29第五章 单元检测题

合集下载

第五章 单元检测题

第五章 单元检测题

第五章 单元检测题一、选择题1、下列关于透镜的说法中,正确的是( )A 凸透镜只对平行光有会聚作用 B.凸透镜两个焦点之间的距离叫做焦距 C.平行光经过凸透镜折射后一定会聚于一点 D 凸透镜任何光束都有会聚作用 2.一束光在空气中经凸透镜折射后,下列说法中正确的是( )A .一定是平行光束B .一定是会聚光束C .折射光束比原光束会聚一些D .一定是发散光束3.光学器件在我们的生活、学习中有着广泛的应用。

下面的介绍有一项不切实际,它是( )A .近视眼镜利用了凹透镜对光线的发散作用B .照相时,被照者与相机的距离是在镜头的二倍焦距之外C .借助放大镜看地图时,地图到放大镜的距离应略大于一倍焦距D .阳光通过凸透镜可以点燃纸屑,这利用了凸透镜对光的会聚作用4.下图是“探究凸透镜成像的规律”实验装置示意图,凸透镜的焦距是20cm ,如图的情景,眼睛可能观察到烛焰经凸透镜折射所成的虚像.5.如右图所示是利用航空摄影拍摄到的铜仁市碧江区一角,如果拍摄时所用照像机的镜头焦距是50mm,则胶片到镜头的距离应( )A .大于100mmB .大于50mm 小于100mmC .小于50mmD .等于50mm6.小明同学在“探究凸透镜成像的规律”实验时,烛焰在光屏上成了一个清晰的像,如图所示。

下面给出的生活中常用物品工作时原理与此现象相同的是( )A.投影仪B.照相机C.放大镜D.近视镜7.在探究凸透镜成像规律的实验中,当烛焰、凸透镜、光屏位于如图所示的位置时,烛焰在光屏上呈现一个清晰放大的像。

要使烛焰在光屏上呈现一个清晰缩小的像,调节的方法是A.透镜不动,蜡烛远离透镜移动,光屏靠近透镜移动B.透镜不动,蜡烛远离透镜移动,光屏远离透镜移动C.透镜不动,蜡烛靠近透镜移动,光屏远离透镜移动D.透镜不动,蜡烛靠近透镜移动,光屏靠近透镜移动 8.(2012浙江绍兴)图中人手持的是一枚( )A .凹透镜,可以矫正近视B .凹透镜,可以矫正远视C .凸透镜,可以矫正近视D .凸透镜,可以矫正远视9.如图所示,画出了光通过透镜前后的方向,在图中O处应填的适当类型的透镜是( )A. 凸透镜B.凹透镜C.凸、凹透镜都有可能D.凸、凹透镜都不行10.如果在屏幕上想看到一个正常的“F ”投影片放置的情况应是( )11.(2012河北)透镜在我们的生活、学习中应用广泛。

第五章 二元一次方程组 单元检测题(含答案)

第五章 二元一次方程组 单元检测题(含答案)

