天一专升本高数知识点
专升本高等数学知识点汇总

专升本高等数学知识点汇总常用知识点:一、常见函数的定义域总结如下:(1)c bx ax y bkx y ++=+=2一般形式的定义域:x ∈R(2)x k y =分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0(4)x y a log = 对数形式的定义域:x >0二、函数的性质1、函数的单调性当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。
当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。
2、 函数的奇偶性定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-)(1) 偶函数)(x f ——D x ∈∀,恒有)()(x f x f =-。
(2) 奇函数)(x f ——D x ∈∀,恒有)()(x f x f -=-。
三、基本初等函数1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。
2、幂函数:ux y =, (u 是常数)。
它的定义域随着u 的不同而不同。
图形过原点。
3、指数函数定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。
4、对数函数定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。
图形过(1,0)点。
5、三角函数(1) 正弦函数: x y sin = π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。
(2) 余弦函数: x y cos =.π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。
(3) 正切函数: x y tan =.π=T , },2)12(,|{)(Z R ∈+≠∈=k k x x x f D π, ),()(+∞-∞=D f .(4) 余切函数: x y cot =. π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f .5、反三角函数(1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2,2[)(ππ-=D f 。
专升本高等数学知识点总结

专升本高等数学知识点总结高等数学作为专升本考试的一门重要科目,需要掌握的知识点相对较多。
下面是对高等数学知识点的详细总结。
一、函数与极限1.函数概念与性质:定义域、值域、奇偶性、周期性、单调性等。
2.函数的常用性质:函数的画像、函数的基本性质、函数的运算、函数的反函数、函数的复合、函数的比较等。
3.极限的概念:极限的定义、左极限、右极限、无穷极限、函数极限等。
4.极限的性质:极限的唯一性、夹逼准则、极限的四则运算、函数极限法则等。
5.无穷小与无穷大:无穷小的定义和性质、无穷大的定义和性质。
二、导数与微分1.导数的定义:函数在一点的导数、导数的几何意义、函数的可导性等。
2.导数的计算:基本函数的导数、基本运算法则、复合函数的导数、隐函数的导数等。
3.高阶导数:导数的高阶导数、高阶导数的计算等。
4.微分:微分的定义、微分的计算、微分形式不变性等。
5.高阶导数与高阶微分的关系:高阶导数与高阶微分的计算、高阶微分的含义等。
三、积分与不定积分1.定积分的概念与性质:积分的定义、黎曼和、定积分的计算、积分中值定理等。
2.不定积分的概念与性质:不定积分的定义、不定积分的计算、定积分与不定积分之间的关系等。
3.基本积分公式:幂函数的积分、三角函数的积分、反函数的积分、特殊函数的积分等。
4.定积分的应用:曲边梯形的面积、旋转体的体积、定积分的几何应用等。
四、级数与幂级数1.数列与级数:数列的概念与性质、收敛与发散、常见数列的性质等。
2.级数的概念与性质:级数的概念、部分和、级数的性质、级数收敛性的判别法等。
3.幂级数的概念与性质:幂级数的收敛域、幂级数的性质、幂级数的运算等。
4.泰勒展开与幂级数展开:泰勒展开的定义、泰勒级数、幂级数展开的计算等。
五、多元函数与方程1.多元函数的概念与性质:多元函数的定义、多元函数的极限、多元函数的连续性等。
2.偏导数与全微分:偏导数的定义、全微分的定义、全微分近似计算等。
3.导数与梯度:偏导数与方向导数、梯度的定义和性质、梯度的运算等。
完整版)专升本高等数学知识点汇总

完整版)专升本高等数学知识点汇总常用的高等数学知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。
