若AD与BF相等,则BF=BC,题中未限定这一条件,=S△ACD;则S△BEF=S△ABC,若S△BEF则AB=BF,∴BF=BE,题中未限定这一条件,∴④不一定正确.若AD与AF相等,即∠AFD=∠ADF=∠DEC,即EC=CD=BE即BC=2CD,题中未限定这一条件,∴③不一定正确;故选:B.二、填空题(每题3分,共12分)13.【解答】解:ab2﹣4a=a(b2﹣4)=a(b﹣2)(b+2).故答案为:a(b﹣2)(b+2).14.【解答】解:∵分式的值为零,∴,解得x=﹣4.故答案为:=﹣4.15.【解答】解:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DP A∴△ADP是等腰三角形,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24;故答案为:24.16.【解答】解:如图所示:过点C作CD⊥y轴,垂足为D,过点P作PE⊥DC,垂足为E,延长EP交x轴于点F.∵AB=4,O为AB的中点,∴A(﹣2,0),B(2,0).设点P的坐标为(x,y),则x2+y2=1.∵∠EPC+∠BPF=90°,∠EPC+∠ECP=90°,∴∠ECP=∠FPB.由旋转的性质可知:PC=PB.在△ECP和△FPB中,∴△ECP≌△FPB(AAS).∴EC=PF=y,FB=EP=2﹣x.∴C(x+y,y+2﹣x).∵AB=4,O为AB的中点,∴AC==.∵x2+y2=1,∴AC=.∵﹣1≤y≤1,∴≤AC≤3.∴线段AC长的最大值是3,当故答案为:3.三、解答题(共52分)17.【解答】解:解不等式①可得x≤6,解不等式②可得x>4,在数轴上表示出①②的解集如图,∴不等式组的解集为4<x≤6.18.【解答】解:(1)原式=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2﹣b)(a﹣2+b);(2)去分母得:1﹣x+3=x﹣4,解得:x=4,经检验x=4是增根,分式方程无解.19.【解答】解:===,当a=2时,原式==.20.【解答】解:(1)∵直线y2=ax+b与x轴的交点是(4,0),∴当x<4时,y2>0,即不等式ax+b>0的解集是x<4;故答案是:x<4;(2)∵直线y1=mx+n与y轴的交点是(0,1),∴当x<0时,y1<1,即不等式mx+n<1的解集是x<0;.故答案是:x<0;(3)由一次函数的图象知,两条直线的交点坐标是(2,1.8),当函数y1的图象在y2的下面时,有x≤2,所以当x≤2时,y1≤y2;(4)如图所示,当2<x<4时,0<y2<y1.21.【解答】证明:(1)四边形CEBF是平行四边形.理由如下:∵∠ACB=90°,AC=BC,CE平分∠ACB,∴CE⊥AB,∵BF⊥AB,∴CE∥BF,∴∠BFD=∠CED,∵D为BC边的中点,∴CD=DB,在△CDE和△BDF中,,∴△CDE≌△BDF(AAS),∴DE=DF,又∵CD=BD,∴四边形CEBF是平行四边形;(2)∵D为BC的中点,AC=BC,∴AC=2CD,∵AD=,AC2+CD2=AD2,∴(2CD)2+CD2=()2,解得CD=3,∴AC=BC=6,∴AB=,∵CE平分∠ACB,AC=BC,∴CE垂直平分AB,∴AE=BE,∴∠EAB=∠EBA,∵∠EAB+∠AFB=∠EBA+∠EBF=90°,∴∠AFB=∠EBF,∴EF=BE,∴AE=EF,∵四边形CEBF为平行四边形,∴ED=DF,∴EF=,AF=,∴BF==,过C作CG⊥AF,垂足为G,由三角形的面积可得AC•CD=AD•CG,即6×3=CG,解得CG=,∴S=2S△CEF=.四边形CEBF22.【解答】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得,=,解得:x=60.经检验,x=60是原方程的解,x+10=60+10=70.答:甲每件70元,乙每件60元;(2)设甲种物品件数为m件,根据题意得:m≥1.5(2000﹣m).解得:m≥1200.故m最小值为1200,2000﹣m=800.此时:70×1200+60×800=132000(元).答:甲购入1200件,乙购入800件,最少需要132000元.23.【解答】解:(1)∵|a|=4,∴a=±4,∴A(0,﹣4)或(0,4).