第五章二元一次方程检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列说法中正确的是( )A .二元一次方程3x -2y =5的解为有限个B .方程 3x +2y =7的解x ,y 为自然数的有无数对C .方程组⎩⎪⎨⎪⎧x -y =0,x +y =0的解为0D .方程组各个方程的公共解叫做这个方程组的解2.(2014·泰安)方程5x +2y =-9与下列方程构成的方程组的解为⎩⎪⎨⎪⎧x =-2,y =12的是( )A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-83.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y )在平面直角坐标系中位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知∠A ,∠B 互余,∠A 比∠B 大30°.设∠A ,∠B 的度数分别为x °,y °,下列方程组中符合题意的是( )A.⎩⎪⎨⎪⎧x +y =180x =y -30B.⎩⎪⎨⎪⎧x =-2x =y +30C.⎩⎪⎨⎪⎧x +y =90x =y +30D.⎩⎪⎨⎪⎧x +y =90x =y -30 5.已知⎩⎪⎨⎪⎧x =2k ,y =-3k是二元一次方程2x -y =14的解,则k 的值是( )A .2B .-2C .3D .-36.若方程组⎩⎪⎨⎪⎧mx -ny =1,nx +my =8的解是⎩⎨⎧x =2,y =1,则m ,n 的值分别是( ) A .2,1 B .2,3 C .1,8 D .无法确定7.五一期间,人民商场女装部推出“全部服装八折”、男装部推出“全部服装八五折”的优惠活动,某顾客在女装部购买了原价为x 元、男装部购买了原价为y 元的服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为( )A.⎩⎪⎨⎪⎧x +y =5800.8x +0.85y =700B.⎩⎪⎨⎪⎧x +y =7000.85x +0.8y =580C.⎩⎪⎨⎪⎧x +y =7000.8x +0.85y =120D.⎩⎪⎨⎪⎧x +y =7000.8x +0.85y =5808.一批房间,若每间住1人,有10人无处住;若每间住3人,则有10间无人住,则这批房间数为( )A .20B .12C .15D .109.(2014·成都)已知函数y =12x +m 与y =2x -n 的图象如图所示,则方程组⎩⎪⎨⎪⎧x -2y =-2m ,2x -y =n 的解是( )A.⎩⎪⎨⎪⎧x =2y =2B.⎩⎪⎨⎪⎧x =1y =2C.⎩⎪⎨⎪⎧x =-2y =-2D.⎩⎪⎨⎪⎧x =2y =110.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则下列是此二元一次方程组的是( )A.⎩⎪⎨⎪⎧x -y -2=03x -2y -1=0B.⎩⎪⎨⎪⎧2x -y -1=03x -2y -1=0C.⎩⎪⎨⎪⎧2x -y -1=03x +2y -5=0D.⎩⎪⎨⎪⎧x +y -2=02x -y -1=0 二、填空题(每小题3分,共18分)11.已知二元一次方程2x -3y =1,若x =3,则y =____;若y =1,则x =____. 12.(2014·荆门)若-2x m -n y 2与3x 4y 2m +n 是同类项,则m -3n 的立方根是____.13.王老师把几本《数学大世界》让学生们阅读.若每人3本则剩下3本.若每人5本,则有一位同学分不到书看.总共有____位同学,____本书.14.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载,有____种租车方案.15.(2014·东营)如果实数x ,y 是方程组⎩⎪⎨⎪⎧x +3y =0,2x +3y =3的解,那么代数式(xy x +y +2)÷1x +y 的值是____.16.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%,求甲、乙两种商品原来的单价.现设甲商品原来的单价为x 元,乙商品原来的单价为y 元,根据题意可列方程组为____. 三、解答题(共72分)17.(8分)(1)⎩⎪⎨⎪⎧x -y =8,3x +y =12;(2)⎩⎪⎨⎪⎧3x +2y =5x +2,x +y =-3.18.(7分)若等式(2x -4)2+|y -12|=0中的x ,y 满足方程组⎩⎨⎧mx +4y =8,5x +16y =n ,求2m 2-n +14mn 的值.19.(7分)已知|x+2y-9|+(3x-y+1)2=0,求x·y的平方根.20.(7分)为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4本笔记本和2支钢笔,则需86元;如果买3本笔记本和1支钢笔,则需57元.求购买每本笔记本和每支钢笔分别需要多少元?21.(8分)直线a与直线y=2x+1的交点的横坐标是2,与直线y=-x+2的交点的纵坐标是1,求直线a对应的表达式.22.(8分)(2014·吉林)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28 cm,演员踩在高跷上时,头顶距离地面的高度为224 cm.设演员的身高为x cm,高跷的长度为y cm,求x,y的值.23.(8分)已知直线l1:y1=2x+3与直线l2:y2=kx-1交于点A,点A横坐标为-1,且直线l1与x轴交于点B,与y轴交于点D,直线l2与y轴交于点C.(1)求出点A坐标及直线l2的表达式;(2)连接BC,求出S△ABC.24.(9分)某镇水库的可用水量为12 000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?25.(10分)(2014·黔东南)某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式.参考答案一、选择题(每小题3分,共30分) 1.下列说法中正确的是( D )A .二元一次方程3x -2y =5的解为有限个B .方程 3x +2y =7的解x ,y 为自然数的有无数对C .方程组⎩⎪⎨⎪⎧x -y =0,x +y =0的解为0D .方程组各个方程的公共解叫做这个方程组的解2.(2014·泰安)方程5x +2y =-9与下列方程构成的方程组的解为⎩⎪⎨⎪⎧x =-2,y =12的是( D )A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-83.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y )在平面直角坐标系中位于( A )A .第一象限B .第二象限C .第三象限D .第四象限4.已知∠A ,∠B 互余,∠A 比∠B 大30°.设∠A ,∠B 的度数分别为x °,y °,下列方程组中符合题意的是( C )A.⎩⎪⎨⎪⎧x +y =180x =y -30B.⎩⎪⎨⎪⎧x =-2x =y +30C.⎩⎪⎨⎪⎧x +y =90x =y +30D.⎩⎪⎨⎪⎧x +y =90x =y -30 5.已知⎩⎪⎨⎪⎧x =2k ,y =-3k是二元一次方程2x -y =14的解,则k 的值是( A )A .2B .-2C .3D .-36.若方程组⎩⎪⎨⎪⎧mx -ny =1,nx +my =8的解是⎩⎨⎧x =2,y =1,则m ,n 的值分别是( B ) A .2,1 B .2,3 C .1,8 D .无法确定7.五一期间,人民商场女装部推出“全部服装八折”、男装部推出“全部服装八五折”的优惠活动,某顾客在女装部购买了原价为x 元、男装部购买了原价为y 元的服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为( D )A.⎩⎪⎨⎪⎧x +y =5800.8x +0.85y =700B.⎩⎪⎨⎪⎧x +y =7000.85x +0.8y =580C.⎩⎪⎨⎪⎧x +y =7000.8x +0.85y =120D.⎩⎪⎨⎪⎧x +y =7000.8x +0.85y =5808.一批房间,若每间住1人,有10人无处住;若每间住3人,则有10间无人住,则这批房间数为( A )A .20B .12C .15D .109.(2014·成都)已知函数y =12x +m 与y =2x -n 的图象如图所示,则方程组⎩⎪⎨⎪⎧x -2y =-2m ,2x -y =n 的解是( A )A.⎩⎪⎨⎪⎧x =2y =2B.⎩⎪⎨⎪⎧x =1y =2C.⎩⎪⎨⎪⎧x =-2y =-2D.⎩⎪⎨⎪⎧x =2y =110.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则下列是此二元一次方程组的是( D )A.⎩⎪⎨⎪⎧x -y -2=03x -2y -1=0B.⎩⎪⎨⎪⎧2x -y -1=03x -2y -1=0C.⎩⎪⎨⎪⎧2x -y -1=03x +2y -5=0D.⎩⎪⎨⎪⎧x +y -2=02x -y -1=0 二、填空题(每小题3分,共18分)11.已知二元一次方程2x -3y =1,若x =3,则y =__53__;若y =1,则x =__2__.12.(2014·荆门)若-2x m -n y 2与3x 4y 2m +n 是同类项,则m -3n 的立方根是__2__.13.王老师把几本《数学大世界》让学生们阅读.若每人3本则剩下3本.若每人5本,则有一位同学分不到书看.总共有__4__位同学,__15__本书.14.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载,有__2__种租车方案.15.(2014·东营)如果实数x ,y 是方程组⎩⎪⎨⎪⎧x +3y =0,2x +3y =3的解,那么代数式(xy x +y +2)÷1x +y 的值是__1__.16.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%,求甲、乙两种商品原来的单价.现设甲商品原来的单价为x 元,乙商品原来的单价为y 元,根据题意可列方程组为__⎩⎨⎧x +y =100,0.9x +1.4y =100×1.2__.三、解答题(共72分)17.(8分)(1)⎩⎪⎨⎪⎧x -y =8,3x +y =12;(2)⎩⎪⎨⎪⎧3x +2y =5x +2,x +y =-3.解:⎩⎨⎧x =5y =-3 解:⎩⎨⎧x =-2y =-118.(7分)若等式(2x -4)2+|y -12|=0中的x ,y 满足方程组⎩⎨⎧mx +4y =8,5x +16y =n ,求2m 2-n +14mn 的值.解:依题意得⎩⎪⎨⎪⎧2x -4=0y -12=0,∴⎩⎪⎨⎪⎧x =2y =12,将⎩⎪⎨⎪⎧x =2y =12代入方程组得⎩⎨⎧m =3n =18,∴原式=27219.(7分)已知|x +2y -9|+(3x -y +1)2=0,求x ·y 的平方根.解:由非负数的性质得:⎩⎨⎧x +2y -9=0,①3x -y +1=0.②由①得x =9-2y ③,将③代入②得3(9-2y )-y +1=0,解得y =4,把y =4代入③得x =1.所以x·y =4,则x·y 的平方根是±220.(7分)为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4本笔记本和2支钢笔,则需86元;如果买3本笔记本和1支钢笔,则需57元.求购买每本笔记本和每支钢笔分别需要多少元?解:设买每本笔记本x 元,每支钢笔y 元,则依题意可列方程组⎩⎨⎧4x +2y =86,3x +y =57,解得⎩⎨⎧x =14,y =15.∴买每本笔记本14元,每支钢笔15元21.(8分)直线a 与直线y =2x +1的交点的横坐标是2,与直线y =-x +2的交点的纵坐标是1,求直线a 对应的表达式.解:设直线a 的表达式为:y =kx +b.由x =2代入y =2x +1求得y =5,即直线a 上的一个点的坐标是(2,5);由y =1代入y =-x +2求得x =1,即直线a 上的另一个点的坐标是(1,1).将点(2,5),(1,1)代入y =kx +b 中,得⎩⎨⎧k +b =1,2k +b =5.解得⎩⎨⎧k =4,b =-3.所以直线a对应的表达式为:y =4x -322.(8分)(2014·吉林)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28 cm ,演员踩在高跷上时,头顶距离地面的高度为224 cm .设演员的身高为x cm ,高跷的长度为y cm ,求x ,y 的值.解:依题意得方程组⎩⎨⎧x =2y ,x +y =224+28.解得⎩⎨⎧x =168,y =84.∴x 的值为168,y 的值为8623.(8分)已知直线l 1:y 1=2x +3与直线l 2:y 2=kx -1交于点A ,点A 横坐标为-1,且直线l 1与x 轴交于点B ,与y 轴交于点D ,直线l 2与y 轴交于点C .(1)求出点A 坐标及直线l 2的表达式;(2)连接BC ,求出S △ABC .解:(1)A (-1,1),l 2:y 2=-2x -1 (2)S △ABC =S △BCD -S △ACD =124.(9分)某镇水库的可用水量为12 000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?解:(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,由题意,得⎩⎨⎧12000+20x =16×20y ,12000+15x =20×15y.解得⎩⎨⎧x =200,y =50.答:年降水量为200万立方米,每人年平均用水量为50立方米 (2)设该城镇居民年平均用水量为z 立方米才能实现目标,由题意,得12000+25×200=20×25z ,解得z =34.则50-34=16(立方米).答:该城镇居民人均每年需要节约16立方米的水才能实现目标25.(10分)(2014·黔东南)某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y 元,请你求出y 与x 的函数关系式.解:(1)设每件甲种玩具的进价是x 元,每件乙种玩具的进价是y 元,由题意得⎩⎨⎧5x +3y =2312x +3y =141,解得⎩⎨⎧x =30y =27,答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元 (2)当0<x ≤20时,y =30x ;当x>20时,y =20×30+(x -20)×30×0.7=21x +180。