2) y=1/x,分式形式的定义域为x≠0.3) y=sqrt(x),x根式的形式定义域为x≥0.4) y=log_a(x),对数形式的定义域为x>0.二、函数的性质1、函数的单调性:当x1<x2时,恒有f(x1)<f(x2),f(x)在x1,x2所在的区间上是增加的。
当x1<x2时,恒有f(x1)>f(x2),f(x)在x1,x2所在的区间上是减少的。
2、函数的奇偶性:定义函数y=f(x)的定义区间D关于坐标原点对称,若x∈D,则有- x∈D:1) 偶函数f(x)——对于任意x∈D,恒有f(-x)=f(x)。
2) 奇函数f(x)——对于任意x∈D,恒有f(-x)=-f(x)。
三、基本初等函数1、常数函数:y=c,定义域为(-∞,+∞),图形是一条平行于x轴的直线。
2、幂函数:y=x^u,(u是常数)。
它的定义域随着u的不同而不同。
图形过原点。
3、指数函数:定义y=f(x)=a^x,(a是常数且a>0,a≠1)。
图形过(0,1)点。
4、对数函数:定义y=f(x)=log_a(x),(a是常数且a>0,a≠1)。
图形过(1,0)点。
5、三角函数:1) 正弦函数:y=sin(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。
2) 余弦函数:y=cos(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。
3) 正切函数:y=tan(x),T=π,D(f)={x|x∈R,x≠(2k+1)π/2,k∈Z},f(D)=(-∞,+∞)。
4) 余切函数:y=cot(x),T=π,D(f)={x|x∈R,x≠kπ,k∈Z},f(D)=(-∞,+∞)。
四、极限一、求极限的方法:1、代入法:将x的值代入函数中求得对应的y值。
改写后的文章:高等数学中常用的知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。
专升本高数知识点汇总

专升本⾼数知识点汇总第⼀讲函数、极限、连续1、基本初等函数的定义域、值域、图像,尤其是图像包含了函数的所有信息。
2、函数的性质,奇偶性、有界性奇函数:,图像关于原点对称。
偶函数:,图像关于y 轴对称3、⽆穷⼩量、⽆穷⼤量、阶的⽐较设是⾃变量同⼀变化过程中的两个⽆穷⼩量,则(1)若,则是⽐⾼阶的⽆穷⼩量。
(2)若(不为0),则与是同阶⽆穷⼩量特别地,若,则与是等价⽆穷⼩量(3)若,则与是低阶⽆穷⼩量记忆⽅法:看谁趋向于0的速度快,谁就趋向于0的本领⾼。
4、两个重要极限(1)使⽤⽅法:拼凑,⼀定保证拼凑sin 后⾯和分母保持⼀致(2)使⽤⽅法1后⾯⼀定是⼀个⽆穷⼩量并且和指数互为倒数,不满⾜条件得拼凑。
)()(x f x f -=-)()(x f x f =-βα,0=βαlim αβc βα=limαβ1=βαlim αβ∞=βαlimαβ100==→→xxx x x x sin lim sin lim[][][][][][]00==→→sin lim sin lime x x x x xx =+=+→∞→15、的最⾼次幂是n,的最⾼次幂是m.,只⽐较最⾼次幂,谁的次幂⾼,谁的头⼤,趋向于⽆穷⼤的速度快。
,以相同的⽐例趋向于⽆穷⼤;,分母以更快的速度趋向于⽆穷⼤;,分⼦以更快的速度趋向于⽆穷⼤。
7、左右极限左极限:右极限:注:此条件主要应⽤在分段函数分段点处的极限求解。
8、连续、间断连续的定义:或间断:使得连续定义⽆法成⽴的三种情况记忆⽅法:1、右边不存在 2、左边不存在 3、左右都存在,但不相等9、间断点类型(1)、第⼆类间断点:、⾄少有⼀个不存在(2)、第⼀类间断点:、都存在注:在应⽤时,先判断是不是“第⼆类间断点”,左右只要有⼀个不存在,就是“第⼆类”然后再判断是不是第⼀类间断点;左右相等是“可去”,左右不等是“跳跃” 10、闭区间上连续函数的性质()() ?>∞<==∞→m n m n m n ba X Q x P mn x ,,,lim 00()x P n ()x Q m m n =m n A x f x x =-→)(lim 0A x f x x =+→)(lim 0A x f x f A x f x x x x xx ===+-→→→)(lim )(lim )(lim 000充分必要条件是[]0)()(lim lim 000=-?+=?→?→?x f x x f y x x )()(lim00x f x f x x =→)()(lim00x f x f x x =→≠→→)()(lim )(lim )()(00x 不存在⽆意义不存在,)(lim 0x f x x -→)(lim 0x f x x +→)(lim 0x f x x -→)(lim 0x f x x +→??≠=+-+-→→→→)(lim )(lim )(lim )(lim 000x f x f x f x f x x x x xx x x 跳跃间断点:可去间断点:(1)最值定理:如果在上连续,则在上必有最⼤值最⼩值。