(2)解:作DN⊥OE于N,作AM⊥DN于M,连AE,如图1所示:则∠BAD=∠OAM=90°,即∠BAO+∠OAD=∠OAD+∠DAM,∴∠BAO=∠DAM,∵四边形ABCD是正方形,∴AB=AD,∠ADE=90°,在△AOB与△AMD中,,∴△AOB≌△AMD(AAS),∴AM=AO=4,∴四边形AONM是正方形,∴MN=ON=4,∵3AO=4EO,∴EO=3,在Rt△AOE中,AE2=AO2+EO2=42+32=25,在Rt△AMD中,AD2=AM2+DM2,在Rt△DNE中,ED2=EN2+DN2,在Rt△ADE中,AD2+DE2=AE2,∴AM2+DM2+EN2+DN2=25,设D(4,m),则DM=4﹣m,EN=4﹣3=1,DN=m,∴42+(4﹣m)2+12+m2=25,∴m=2,∴D(4,2);同理当A(0,﹣4)时,求得D(4,﹣2).(3)解:2HG2+DG2=4BF2,理由如下:过点F作FP⊥AD于P,连DF,如图2所示:∵四边形AFGH是平行四边形,∴HG=AF,AH∥GF,∴∠FGA=∠GAH,∴∠FGD=∠OAG,∵四边形ABCD是正方形,∴BC=DC,∠CAD=∠BCF=∠DCF=45°,∠BAD=∠CDA=∠ABC=90°,∴△APF是等腰直角三角形,∴HG=AF=PF,∴PF=,在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴BF=DF,∠CBF=∠CDF,∵∠FDG=90°﹣∠CDF,∠ABO=90°﹣∠CBF,∴∠FDG=∠ABO,∵∠OAG+∠OAB=90°,∠ABO+∠OAB=90°,∴∠OAG=∠ABO,∴∠FGD=∠FDG,∴GF=DF=BF,∴点P是DG的中点,∴DP=,在Rt△PDF中,PF2+DP2=DF2,即()2+()2=BF2,∴2HG2+DG2=4BF2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年八年级第二学期期中数学试卷一、选择题(共12小题).1.正六边形的外角和是()A.360°B.540°C.720°D.60°2.不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.3.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.要使分式有意义,则x的取值应满足()A.x=0B.x=1C.x≠0D.x≠15.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm6.某画室分两次购买了相同的素描本,第一次用120元购买了若干本,第二次在同一家商店又购买了240元,这次商家每本优惠4元,结果比上次多买了20本.设第一次买了x 本素描本,列方程正确的是()A.﹣=4B.﹣=4C.﹣=4D.﹣=47.计算:的结果是()A.B.C.D.8.计算的结果为()A.B.C.D.9.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点10.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PB=BC,则下列选项正确的是()A.B.C.D.11.如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)12.如图,在△ABC中,AD为∠BAC的平分线,BM⊥AD,垂足为M,且AB=5,BM=2,AC=9,则∠ABC与∠C的关系为()A.∠ABC=2∠C B.∠ABC=∠C C.∠ABC=∠C D.∠ABC=3∠C 二、填空题(每题3分,共12分)13.如图,在△ABC中,点D,E分别是边AB,BC的中点,若DE的长是6,则AC的长等于.14.分解因式:ax2﹣2ax+a=.15.将Rt△ABC沿边向右平移得到Rt△DEF,AB=8,BE=6,DG=3,则阴影部分的面积为.16.如图,在平行四边形ABCD中,AC与BD相交于点O,∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=三、解答题(共52分)17.利用因式分解计算:(1)x3﹣9x;(2)2.132+2×2.13×2.87+2.872.18.解不等式组,请结合题意填空,完成本题的解答.(1)解不等式(1),得;(2)解不等式(2),得;(3)把不等式(1)和(2)的解集在数轴上表示出来:(4)原不等式组的解集为.19.先化简,再求值:﹣,其中x=﹣1.20.解方程:﹣=1.21.国庆70华诞期间,各超市购物市民络绎不绝,呈现浓浓节日气氛.“百姓超市”用320元购进一批葡萄,上市后很快脱销,该超市又用680元购进第二批葡萄,所购数量是第一批购进数量的2倍,但进价每市斤多了0.2元.