第五章 曲线运动 单元检测(word版含答案)

第五章 曲线运动 单元检测(word版含答案)

第五章曲线运动一、选择题:(每小题有1~2个选项正确,少选得3分,多选或错选不得分,每小题5分,共40分)1.关于质点做曲线运动,下列说法正确的是()A.曲线运动是一种变速运动B.变速运动一定是曲线运动C.质点做曲线运动,运动速度一定发生变化D.曲线运动一定不可能是匀变速2.如图5-8-3所示,汽车在—段丘陵地以恒定速率行驶时,所受支持力最大的地点可能是( )A.a点B.b点C.c点D.d点3.甲、乙两个做匀速圆周运动的质点,它们的角速度之比为3:1,线速度之比2:3,那么下列说法中正确的是()A.它们的半径之比是2:9 B.它们的半径之比是1:2C.它们的周期之比是2:3 D.它们的周期之比是1:34.从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是()A.从飞机上看,物体静止B.从飞机上看,物体做自由落体运动C.从地面上看,物体做自由落体运动D.从地面上看,物体做平抛运动5.一轻杆一端固定一质量为m 的小球,以另一端O为圆心,使小球在竖直平面内做半径为R 的圆周运动,以下说法正确的是()A.小球过最高点时最小速度为gRB.小球过最高点时,杆所受的弹力可以为零C.小球过最高点时,杆对球的作用力可以与球所受重力方向相反,也可以与球所受重力方向相同D.小球过最高点时,杆对球的作用力一定与小球所受重力方向相反6.如图在匀速转动的水平转盘上,有一个相对盘静止的物体,随盘一起转动,关于它的受力情况,下列说法中正确的是()A .只受到重力和盘面的支持力的作用B .只受到重力、支持力和静摩擦力的作用C .除受到重力和支持力外,还受到向心力的作用D .受到重力、支持力、静摩擦力和向心力的作用7.如图所示,在同一竖直平面内,小球a 、b 从高度不同的两点,分别以初速度V a 、V b 沿水平方向抛出,经过时间t a 和t b 后落到与抛出点水平距离相等的的P点,若不计空气阻力,下列关系式正确的是( )A .t a =t bB .t a >t bC .V a =V bD .V a <V b8.如图,质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开中向上,滑到最低点时速度大小为V ,若物体与球壳之间的动摩擦因数为u ,则物体在最低点时,下列说法正确的是( )A .受到向心力为R v m mg 2+B .受到向心力为Rv um 2C .受到的摩擦力为)(2Rv m mg u + D .受到的合力方向斜向左上方 二、实验题(每空4分,共28分)9.如图甲所示,竖直直放置的两端封闭的玻璃管中注满清水,内有一个红蜡块能在水中以0.3m/s 的速度匀速上浮。

人教版九年级下册数学第29章投影与视图单元检测试卷含答案

人教版九年级下册数学第29章投影与视图单元检测试卷含答案

人教版九年级下册数学第29章投影与视图单元检测试卷含答案第29章投影与视图单元检测一、选择题1.如图所示的几何体的主视图是()A. B. C. D.2.人离窗子越远,向外眺望时此人的盲区是( )A. 变小B. 变大C. 不变D. 以上都有可能3.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( )A. B. C. D.4.如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子( )A. 逐渐变短B. 逐渐变长C. 先变短后变长D. 先变长后变短5.如图是某几何体的三视图,则该几何体是( )A. 正方体B. 圆锥体C. 圆柱体D. 球体6.电影院呈阶梯或下坡形状的主要原因是( )A. 为了美观B. 减小盲区C. 增大盲区D. 盲区不变7.如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是( )A. B.C. D.8.下列几何体中,主视图和俯视图都为矩形的是( )A. B. C. D.9.下列投影中,是平行投影的是( )A. B.C. D.10.下面属于中心投影的是( )A. 太阳光下的树影B. 皮影戏C. 月光下房屋的影子D. 海上日出二、填空题(本大题共5小题,共15.0分)11.如图所示.该几何体的俯视图是A.B.C.D.12.当人走在路上,后面的建筑物好像“沉”到前面的建筑物的后面,这是因为______ .13.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______ .14.如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是143cm,则排球的直径是______ cm.15.如图,地面A处有一支燃烧的蜡烛(长度不计),一个人在A与墙BC之间运动,则他在墙上投影长度随着他离墙的距离变小而______ (填“变大”、“变小”或“不变”).三、解答题16.如图,小区管理者打算在广场的地面上安装一盏路灯(路灯高度忽略不计).小明此刻正在某建筑物的B处向下看,请问:此路灯安在什么位置,小明在B处看不到?请把这段范围用线段表示出来.17.由6个相同的小立方块搭成的几何体如图所示,请画出从三个方向看所得到的形状图.18.如图,树、红旗、人在同一直线上,已知人的影子为AB,树的影子为CD,确定光源的位置并画出旗杆的影子.19.同一时刻,两根木棒的影子如图,请画出图中另一根木棒的影子.20.由若干个小正方体构成的几何体的主视图和左视图都是如图所示,则该几何体最多有______ 个小正方体,最少有______ 个小正方体.【答案】1. D2. B3. B4. A5. C6. B7. A8. B9. B10. B11. B12. 到了自己的盲区的范围内13. 左视图14. 2115. 变小16. 解:如图所示:线段BE以下为盲区,此路灯安在BE下面,小明在B处看不到.17. 解:如图所示:.18. 解:如图所示是灯光的光线.原因是过一棵树的顶端及其影子的顶端作一条直线,再过人的顶端及其影子的顶端作一条直线,两直线相交,其交点就是光源的位置;然后再过旗杆的顶端连接光源的直线,交地面于一点,连接这点与旗杆底端的线段就是旗杆的影子.的顶端和它影子的顶端作直线,会发现两直线交于一点A,再过A、B画直线可得另一根木棒的影子.20. 10;4。