专升本高等数学知识点汇总

专升本高等数学知识点汇总常用知识点:一、常见函数的定义域总结如下:y kx b (1)2 一般形式的定义域:x∈Ry ax bx c(2)y (3)y k分式形式的定义域:x≠0 xx 根式的形式定义域:x≥0(4)y log a x对数形式的定义域:x>0二、函数的性质1、函数的单调性当x1 x2 时,恒有 f ( x1 ) f ( x2 ) , f (x) 在x1,x2 所在的区间上是增加的。
当x1 x2 时,恒有 f ( x1 ) f ( x2 ) ,f (x) 在x1,x2 所在的区间上是减少的。
2、函数的奇偶性定义:设函数y f ( x) 的定义区间 D 关于坐标原点对称(即若x D ,则有x D )(1) 偶函数 f (x) ——x D ,恒有 f ( x) f ( x) 。
(2) 奇函数 f (x) ——x D ,恒有 f ( x) f ( x) 。
三、基本初等函数1、常数函数:y c ,定义域是( , ) ,图形是一条平行于x 轴的直线。
2、幂函数:y3、指数函数x u ,( u 是常数)。
它的定义域随着u 的不同而不同。
图形过原点。
定义: y f ( x) a x ,( a 是常数且 a 0 ,a 1 ). 图形过(0,1 )点。
4、对数函数定义: y f ( x)log a x ,( a 是常数且 a 0 ,a 1 ) 。
图形过(1,0 )点。
5、三角函数(1) 正弦函数: y sin xT 2 ,D( f ) ( , ) , f (D ) [ 1,1] 。
(2) 余弦函数: y cosx.T 2 ,D( f ) ( , ) , f (D ) [ 1,1] 。
(3) 正切函数: y tan x .T ,D( f ) { x | x R, x (2k 1) , kZ } , f ( D ) ( , ) .2(4) 余切函数: y cot x .T ,D( f ) { x | x R, x k ,k Z } , f (D ) ( , ) .5、反三角函数(1) 反正弦函数: y arcsin x ,D( f ) [ 1,1] , f (D) [ , ] 。
高等数学专升本知识点归纳

高等数学专升本知识点归纳高等数学是专升本考试中的重要科目,其知识点广泛且深入,涵盖了微积分、线性代数、常微分方程等多个领域。
以下是对高等数学专升本知识点的归纳总结:一、函数与极限- 函数的定义、性质(单调性、奇偶性、周期性)- 极限的概念、性质、运算法则- 无穷小量的比较- 函数的连续性与间断点二、导数与微分- 导数的定义、几何意义、物理意义- 基本初等函数的导数公式- 高阶导数- 隐函数、参数方程的导数- 微分的概念与应用三、微分中值定理及其应用- 罗尔定理、拉格朗日中值定理、柯西中值定理- 洛必达法则- 函数的单调性、极值与最值问题四、不定积分与定积分- 不定积分的概念、性质、换元积分法、分部积分法- 定积分的概念、几何意义、计算方法- 定积分的几何应用(面积、体积)五、级数- 级数的概念、收敛性判别- 正项级数、交错级数、幂级数- 函数的泰勒展开六、多元函数微分学- 多元函数的极限、连续性、偏导数、全微分- 多元函数的极值问题七、常微分方程- 一阶微分方程的解法(分离变量法、变量替换法等)- 高阶微分方程的降阶方法- 线性微分方程的解法八、线性代数基础- 向量空间、基、维数- 矩阵的运算、行列式- 线性方程组的解法(高斯消元法、克拉默法则)九、解析几何- 空间直线与平面的方程- 空间曲线与曲面的方程结束语通过以上对高等数学专升本知识点的归纳,我们可以看出,高等数学不仅要求学生掌握基础的数学概念和运算技能,更要求能够运用这些知识解决实际问题。
希望这份归纳能够帮助学生系统地复习和掌握高等数学的知识点,为专升本考试做好充分的准备。
(完整版)专升本高等数学知识点汇总

专升本高等数学知识点汇总常用知识点:一、常见函数的定义域总结如下:(1)c bx ax y b kx y ++=+=2一般形式的定义域:x ∈R(2)x k y =分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0(4)x y a log = 对数形式的定义域:x >0二、函数的性质1、函数的单调性当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。
当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。
2、 函数的奇偶性定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-)(1) 偶函数)(x f ——D x ∈∀,恒有)()(x f x f =-。