(1)该超市第一批购进这种葡萄多少市斤?(2)如果这两次购进的葡萄售价相同,且全部售完后总利润不低于20%,那么每市斤葡萄的售价应该至少定为多少元?22.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.23.已知,如图,在三角形△ABC中,AB=AC=20cm,BD⊥AC于D,且BD=16cm.点M从点A出发,沿AC方向匀速运动,速度为4cm/s;同时点P由B点出发,沿BA方向匀速运动,速度为lcm/s,过点P的动直线PQ∥AC,交BC于点Q,连结PM,设运动时间为t(s)(0<t<5),解答下列问题:(1)线段AD=cm;(2)求证:PB=PQ;(3)当t=时,△APC的面积等于△AMB的面积;(4)当t=时,以P、Q、D、M为顶点的四边形为平行四边形.参考答案一、选择题(每题3分,共36分)1.正六边形的外角和是()A.360°B.540°C.720°D.60°【分析】根据任何多边形的外角和是360度即可求出答案.解:六边形的外角和是360°.故选:A.2.不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.【分析】首先解出不等式的解集,再在数轴上表示解集即可.解:2x﹣4≤0,2x≤4,x≤2,在数轴上表示为:,故选:C.3.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,也是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是不轴对称图形,也是中心对称图形.故错误.故选:A.4.要使分式有意义,则x的取值应满足()A.x=0B.x=1C.x≠0D.x≠1【分析】根据分式有意义的条件可得x﹣1≠0,再解即可.解:由题意得:x﹣1≠0,解得:x≠1,故选:D.5.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=3cm,∵BC=AD=5cm,∴EC=BC﹣BE=5﹣3=2cm,故选:B.6.某画室分两次购买了相同的素描本,第一次用120元购买了若干本,第二次在同一家商店又购买了240元,这次商家每本优惠4元,结果比上次多买了20本.设第一次买了x 本素描本,列方程正确的是()A.﹣=4B.﹣=4C.﹣=4D.﹣=4【分析】设第一次买了x本素描本,根据第一次用120元,第二次在同一家商店又购买了240元,这次商家每本优惠4元,列出方程即可.解:设第一次买了x本素描本,列方程得:﹣=4.故选:A.7.计算:的结果是()A.B.C.D.【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.解:原式=÷=•=.故选:A.8.计算的结果为()A.B.C.D.【分析】根据分式的运算法则即可求出答案.【解答】原式==,故选:A.9.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:C.10.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PB=BC,则下列选项正确的是()A.B.C.D.【分析】因为BC=PB+PC,根据已知PA+PB=BC,所以PA=PC,根据线段中垂线的性质可知:P在AC的中垂线上,可以作判断.解:作AC的中垂线,交BC于点P,则PA=PC,∵BC=PB+PC,∴PA+PB=BC,故选:B.11.如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)【分析】选两组对应点,连接后作其中垂线,两中垂线的交点即为点P.解:由图知,旋转中心P的坐标为(1,2),故选:C.12.如图,在△ABC中,AD为∠BAC的平分线,BM⊥AD,垂足为M,且AB=5,BM=2,AC=9,则∠ABC与∠C的关系为()A.∠ABC=2∠C B.∠ABC=∠C C.∠ABC=∠C D.∠ABC=3∠C 【分析】延长BM,交AC于E,由ASA易证△ABM≌△AEM得出BM=ME,AE=AB,∠AEB=∠ABE,求出BE=4,AE=5,则CE=4,得出△BCE是等腰三角形,那∠EBC =∠ACB,由三角形外角性质可证∠ABE=2∠ACB,即可得出结果.