人教版数学九年级下册 29章检测题含答案不全

人教版数学九年级下册 29章检测题含答案不全

人教版数学九年级下册 29章检测题含答案29.1投影测试题一、选择题1.晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A.越来越长B.越来越短C.先变长后变短D.先变短后变长2.桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()3.如图,箭头表示投影线的方向,则图中圆柱体的正投影是( )A. 圆B. 圆柱D. 矩形4.给出以下命题,命题正确的有()①太阳光线可以看成平行光线,这样的光线形成的投影是平行投影;②物体的投影的长短在任何光线下,仅与物体的长短有关;③物体的俯视图是光线垂直照射时,物体的投影;④物体的左视图是灯光在物体的左侧时所产生的投影;⑤看书时人们之所以使用台灯是因为台灯发出的光线是平行光线.A.1个B.2个C.3个D.4个5.下列现象不属于投影的是()A.皮影B.素描画C.手影6.如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化7.一个几何体的主视图和俯视图如图所示,若这个几何体最多由a个小正方体组成,最少由b个小正方体组成,则a+b等于()A.10B.11C.12D.138.如图,太阳光线与地面成60°的角,照射在地面上的一个皮球上,皮球在地面上的投影是103cm,则皮球的直径是()A.53cmB.15cmC.10cmD.83cm9.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.二、填空题10.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的 .由平行光线形成的投影是叫做;如物体在的照射下形成的影子.11.若投影线集中于一点,则形成投影;若投影线互相平行,则形成投影.12.由同一点(点光源)发出的光线形成的投影叫做,如物体在发出的光照射下形成的影子.13.正六棱柱的各个面的正投影是多边形,这些多边形中不同的多边形有种.14.投影线投影面产生的投影叫做正投影.正投影是投影的一种特殊情况.15.投影线投影面产生的投影,叫做正投影.16.太阳光是投影.灯光是投影.17.写出一个在三视图中俯视图与主视图完全相同的几何体______.三、解答题18.如图所示,请你画出树在太阳光下的影子.19.如图,把△ABC放在与墙平行的位置上,在点O处打开一盏灯,请画出△ABC落在墙上的影子.此时△ABC和它的影子形状有何关系?要使影子小一些应该怎么办?20.李南身高1.88m,王鹏身高1.60m,他们在同一时刻站在阳光下,李南的影子长为1.20m,王鹏的影子长是多少?21.画出下面物体(正三棱柱)的正投影:(1)投影线由物体前方射到后方;(2)投影线由物体左方射到右方;(3)投影线由物体上方射到下方。

第五章 三角函数单元检测卷(知识达标)

第五章 三角函数单元检测卷(知识达标)