(2) 奇函数)(x f ——D x ∈∀,恒有)()(x f x f -=-。
三、基本初等函数1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。
2、幂函数:u x y =, (u 是常数)。
它的定义域随着u 的不同而不同。
图形过原点。
3、指数函数定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。
4、对数函数定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。
图形过(1,0)点。
5、三角函数(1) 正弦函数: x y sin =π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。
(2) 余弦函数: x y cos =.π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。
(3) 正切函数: x y tan =.π=T , },2)12(,|{)(Z R ∈+≠∈=k k x x x f D π, ),()(+∞-∞=D f . (4) 余切函数: x y cot =.π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f .5、反三角函数(1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2,2[)(ππ-=D f 。
专升本高数知识点汇总

第一讲函数、极限、连续1、基本初等函数的定义域、值域、图像,尤其是图像包含了函数的所有信息。
2、函数的性质,奇偶性、有界性奇函数:,图像关于原点对称。
偶函数:,图像关于y 轴对称3、无穷小量、无穷大量、阶的比较设是自变量同一变化过程中的两个无穷小量,则(1)若,则是比高阶的无穷小量。
(2)若(不为0),则与是同阶无穷小量特别地,若,则与是等价无穷小量(3)若,则与是低阶无穷小量记忆方法:看谁趋向于0的速度快,谁就趋向于0的本领高。
4、两个重要极限(1)使用方法:拼凑,一定保证拼凑sin 后面和分母保持一致(2)使用方法1后面一定是一个无穷小量并且和指数互为倒数,不满足条件得拼凑。
)()(x f x f )()(x f x f βα,0βαlim αβc βαlimαβ1βαlimαββαlimαβ1x x xx xxsin limsin limsinlimsinlimex xxx xx1111)(lim lim e101)(lim5、的最高次幂是n,的最高次幂是m.,只比较最高次幂,谁的次幂高,谁的头大,趋向于无穷大的速度快。
,以相同的比例趋向于无穷大;,分母以更快的速度趋向于无穷大;,分子以更快的速度趋向于无穷大。
7、左右极限左极限:右极限:注:此条件主要应用在分段函数分段点处的极限求解。
8、连续、间断连续的定义:或间断:使得连续定义无法成立的三种情况记忆方法:1、右边不存在2、左边不存在3、左右都存在,但不相等9、间断点类型(1)、第二类间断点:、至少有一个不存在(2)、第一类间断点:、都存在注:在应用时,先判断是不是“第二类间断点”,左右只要有一个不存在,就是“第二类”然后再判断是不是第一类间断点;左右相等是“可去”,左右不等是“跳跃”10、闭区间上连续函数的性质mnm nm n b a XQ x P m n x,,,lim000xP n xQ m m n m n m n A x f x x)(lim 0Ax f xx)(lim 0Ax f x f A x f x xx xxx )(lim )(lim )(lim 0充分必要条件是)()(lim lim00x f x x f yx x)()(lim00x f x f x x)()(lim 00x f x f xx )()(lim )(lim )()(0000x f x f x f x f x f xx xx 不存在无意义不存在,)(lim 0x f x x )(lim 0x f xx )(lim 0x f x x)(lim 0x f x x)(lim )(lim )(lim )(lim 0x f x f x f x f xx xx xx xx 跳跃间断点:可去间断点:(1)最值定理:如果在上连续,则在上必有最大值最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天一专升本高数知识点 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】第一讲 函数、极限、连续1、基本初等函数的定义域、值域、图像,尤其是图像包含了函数的所有信息。
2、函数的性质,奇偶性、有界性奇函数:)()(x f x f -=-,图像关于原点对称。