解:延长BM,交AC于E,∵AD平分∠BAC,BM⊥AD,∴∠BAM=∠EAM,∠AMB=∠AME=90°,在△ABM和△AEM中,,∴△ABM≌△AEM(ASA),∴BM=ME,AE=AB,∠AEB=∠ABE,∴BE=BM+ME=4,AE=AB=5,∴CE=AC﹣AE=9﹣5=4,∴CE=BE,∴△BCE是等腰三角形,∴∠EBC=∠ACB,又∵∠ABE=∠AEB=∠ACB+∠EBC,∴∠ABE=2∠ACB,∴∠ABC=∠ABE+∠EBC=3∠ACB,故选:D.二、填空题(每题3分,共12分)13.如图,在△ABC中,点D,E分别是边AB,BC的中点,若DE的长是6,则AC的长等于12.【分析】根据三角形中位线定理计算即可.解:∵点D,E分别是边AB,BC的中点,∴AC=2DE=12,故答案为:12.14.分解因式:ax2﹣2ax+a=a(x﹣1)2.【分析】先提公因式a,再利用完全平方公式继续分解因式.解:ax2﹣2ax+a,=a(x2﹣2x+1),=a(x﹣1)2.15.将Rt△ABC沿边向右平移得到Rt△DEF,AB=8,BE=6,DG=3,则阴影部分的面积为39.【分析】先利用平移的性质得到S△ABC=S△DEF,DE=AB=8,则EG=5,利用面积的和差得到阴影部分的面积=S梯形ABEG,然后利用梯形的面积公式计算即可.解:∵Rt△ABC沿边向右平移得到Rt△DEF,∴S△ABC=S△DEF,DE=AB=8,∴EG=DE﹣DG=8﹣3=5,∴阴影部分的面积=S梯形ABEG=(EG+AB)•BE=(5+8)×6=39.故答案为39.16.如图,在平行四边形ABCD中,AC与BD相交于点O,∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=【分析】如图连接EO.首先证明△EOD是等边三角形,推出∠EDO=∠AOB=60°,推出DE∥AC,推出S△ADE=S△EOD即可解决问题;解:如图连接EO.∵∠AOB=∠EOA=60°,∴∠EOD=60°,∵OB=OE=OD,∴△EOD是等边三角形,∴∠EDO=∠AOB=60°,∴DE∥AC,∴S△ADE=S△EOD=×22=.故答案为三、解答题(共52分)17.利用因式分解计算:(1)x3﹣9x;(2)2.132+2×2.13×2.87+2.872.【分析】(1)先提取公因式,再按平方差公式进行分解;(2)按完全平方公式分解为两数和的平方,再计算.解:(1)原式=x(x2﹣32)=x(x+3)(x﹣3);(2)原式=(2.13+2.87)2=52=25.18.解不等式组,请结合题意填空,完成本题的解答.(1)解不等式(1),得x≤1;(2)解不等式(2),得x>﹣1;(3)把不等式(1)和(2)的解集在数轴上表示出来:(4)原不等式组的解集为﹣1<x≤1.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解:(1)解不等式(1),得:x≤1;(2)解不等式(2),得:x>﹣1;(3)把不等式(1)和(2)的解集在数轴上表示出来:(4)原不等式组的解集为﹣1<x≤1,故答案为:(1)x≤1;(2)x>﹣1;(4)﹣1<x≤1.19.先化简,再求值:﹣,其中x=﹣1.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.解:﹣===,当x=﹣1时,原式==.20.解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:x2+x﹣2=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.21.国庆70华诞期间,各超市购物市民络绎不绝,呈现浓浓节日气氛.“百姓超市”用320元购进一批葡萄,上市后很快脱销,该超市又用680元购进第二批葡萄,所购数量是第一批购进数量的2倍,但进价每市斤多了0.2元.(1)该超市第一批购进这种葡萄多少市斤?(2)如果这两次购进的葡萄售价相同,且全部售完后总利润不低于20%,那么每市斤葡萄的售价应该至少定为多少元?【分析】(1)设该超市第一批购进这种葡萄x市斤,则第二批购进这种葡萄2x市斤,根据单价=总价÷数量结合第二批的进价比第一批的进价每市斤多了0.2元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每市斤葡萄的售价应该定为y元,根据利润=销售收入﹣进货成本结合全部售完后总利润不低于20%,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.解:(1)设该超市第一批购进这种葡萄x市斤,则第二批购进这种葡萄2x市斤,依题意,得:﹣=0.2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:该超市第一批购进这种葡萄100市斤.