第五章 三角函数单元检测卷(基础达标卷)一、单选题1.若角α的终边上一点的坐标为(11)-,,则cos α=( ) A .1-B .2C .22D .12.cos675︒的值为( ) A 2B .2C .3 D .123.已知()()tan 01f x x ωω=<<在区间0,3π⎡⎤⎢⎥⎣⎦3ω=( )A .12B .13C .23D .344.函数2()(1)cos 1xf x x e =-⋅+的图象的大致形状是( ) A . B .C .D .5.sin1︒,sin1,sin π︒的大小顺序是( ) A .sin1sin1sin π︒<<︒ B .sin1sin sin1π︒<︒< C .sin sin1sin1π︒<︒<D .sin1sin1sin π<︒<︒6.已知1tan 2α=-,那么22sin 2sin cos 3cos αααα+-的值是( ) A .3-B .59-C .3D .75-7.函数()22cos 2f x x =图象的一个对称中心为( )A .,08π⎛⎫- ⎪⎝⎭B .,14π⎛⎫- ⎪⎝⎭C .,18π⎛⎫- ⎪⎝⎭D .,04π⎛⎫ ⎪⎝⎭8.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图,将简车抽象为一个几何图形(圆),筒车半径为4m ,筒车转轮的中心O 到水面的距离为2m ,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M 对应的点P 从水中浮现(即P 0时的位置)时开始计算时间,且以水轮的圆心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy .设盛水筒M 从点P 0运动到点P 时所经过的时间为t (单位:s ),且此时点P 距离水面的高度为h (单位:m ),则点P 第一次到达最高点需要的时间为( )s .A .2B .3C .5D .10二、多选题9.下列说法正确的是( ) A .终边在y 轴上的角的集合为{|2,}2k k Z πθθπ=+∈B .0,2x π⎛⎫∈ ⎪⎝⎭,则sin tan <<x x xC .三角形的内角必是第一或第二象限角D .若α是第二象限角,则2α是第一或第三象限角 10.设α是三角形的一个内角,下列选项中可能为负值的有( ) A .sin αB .cos αC .tan αD .cos tan αα11.在△ABC 中,3sin 4cos 6,3cos 4sin 1A B A B +=+=,则C 的大小不可能为( ) A .6πB .3π C .23πD .56π12.已知函数()22sin sin 21f x x x =-++,则( )A .()f x 的图象可由22y x =的图象向右平移8π个单位长度得到 B .()f x 在0,8π⎛⎫⎪⎝⎭上单调递增C .()f x 在[]0,π内有2个零点D .()f x 在,02π⎡⎤-⎢⎥⎣⎦2三、填空题13.圆的半径是6 cm ,则圆心角为30°的扇形面积是_________2cm . 14.已知22sin 2sin cos 3cos 0αααα-⋅-=,求sin 2cos 2sin cos αααα+=-__________.15.已知函数()sin()f x A x ωφ=+(0A >,0>ω,||2πφ<)在一个周期内的图象如图所示,则()4f π=_______.16.将函数3sin 26y x π⎛⎫=+ ⎪⎝⎭的图象向右平行移动6π个单位长度得到函数()y f x =的图象,若()2f α=则26f πα⎛⎫+= ⎪⎝⎭___________.四、解答题17.如图所示,某市拟在长为8km 的道路OP 的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM ,该曲线段为函数()sin 0,0y A x A ωω=>>,[]0,4x ∈的图象,且图象的最高点为(3,3S ;赛道的后一部分为折线段MNP .为保证参赛运动员的安全,限定120MNP ∠=︒.求A ,ω的值和M ,P 两点间的距离.18.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形OAD 挖去扇形OBC 后构成的).已知10OA =,()010OB x x =<<,线段BA ,CD 与BC ,CD 的长度之和为30,圆心角为θ弧度.(1)求θ关于x 的函数表达式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值. 19.已知函数()2sin f x x ω=,其中常数0>ω.(1)令2ω=,将函数()y f x =的图象向左平移6π个单位长度,再向上平移1个单位长度,得到函数()y g x =的图象,求函数()y g x =的表达式.(2)求出(1)中()y g x =的对称中心和对称轴.(3)若()y f x =在2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,求ω的取值范围.20.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭,且()f x 图像的相邻两条对称轴之间的距离为π2,再从条件①、条件②、条件③中选择两个作为一组已知条件. (1)确定()f x 的解析式;(2)若()()π2cos 26g x f x x ⎛⎫=++ ⎪⎝⎭,求函数()g x 的单调减区间.条件①:()f x 的最小值为-2;条件②:()f x 图像的一个对称中心为5π,012⎛⎫⎪⎝⎭;条件③:()f x 的图像经过点5π,16⎛⎫- ⎪⎝⎭.注:如果选择多组条件分别解答,按第一个解答计分.21.已知α、(0)2πβ∈,,且sin 5α=,sin 10β=. (1)求αβ+的值;(2)令γαβ=+,设[0]x γ∈,,是否存在实数m ,使得()sin cos sin cos f x m x x x x =⋅⋅++21?若存在,求出m 的值,否则,请说明理由.22.(1)已知角α的终边经过点43,55P ⎛⎫- ⎪⎝⎭,求()()()πsin tan π2sin πcos 3παααα⎛⎫-⋅- ⎪⎝⎭+⋅-的值; (2)已知0πx <<,1sin cos 5x x +=,求tan x 的值.参考答案1.C 【分析】根据任意角三角函数的定义即可求解. 【详解】△角α的终边上一点的坐标为(11)-,,它与原点的距离221(1)2r +- △2cos 2x r α=== 故选:C. 2.A 【分析】利用诱导公式及特殊角的三角函数值计算可得; 【详解】()cos 7202c 45cos 45os 675=︒-︒=︒=︒ 故选:A. 3.A 【分析】 先求出03x ωπω≤≤,再根据()max 3tantan36f x ωππ===. 【详解】因为0,3x π⎡⎤∈⎢⎥⎣⎦,即03x π≤≤,又01ω<<,所以033x ωππω≤≤<,所以()max 3tantan36f x ωππ===所以36ωππ=,12ω=. 故选:A . 4.B 【分析】判断函数为奇函数,排除AC ,再计算π(0)2x ∈,时()0f x <,排除D ,得到答案.【详解】1e ()cos 1e x xf x x -=⋅+,e 1()cos ()e 1x x f x x f x --=⋅=-+,△()f x 为奇函数,排除AC.当π(0)2x ∈,,210,cos 01e xx -<>+,故()0f x <,排除D. 故选:B . 5.B 【分析】直接根据正弦函数的单调性即可得出答案. 【详解】 解:因为180sin1sinπ︒=,函数sin y x =在0,2π⎛⎫⎪⎝⎭上递增,1800190ππ︒︒<︒<︒<<︒, 所以180sin1sin sin ππ︒︒<︒<,即sin1sin sin1π︒<︒<.故选:B. 6.A 【分析】对于正余弦的齐次式,进行弦化切,代入求解. 【详解】22sin 2sin cos 2cos αααα+-222222sin 2sin cos 3cos tan 2tan 3sin cos tan 1ααααααααα+-+-==++,将1tan 2α=-代入上式,得原式3=-. 故选:A . 7.C 【分析】由二倍角的余弦公式化简函数解析式,根据余弦型函数的性质求解即可. 【详解】()22cos 2cos41f x x x ==+,令42x k ππ=+(k ∈Z ),得84k x ππ=+(k ∈Z ), 当1k =-时,8x π=-,即()f x 图象的一个对称中心为,18π⎛⎫- ⎪⎝⎭. 故选:C 8.C 【分析】设点P 离水面的高度为()sin()2h t A t ωϕ=++,根据题意求出,,A ωϕ,再令()6h t =可求出结果. 【详解】设点P 离水面的高度为()sin()2h t A t ωϕ=++, 依题意可得4A =,826015ππω==,6πϕ=-, 所以2()4sin()2156h t t ππ=-+, 令2()4sin()6156h t t ππ=-=,得2sin()1156t ππ-=,得221562t k ππππ-=+,k Z ∈,得155t k =+,k Z ∈,因为点P 第一次到达最高点,所以2015215t ππ<<=, 所以0,5s k t ==. 故选:C 9.BD 【分析】选项A 轴线角的写法,y 轴正半轴{|2,}2k k Z πθθπ=+∈,y 轴{|,}2k k Z πθθπ=+∈;选项B 利用三角函数线证明即可;选项C 角90︒ 时不在第一或第二象限角;选项D 可以利用图像判断,也可以利用象限角的范围求解即可. 【详解】选项A 轴线角的写法,y 轴正半轴{|2,}2k k Z πθθπ=+∈,y 轴{|,}2k k Z πθθπ=+∈,所以不正确;选项B ,可以利用三角函数线围成面积的大小来比较大小,OMA OAT OMA S S S <<△△扇形所以sin tan <<x x x ,故正确选项C ,角为90︒ 时不在第一也不在第二象限;选项D 中α是第二象限角,{|22,}2k k k Z παπαππ+<<+∈,所以{|,}2422k k k Z απαπππ+<<+∈,当0,1,2,3k = 可判断2α是第一或第三象限角.故选:BD. 10.BC【分析】α是三角形的一个内角所以0απ<<,根据α的范围逐项判断可得答案.【详解】因为α是三角形的一个内角,所以0απ<<, 所以sin 0α>; 当2παπ<<时,cos 0α<; 当2παπ<<时,tan 0α<;cos tan sin 0ααα=>.故选:BC. 11.BCD 【分析】将题干中两个式子平方后求和化简可得()1sin 2A B +=,结合()1sin sin 2C A B =+=,可得C =6π或56π,又4sin B =1-3cos A >0,可得cos A <13<12,则A >3π,分析即得解【详解】由3sin 4cos 6,3cos 4sin 1A B A B +=+=, 两式平方和得22229sin 9cos 16cos 16sin 24sin cos 24cos sin 361A A B B A B A B +++++=+即 9+16+24sin(A +B )=37,因而()1sin 2A B +=.在△ABC 中,sin C =sin[π-(A +B )]=sin(A +B )=12,且(0,)C π∈ 因而C =6π或56π, 又3cos A +4sin B =1化为4sin B =1-3cos A >0,所以cos A <13<12,则A >3π,故C =6π故选:BCD 12.BC 【分析】A.根据函数的平移判断;B.求出函数的单调增区间来判断;C.求出函数的零点来判断;D.求出函数的最大值来判断; 【详解】由题得()22sin sin21cos2sin22sin 24f x x x x x x π⎛⎫=-++=+=+ ⎪⎝⎭,由2sin2y x =的图象向右平移8π个单位长度,得到2sin22sin 284y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象,所以选项A错误; 令222,242k x k k πππππ-++∈Z ,得其增区间为3,,88k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z , 所以()f x 在0,8π⎛⎫⎪⎝⎭上单调递增,所以选项B 正确;令()0f x =得2,4x k k ππ+=∈Z ,得,28k x k ππ=-∈Z ,又[]0,x π∈. 