偶函数:)()(x f x f =-,图像关于y 轴对称 3、无穷小量、无穷大量、阶的比较设βα,是自变量同一变化过程中的两个无穷小量,则(1)若0=βαlim ,则α是比β高阶的无穷小量。
(2)若c βα=lim(不为0),则α与β是同阶无穷小量 特别地,若1=βαlim,则α与β是等价无穷小量 (3)若∞=βαlim,则α与β是低阶无穷小量 记忆方法:看谁趋向于0的速度快,谁就趋向于0的本领高。
4、两个重要极限 (1)100==→→xxx x x x sin lim sin lim使用方法:拼凑[][][][][][]000==→→sin lim sin lim,一定保证拼凑sin 后面和分母保持一致(2)e x x x x xx =+=⎪⎭⎫⎝⎛+→∞→10111)(lim lim使用方法1后面一定是一个无穷小量并且和指数互为倒数,不满足条件得拼凑。
5、()() ⎝⎛>∞<==∞→m n m n m n ba X Q x P mn x ,,,lim00()x P n 的最高次幂是n,()x Q m 的最高次幂是m.,只比较最高次幂,谁的次幂高,谁的头大,趋向于无穷大的速度快。
m n =,以相同的比例趋向于无穷大;m n <,分母以更快的速度趋向于无穷大;m n >,分子以更快的速度趋向于无穷大。
7、左右极限左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0注:此条件主要应用在分段函数分段点处的极限求解。
8、连续、间断连续的定义: []0)()(lim lim 000=-∆+=∆→∆→∆x f x x f y x x或)()(lim 00x f x f x x =→间断:使得连续定义)()(lim 00x f x f x x =→无法成立的三种情况记忆方法:1、右边不存在 2、左边不存在 3、左右都存在,但不相等 9、间断点类型(1)、第二类间断点:)(lim 0x f x x -→、)(lim 0x f x x +→至少有一个不存在(2)、第一类间断点:)(lim 0x f x x -→、)(lim 0x f x x +→都存在注:在应用时,先判断是不是“第二类间断点”,左右只要有一个不存在,就是“第二类”然后再判断是不是第一类间断点;左右相等是“可去”,左右不等是“跳跃”10、闭区间上连续函数的性质(1) 最值定理:如果)(x f 在[]b a ,上连续,则)(x f 在[]b a ,上必有最大值最小值。
(2) ξ零点定理:如果)(x f 在[]b a ,上连续,且0)()(<⋅b f a f ,则)(x f 在()b a ,内至少存在一点ξ,使得0)(=ξf1、罗尔定理如果函数y ]b 上连续;(2)在开区间(a,b )内可导;(3)()(f a f =0)(='ξf2、拉格朗日定理如果)(x f y =满足(1 (2 则在(a,b)内至少存在一点ξ,使得ab a f b f f --=')()()(ξ(*)推论1 []b a ,上连续,在开区间(a,b )内可导,且0)(≡'x f记忆方法:只有常量函数在每一点的切线斜率都为0。
(*)推论2:如果)(),(x g x f 在[]b a ,上连续,在开区间),(b a 内可导,且),(),()(b a x x g x f ∈'≡',那么c x g x f +=)()(记忆方法:两条曲线在每一点切线斜率都相等 3、驻点满足0)(='x f 的点,称为函数)(x f 的驻点。
几何意义:切线斜率为0的点,过此点切线为水平线 4、极值的概念设)(x f 在点0x 的某邻域内有定义,如果对于该邻域内的任一点x,有)()(0x f x f <,则称)(0x f 为函数)(x f 的极大值,0x 称为极大值点。
设)(x f 在点0x 的某邻域内有定义,如果对于该邻域内的任一点x,有)()(0x f x f >,则称)(0x f 为函数)(x f 的极小值,0x 称为极小值点。
记忆方法:在图像上,波峰的顶点为极大值,波谷的谷底为极小值。
5、拐点的概念连续曲线上,凸的曲线弧与凹的曲线弧的分界点,称为曲线的拐点。
注3x y =是拐点6、单调性的判定定理设)(x f 在),(b a 内可导,如果)(>'x f ),b 内单调增加; 如果0)(<'x f ,则)(x f 在),(b a 内单调减少。
记忆方法:在图像上凡是和右手向上趋势吻合的,是单调增加,0)(>'x f ;在图像上凡是和左手向上趋势吻合的,是单调减少,0)(<'x f ;7、取得极值的必要条件可导函数)(x f 在点0x 处取得极值的必要条件是0)(0='x f 8、取得极值的充分条件 第一充分条件:设)(x f 在点0x 的某空心邻域内可导,且)(x f 在0x 处连续,则(1) 如果0x x <时,0)(>'x f ; 0)(0<'>x f x x 时,,那么)(x f 在0x 处取得极大值)(0x f ; (2) 如果0x x <时,0)(<'x f ;0)(0>'>x f x x 时,,那么)(x f 在0x 处取得极小值)(0x f ;(3) 如果在点0x 的两侧,)(x f '同号,那么)(x f 在0x 处没有取得极值;记忆方法:在脑海里只需记三副图,波峰的顶点为极大值,波谷的谷底为极小值。