(2)设每市斤葡萄的售价应该定为y元,依题意,得:(100+100×2)y﹣320﹣680≥(320+680)×20%,解得:y≥4.答:每市斤葡萄的售价应该至少定为4元.22.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.【分析】(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=3,然后求出DG=2,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾.【解答】(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;(2)①BC=BD=3时,由勾股定理得,AB===2,所以,四边形BDFC的面积=3×2=6;②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,由勾股定理得,CG===,所以,四边形BDFC的面积=3×=3;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是6或3.23.已知,如图,在三角形△ABC中,AB=AC=20cm,BD⊥AC于D,且BD=16cm.点M从点A出发,沿AC方向匀速运动,速度为4cm/s;同时点P由B点出发,沿BA方向匀速运动,速度为lcm/s,过点P的动直线PQ∥AC,交BC于点Q,连结PM,设运动时间为t(s)(0<t<5),解答下列问题:(1)线段AD=12cm;(2)求证:PB=PQ;(3)当t=4s时,△APC的面积等于△AMB的面积;(4)当t=s或4s时,以P、Q、D、M为顶点的四边形为平行四边形.【分析】(1)由勾股定理求出AD即可;(2)由等腰三角形的性质和平行线的性质得出∠PBQ=∠PQB,再由等腰三角形的判定定理即可得出结论;(3)作PE⊥AC于E,则PE∥BD,根据题意得:BP=t,AP=20﹣t,AM=4t,由三角形面积公式求出△AMB的面积=AM×BD=32t(cm2),由平行线得出△APE∽△ABD,得出对应边成比例=,求出PE=(20﹣t),由三角形面积公式求出△APC的面积=160﹣8t,根据△APC的面积等于△AMB的面积得出方程,解方程即可;(4)分两种情况:①当点M在点D的上方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AD﹣AM=12﹣4t,由PQ∥MD,当PQ=MD时,四边形PQDM 是平行四边形,得出方程,解方程即可;②当点M在点D的下方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AM﹣AD=4t﹣12,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可.【解答】(1)解:∵BD⊥AC,∴∠ADB=90°,∴AD===12(cm),故答案为:12;(2)证明:∵AB=AC,∴∠ABC=∠C,即∠PBQ=∠C,∵PQ∥AC,∴∠PQB=∠C,∴∠PBQ=∠PQB,∴PB=PQ;(3)解:作PE⊥AC于E,如图1所示:则PE∥BD,根据题意得:BP=t,AP=20﹣t,AM=4t,∴△AMB的面积=AM×BD=×4t×16=32t(cm2),∵PE∥BD,∴△APE∽△ABD,∴=,即=,解得:PE=(20﹣t),∴△APC的面积=AC×PE=×20×(20﹣t)=160﹣8t,∵△APC的面积等于△AMB的面积,∴160﹣8t=32t,解得:t=4(s),故答案为:4s;(4)解:分两种情况:①当点M在点D的上方时,如图2所示:根据题意得:PQ=BP=t,AM=4t,AD=12,∴MD=AD﹣AM=12﹣4t,∵PQ∥AC,∴PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,∴t=12﹣4t,解得:t=(s);②当点M在点D的下方时,如图3所示:根据题意得:PQ=BP=t,AM=4t,AD=12,∴MD=AM﹣AD=4t﹣12,∵PQ∥AC,∴PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,∴t=4t﹣12,解得:t=4(s);综上所述,当t=s或t=4s时,以P、Q、D、M为顶点的四边形为平行四边形;故答案为:s或4s.。