所以x 可取37,88ππ,即有2个零点,所以选项C 正确; 由,02x ⎡⎤∈-⎢⎥⎣⎦π得322,,sin 24444x x ππππ⎡⎡⎤⎛⎫+∈-+∈-⎢ ⎪⎢⎥⎣⎦⎝⎭⎣⎦, 所以()2,1f x ⎡⎤∈-⎣⎦,所以选项D 错误.故选:BC . 13.3π 【分析】根据扇形的面积公式即可计算. 【详解】306πα==,221163226S r παπ=⋅⋅=⋅⋅=. 故答案为:3π. 14.1或 【分析】由题意可知222222sin 2sin cos 3cos sin 2sin cos 3cos sin cos αααααααααα-⋅--⋅-=+,把式子化简成22tan 2tan 3tan 1ααα--+,求出tan α的值,进而求出tan 22tan 1αα+-的值即可.【详解】解:由题意可知222222sin 2sin cos 3cos sin 2sin cos 3cos 0sin cos αααααααααα-⋅--⋅-==+,即22tan 2tan 30tan 1ααα--=+,解得tan 3α=或tan 1α=-, 若tan 3α=,则sin 2cos tan 23212sin cos 2tan 1231αααααα+++===--⨯-;若tan 1α=-,则()sin 2cos tan 21212sin cos 2tan 12113αααααα++-+===---⨯--故答案为:1或13-.152【分析】根据图象求出A 、ω、φ,然后可得答案. 【详解】由图象可知,2A =,52882T ππππω=-==,△2ω=,由()28f π=, 得2282k ππφπ⨯+=+,k Z ∈,解得24k πφπ=+,k Z ∈,△||2πφ<,△4πφ=,△()2sin(2)2444f πππ=⨯+=216.53【分析】先求出()y f x =的解析式,由()2f α2sin 26πα⎛⎫- ⎪⎝⎭26f πα⎛⎫+ ⎪⎝⎭整理为23cos 463f ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,利用二倍角公式即可求解.【详解】解:将函数3sin 26y x π⎛⎫=+ ⎪⎝⎭的图象向右平行移动6π个单位长度,得到函数()3sin 26y f x x π⎛⎫==- ⎪⎝⎭的图象,若()3sin 226f παα⎛⎫=-= ⎪⎝⎭2sin 26πα⎛⎫- ⎪⎝⎭23sin 223sin 43cos 43cos 4666633f ππππππααααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+=-=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦225312sin 2312693πα⎡⎤⎛⎫⎛⎫=⨯--=⨯-⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故答案为:53. 【点睛】利用三角公式求三角函数值的关键:(1)角的范围的判断;(2)根据条件选择合适的公式进行化简计算.17.23A =6π=ω,MP =5km . 【分析】曲线段OSM 为函数()sin 0,0y A x A ωω=>>,[]0,4x ∈的图象,由最大值得出A ,由周期求得ω,然后可求得M 点坐标,从而求得,M P 间的距离.【详解】 解:依题意,有3A =34T =,即12T =. 又2T πω=,△6π=ω,△23sin 6y x π=,[]0,4x ∈. △当4x =时,22333y π==,△()4,3M . 又()8,0P ,△()()22228403435MP =-+-+=(km ). 即M ,P 两点间的距离为5km .18.(1)()21001010x x x θ+=<<+ (2)52x =,2254 【分析】(1)依题意可得BC x θ=⋅,100AD θ=,再根据30BA CD BC AD +++=,即可得到函数关系式.(2)依题意可得()()110102y x x θ=⨯+-,再利用二次函数的性质计算可得; (1)解:根据题意,可得BC x θ=⋅,100AD θ=.又30BA CD BC AD +++=,所以10101030x x x θθ-+-+⋅+=,所以()21001010x x x θ+=<<+. (2)解:依据题意,可知()()()22221111101010102222OAD OBC y S S x x x x θθθθ=-=⨯-=⨯-=⨯+-扇形扇形, 化简得22522555024y x x x ⎛⎫=-++=--+ ⎪⎝⎭. 于是,当52x =(满足条件010x <<)时,max 2254y =. 所以当52x =时铭牌的面积最大,且最大面积为2254. 19. (1)()2sin 213g x x π⎛⎫=++ ⎪⎝⎭ (2)对称轴:,212k x k Z ππ=+∈,对称中心:,1,26k k Z ππ⎛⎫-∈ ⎪⎝⎭ (3)30,4⎛⎤ ⎥⎝⎦ 【分析】(1)由函数图象变换结论求得函数()y g x =的解析式;(2)利用整体代入法求对称轴和对称中心;(3)求条件可得()2,2,2,4322x k k k ωπωπππωππ⎡⎤⎡⎤∈-⊆-+∈⎢⎥⎢⎥⎣⎦⎣⎦Z ,由此可求ω的取值范围. (1)()2sin2,2sin 2,12sin 216363f x x f x x f x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=∴+=+∴++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,即()2sin 213g x x π⎛⎫=++ ⎪⎝⎭. (2) 2,,,32212k x k k Z x k Z πππππ+=+∈∴=+∈.即对称轴为,212k x k Z ππ=+∈又2,,,326k x k k Z x k Z ππππ+=∈∴=-∈.即对称中心为:,1,k 26k Z ππ⎛⎫-∈ ⎪⎝⎭ (3) 0,ω>∴当2,43x ππ⎡⎤∈-⎢⎥⎣⎦时, 2,43x ωπωπω⎡⎤∈-⎢⎥⎣⎦, 2,,422232k k k ωπππωπππ⎧-≥-∈⎪⎪∴⎨⎪≤+⎪⎩Z解得303,4k k ω<≤+∈Z . 又2112,34122T ππππω+=≤= 243,0114ωω∴≤∴<≤ 即ω的取值范围为30,4⎛⎤ ⎥⎝⎦. 20.(1)()2sin(2)6f x x π=+; (2)13,,2424k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 【分析】(1)先根据已知求出()f x 的最小正周期,即可求解ω,选条件①②:可得()f x 的最小值为A -,可求A .根据对称中心可求ϕ,即可得解函数解析式;选条件①③:可得()f x 的最小值为A -,可求A .根据函数()f x 的图象过点5(6π,1)-,可求ϕ,可得函数解析式;选条件②③:根据对称中心可求ϕ,再根据函数()f x 的图象过点5(6π,1)-,可求A 的值,即可得解函数解析式.(2)先求g (x )的最简式,再根据正弦型函数的减区间的求法求解.(1)由于函数()f x 图像上两相邻对称轴之间的距离为2π, △()f x 的最小正周期22,22T Tπππω=⨯===. 此时()()sin 2f x A x ϕ=+.选条件①②: △()f x 的最小值为A -,△2A =.△()f x 图象的一个对称中心为5(12π,0), △52()12k k Z πϕπ⨯+=∈, △56k ϕπ=π-,()k ∈Z ,△||2ϕπ<,△6π=ϕ,此时1k =, △()2sin(2)6f x x π=+.选条件①③:△()f x 的最小值为A -,△2A =.△函数()f x 的图象过点5(6π,1)-, 则5()16f π=-,即52sin()13πϕ+=-,51sin()32πϕ+=-. △||2ϕπ<,△7513636πππϕ<+<, △51136ππϕ+=,6π=ϕ, △()2sin(2)6f x x π=+.选条件②③:△函数()f x 的一个对称中心为5(12π,0), △52()12k k Z πϕπ⨯+=∈, △5()6k k Z πϕπ=-∈. △||2ϕπ<,△6π=ϕ,此时1k =. △()sin(2)6f x A x π=+.△函数()f x 的图象过点5(6π,1)-, △5()16f π=-,即sin(A 5)136ππ+=-,11sin 16A π=-,△2A =, △()2sin(2)6f x x π=+. 综上,不论选哪两个条件,()2sin(2)6f x x π=+.(2)由(1)知,()2sin(2)6f x x π=+,△()()π2cos 26g x f x x ⎛⎫=++ ⎪⎝⎭=2sin 26x π⎛⎫+ ⎪⎝⎭π2cos 26x ⎛⎫++ ⎪⎝⎭=5222226412x x πππ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭, 由531322221222424k x k k x k πππππππππ+≤+≤+⇒+≤≤+,△g (x )的单调递减区间为:13,,2424k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.21.(1)4π;(2)存在,2m =-.【分析】(1)根据cos(α+β)的值求αβ+的大小;(2)利用换元法求解,令sin cos x x t +=即可﹒(1)△α、(0)2πβ∈,,且sin 5α,sin 10β=, △2cos 1sin 5αα=-=2cos 1sin 10ββ=-, 则2cos()cos cos sin sin 2510510αβαβαβ+=⋅-⋅==,△(0)αβπ+∈,,△4παβ+=;(2)由(1)得4πγ=,则[0]4x π∈,,设sin cos x x t +=, △2)4t x π=+, △[]442x πππ+∈,,△2]t ∈,,△sin cos x x t +=,△2sin 21x t =-, △222()sin 2sin cos (1)222m m mt t mf x x x x t t +-=⋅++=-+=, 令22()2mt t mg t +-=,2]t ∈,,当0m =时,()g t t =,min ()(1)121g t g ==(舍),当0m >时,()g t 函数图像的对称轴方程为10t m =-<, △min ()(1)121g t g ==≠(舍),当0m <时,此时()g t 函数图像的开口向下, △{}min ()min (1),(2)g t g g =,又(1)1g =, △22(2)21m g +==,解得20m =-<,符合题意, △存在2m =-,使得()sin cos sin cos f t m x x x x =⋅⋅++21.22.(1)54;(2)4tan 3x =- . 【分析】(1)由三角函数定义易得4cos 5α=,再利用诱导公式和基本关系式化简为()()()πsin tan π12sin πcos 3πcos ααααα⎛⎫- ⎪-⎝⎭⋅=+-求解;(2)将1sin cos 5x x +=两边平方得到242sin cos 025x x =-<,进而求得7sin cos 5x x -=,与1sin cos 5x x +=联立求解.【详解】解:(1)P 点到原点O 的距离2243155r ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭, 由三角函数定义有4cos 5x r α==, ()()()πsin tan πcos tan 152sin πcos 3πsin cos cos 4ααααααααα⎛⎫- ⎪-⎝⎭⋅=⨯==+---;(2)△0πx <<,将1sin cos 5x x +=两边平方得112sin cos 25x x +=, △242sin cos 025x x =-<,可得ππ2x <<, △sin 0x >,cos 0x <,△sin cos 0x x ->,△()()22sin cos sin cos 2x x x x -++=, △7sin cos 5x x -=,联立1sin cos 5x x +=, △4sin 5x =,3cos 5x =-,△4x=-.tan3。