第二充分条件:设函数)(x f 在点0x 的某邻域内具有一阶、二阶导数,且0)(0='x f ,0)(0≠''x f 则 (1)如果0)(0<''x f ,那么)(x f 在0x 处取得极大值)(0x f ; (2)如果0)(0>''x f ,那么)(x f 在0x 处取得极小值)(0x f 9、凹凸性的判定设函数)(x f 在),(b a 内具有二阶导数,(1)如果),(,0)(b a x x f ∈>'',那么曲线)(x f 在),(b a 内凹的;(2)如果),(,0)(b a x x f ∈<'',那么)(x f 在),(b a 内凸的。
10、 渐近线的概念曲线)(x f 在伸向无穷远处时,能够逐步逼近的直线,称为曲线的渐近线。
(1) 水平渐近线:若A x f x =∞→)(lim ,则)(x f y =有水平渐近线A y =(2) 垂直渐近线:若存在点0x ,∞=∞→)(lim x f x ,则)(x f y =有垂直渐近线0x x =(2) 求斜渐近线:若[]b ax x f a xx f x x =-=∞→∞→)(lim ,)(lim ,则b ax y +=为其斜渐近线。
11、 洛必达法则 遇到“00” 、“∞∞”,就分子分母分别求导,直至求出极限。
如果遇到幂指函数,需用)(ln )(x f ex f =把函数变成“00” 、“∞∞”。
第二讲 导数与微分1、导数的定义(1)、[]0)()(lim lim )(0000=-∆+=∆='→∆→∆x f x x f y x f x x(2)、h x f h x f x f h )()(lim)(0000-+='→(3)、000)()(lim)(0x x x f x f x f x x --='→注:使用时务必保证0x 后面和分母保持一致,不一致就拼凑。
2、导数几何意义:)(0x f '在0x x =处切线斜率法线表示垂直于切线,法线斜率与)(0x f '乘积为—13、导数的公式,记忆的时候不仅要从左到右记忆,还要从右到左记忆。
4、求导方法总结(1)、导数的四则运算法则 (2)、复合函数求导:()[]x f y ϑ=是由)(u f y =与)(x u ϑ=复合而成,则 (3)、隐函数求导对于0),(=y x F ,遇到y ,把y 当成中间变量u ,然后利用复合函数求导方法。
(4)、参数方程求导设⎩⎨⎧==)()(t y t x ψϑ确定一可导函数)(x f y =,则)()(t t dtdx dt dydx dy ψϑ''== (5) 、对数求导法先对等号两边取对数,再对等号两边分别求导 (6)、幂指函数求导 幂指函数)()(x v x u y =,利用公式aea ln =)(ln )()(ln )(x u x v x u eey x v ⋅==然后利用复合函数求导方法对指数单独求导即可。
第二种方法可使用对数求导法,先对等号两边取对数,再对等号两边分别求导注:优选选择第二种方法。
5、高阶导数对函数)(x f 多次求导,直至求出。
6、微分记忆方法:微分公式本质上就是求导公式,后面加dx ,不需要单独记忆。
7、可微、可导、连续之间的关系 可微⇔可导可导⇒连续,但连续不一定可导 8、可导与连续的区别。
脑海里记忆两幅图(1) (2)2x y =在x=0既连续又可导。
x y =在x=0只连续但不可导。
所以可导比连续的要求更高。
第四讲 不定积分一、 原函数与不定积分1、原函数:若)()(x f x F =',则)(x F 为)(x f 的一个原函数;2、不定积分:)(x f 的所有原函数)(x F +C 叫做)(x f 的不定积分,记作C x F dx x f +=⎰)()(二、 不定积分公式记忆方法:求导公式反着记就是不定积分公式 三、不定积分的重要性质1、[]⎰⎰=='dx x f dx x f d x f dx x f )()()()(或2、⎰+='c x f dx x f )()(注:求导与求不定积分互为逆运算。
四、 积分方法1、基本积分公式2、第一换元积分法(凑微分法)把求导公式反着看就是凑微分的方法,所以不需要单独记忆。
3、第二换元积分法三角代换⎪⎩⎪⎨⎧=+=-=-ta x a x t a x ax t a x x a tan sec sin 222222令令令 三角代换主要使用两个三角公式:t t t t 2222sec tan 1,1cos sin =+=+4、分部积分法⎰⎰-=vdu uv udv 第五讲 定积分 1、定积分定义 ∑⎰=→∆∆=ni iix ba xf dx x f 1)(lim)(ξ如果)(x f 在[]b a ,上连续,则)(x f 在[]b a ,上一定可积。