第5章 相交线与平行线 单元同步检测试题 2022-2023学年人教版数学七年级下册

第5章 相交线与平行线  单元同步检测试题 2022-2023学年人教版数学七年级下册

第五章《相交线与平行线》单元检测题题号 一 二 三总分 19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.如图的四个图中,∠1与∠2是同位角的有( )A .②③B .①②③C .①D .①②④2.下列说法中,错误的有( )①若a 与c 相交,b 与c 相交,则a 与b 相交; ②若a ∥b,b ∥c,那么a ∥c;③过直线外一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种. A .3个 B .2个 C .1个 D .0个3.如图,,于F ,,则的度数是( )A .B .C .D .4.如图,△ABC 沿着由点B 到点E 的方向,平移到△DEF ,已知BC=5.EC=3,那么平移的距离为( )A .2B .3C .5D .75.如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 的周长为16cm ,//AB CD PF CD ⊥40AEP ∠=︒EPF ∠120︒130︒140︒150︒则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.如图,下列条件中,能判断a∥b的条件有()①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°A.1个B.2个C.3个D.4个9.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20B.24C.25D.2610.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④二、填空题(每题3分,共24分)11.如图,在△ABC,AD⊥BC,垂足为点D,那么点B到直线AD的距离是线段的长度.12.如图所示,平移线段AB到CD的位置,则AB=,CD∥,BD=.13.如图,直线AB与CD相交于点O,若∠AOD=150°,则∠BOC=度.14.如图,直线a∥b,∠1=75°,那么∠2的度数是.15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.如图所示,点E在AC的延长线上,有下列条件:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是.17.如图,直线a,b都垂直于直线c,直线d与a,b相交.若∠1=135°,则∠2=°.18.如图,在直角三角形ABC中,∠A=90°,AB=3,AC=4,BC=5,DE∥BC,点A到DE的距离是1,则DE与BC的距离是.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.完成下面的证明:已知:如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.证明:∵DE平分∠BDC(已知),∴∠BDC=2∠1().∵BE平分∠ABD(已知),∴∠ABD=(角平分线的定义).∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)().∵∠1+∠2=90°(已知),∴∠BDC+∠ABD=().∴AB∥CD().20.如图,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=26°(1)求∠2的度数(2)若∠3=19°,试判断直线n和m的位置关系,并说明理由.21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.如图,∠1=∠C,∠2+∠D=90°,BE⊥FD于G.试证明:AB∥CD.24.如图,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由;(2)AB与EF的位置关系如何?为什么?(3)若AF平分∠BAD,试说明:∠E+∠F=90°.参考答案一、选择题:题号12345678910答案D B B A C D A D D D二、填空题:11.解:∵AD⊥BD于D,∴点B到直线AD的距离是线段BD的长,故答案为:BD.12.解:平移线段AB到CD的位置,则AB=CD,CD∥AB,BD=AC.故答案为:CD,AB,AC.13.解:因为直线AB与CD相交于点O,所以∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,因为∠AOD=150°,所以∠BOC=150°,故答案为:150.14.解:∵周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=△ABC 的周长+2AD=12+2×2=16.故答案为16.14.解:如图,∵a∥b,∴∠1=∠3=75°,而∠2+∠3=180°,∴∠2=180°﹣75°=105°.故答案为:105°.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:①∵∠1=∠2,∴AB∥CD,正确;②∵∠3=∠4,∴BD∥AC,错误;③∵∠A=∠DCE,∴AB∥CD,正确;④∵∠D=∠DCE,∴BD∥AC,错误;⑤∵∠A+∠ABD=180°,∴BD∥AC,错误;⑥∵∠A+∠ACD=180°,∴AB∥CD,正确;故答案为:①③⑥17.45.18.三.解答题:19.证明:∵DE平分∠BDC(已知),∴∠BDC=2∠1(角平分线的定义).∵BE平分∠ABD(已知),∴∠ABD=2∠2(角平分线的定义).∴∠BDC+∠ABD=2∠1+2∠2=2(∠1+∠2)(等量代换).∵∠1+∠2=90°(已知),∴∠BDC+∠ABD=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).故答案为:角平分线的定义;2∠2;等量代换;180°;等量代换;同旁内角互补,两直线平行.20.解:(1)∵∠ACB=90°,∠1=26°,∴∠2=180°﹣∠1﹣∠ACB,=180°﹣90°﹣26°,=64°;(2)结论:n∥m.理由如下:∵∠3=19°,∠A=45°,∴∠4=45°+19°=64°,∵∠2=64°,∴∠2=∠4,∴n∥m.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.23. 证明:∵BE⊥FD于G,∴∠1+∠D=90°,∵∠1=∠C,∴∠C+∠D=90°,∵∠2+∠D=90°,∴∠C=∠2,∴AB∥CD.24.解:(1)AD∥BC,理由是:∵∠ADE+∠BCF=180°,∠ADE+∠ADF=180°,∴∠ADF=∠BCF,∴AD∥BC;(2)AB∥EF,理由是:∵BE平分∠ABC,∴∠ABC=2∠ABE,∵∠ABC=2∠E,∴∠ABE=∠E,∴AB∥EF;(3)∵AD∥BC,∴∠DAB+∠ABC=180°,∵BE平分∠ABC,AF平分∠BAD,∴∠ABE=ABC,∠BAF=∠BAD,∴∠ABE+∠BAF=90°,∴∠AOB=180°﹣90°=90°=∠EOF,∴∠E+∠F=180°﹣∠EOF=90°.。

九年级下册第29章单元测试卷试卷

九年级下册第29章单元测试卷试卷

《视图与投影》单元测试题一、选择题1.小明从正面观察下图所示的两个物体,看到的是 ( )2.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )3.“圆柱与球的组合体”如右图所示,则它的三视图是A . B. C . D.4.在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这根竿子的相对位置是( )A 、两根都垂直于地面B 、两根平行斜插在地上C、两根竿子不平行 D 、一根倒在地上5.正方形在太阳光的投影下得到的几何图形一定是( ) A 、 正方形 B 、平行四边形 C 、矩形 D 、菱形 6.同一灯光下两个物体的影子可以是( )A 、同一方向B 、不同方向C 、相反方向D 、以上都有可能7.棱长是1㎝的小立方体组成如图所示的几何体,那么 这个几何体的表面积是( )A 、362cmB 、332cmC 、302cmD 、272cm8.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )B AC DA B C D (第5题) 俯视图 主视图 左视图 俯视图 主视图 左视图 俯视图 主视图 左视图 俯视图 主视图 左视图 . .9.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A 、2B 、3C 、4D 、510.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是 【 】 A 、③④②① B、②④③① C 、③④①② D、③①②④ 二、填空题11.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称 。

主视图12.请将六棱柱的三视图名称填在相应的横线上.13.小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米,则电线杆AB长=14.一个画家由14个边长为1m的正方形,他在地面上把他们摆成如图的形式,然后把露出表面的部分都涂上颜色,那么被涂上颜色的总面积为__________三、解答题15.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子;16.画出下面实物的三视图:17.我们坐公共汽车下车后,不要从车前车后猛跑,为什么?18.已知,如图,AB 和DE 是直立在地面上的两根立柱.AB =5m ,某一时刻AB 在阳光下的投影BC =3m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.19.要测量旗杆高CD ,在B 处立标杆AB =2.5cm ,人在F 处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元检测题
一、选择题
1.据报载我国最近合成多种元素的新的同位素,其中一种是18572
Hf(铪),它的中子数是( )
A.72
B.113
C.185
D.257
2.某元素在自然界里由两种同位素组成,其原子个数比为2.44∶1.05,第一种同位素的原 子 核内有29个质子和34个中子,第二种同位素原子核中的中子数比第一种多2个,该元素的平均原子量是( ) A.64.00 B.6
3.60 C.65.00 D.63.00
3.X 、Y 、Z 代表三个不同的短周期元素.X 元素的原子最外层只有一个电子;Y 元素在周期表 中位于第三周期,与磷元素相邻;Z 原子的L 电子层有6个电子,由这三种元素组成化合物的化学式可能是( ) A.X 3YZ 4 B.X 4YZ 4 C.XYZ 2 D.X 2YZ 4
4.A 、B 、C 、D 、E 是同一周期的五种主族元素,A 和B 的最高价氧化物对应的水化物均呈碱性,且碱性B >A ,C 和D 的气态氢化物的稳定性C >D ;E 是这五种元素中原子半径最小的元素,则它们的原子序数由小到大的顺序是( ) A.A 、B 、C 、D 、E B.E 、C 、D 、B 、A C.B 、A 、D 、C 、E D.C 、D 、A 、B 、E
5.科学家根据元素周期律和原子结构理论预测,原子序数为114的元素属于第七周期ⅣA 族, 称为类铅元素.下面关于它的原子结构和性质预测正确的是( )
A.类铅元素原子的最外层电子数为4
B.其常见价态为+2、+3、+4
C.它的金属性比铅强
D.它的原子半径比铅小
6.对于X —O —H 型化合物而言,X 是除H 、O 外的其他元素时,下列说法中正确的是( ) A.当X 是活泼金属时,它一定是强碱
B.当X 是非金属性很强的元素时,X —O —H 一定是强酸
C.X —O —H 的水溶液不能导电
D.X —O —H 一定是共价化合物
7.下列各组顺序的排列不正确的是( )
A.离子半径:Na +
>Mg 2+
>Al 3+
>F B.热稳定性:HCl >H 2S >PH 3>AsH 3 C.酸性强弱:H 2AlO 3<H 2SiO 4<H 2CO 3<H 3PO 4 D.溶点:NaCl >SiO 2>Na >CO 2
8.某元素X 的最高价氧化物的分子式为X 2O 5,在它的气态氢化物中含氢3.85%,则该元素 的原子量为( ) A.14 B.31 C.74.9 D.121.8 9.下列分子中,属于含有极性键的非极性分子是( ) A.H 2O B.Cl 2 C.SiCl 4 D.CH 3Cl
10.某元素原子的质量数为A ,它的阴离子X n-核外有x 个电子,w 克这种元素的原子核内中子数为( )
A.
mol w n x A A )(+- B .mol A n x A w )
(-+
C .
mol A n x A w )(+- D.mol A
n x A w )
(-- 11.某主族元素R 的最高正价与最低负化合价的代数和为4,由此可以判断( ) A.R 一定是第四周期元素 B.R 一定是ⅣA 族元素 C.R 的气态氢化物比同周期其他元素气态氢化物稳定 D.R 气态氢化物化学式为H 2R
12.下列各表中的数字代表的是原子序数,表中数字所表示的元素与它们在元素周期表中的 位置相符的是( )
13.下列各组物质气化或熔化时,所克服的微粒间的作用力属同种类型的是( )
A.碘和干冰的升华
B.石墨和金刚石的熔化
C.氯化钠和K2CO3的熔化
D.CS2和NaOH的气化
14.X元素原子的L层比Y元素的L层少3个电子,X元素原子核外电子总数比Y元素原子核外电子总数少5个,则X和Y 可能形成的化合物是( )
A.离子化合物Y(XO3)2
B.离子化合物Y2X3
C.离子化合物Y3X2
D.共价化合物XY2
15.下列叙述中正确的是( )
A.在极性分子中不可能存在非极性键
B.在离子晶体中不可能存在极性键
C.在原子晶体中不可能存在离子键
D.含有共价键的晶体有的属于分子晶体,有的属于原子晶体,还有的属于离子晶体
16.A、B、C均为短周期元素,它们在周期表中的位置如下图.已知B、C两元素在周期表中族序数之和是A元素序数的2倍;B、C元素的原子序数之和是A元素原子序数的4倍,则A、B、C 所在的一组是( )
A.Be、Na、Al
B.B、Mg、Si
C.O、P、Cl
D.C、Al、P
17.原子序数在20号以前的元素,原子最外层电子数等于次外层电子数的有( )
A.1种
B.2种
C.3种
D.4种
18.同周期的X、Y、Z三种元素,已知其高价氧化物对应的水化物的酸性强弱顺序是:HXO 4>H2YO4>H3ZO4,则下列各判断中正确的是( )
A.原子半径:X>Y>Z
B.单质的非金属性:X>Y>Z
C.气态氢化物稳定性:X<Y<Z
D.原子序数:X>Y>Z
19.1993年8月国际原子量委员会确认我国张青莲教授测定的锑原子量(127.760)为标准原子量,已知锑有两种以上天然同位素,则127.760是( )
A.按照锑的各种天然同位素的质量数与这些同位素所占的原子百分比计算出来的平均值
B.按照锑的各种天然同位素的原子量与这些同位素所占的原子百分比计算出来的平均值
C.一个锑原子的质量与12C原子质量的1/12的比值
D.锑元素的质量与12C原子质量的1/12的比值
20.元素性质呈周期性变化的决定因素是( )
A.元素原子半径大小呈周期性变化
B.元素原子量依次递增
C.元素原子最外层电子排布呈周期性变化
D.元素的最高正化合价呈周期性变化
二、填空题
21.砷(As)是第四周期的主族元素.砷及其几种化合物的部分性质如下:
(1)砷和热的浓H2SO4反应,生成As2O3,反应的化学方程式为;
(2)As2O3俗称砒霜,溶解在热水中,生成砷酸(H3AsO3),反应的化学方程式为
(3)砷的气态氢化物砷化氢AsH3(也称胂),在常温下能在空气中自燃,反应式为,在缺氧条件,胂受热分解为砷和氢气;
(4)法医在鉴定砒霜中毒时,常用马氏试砷法.取试样(含砒霜)与锌、盐酸混合,反应生成氯化锌、水和砷化氢.然后将生成
的砷化氢气体导入玻璃管中隔绝空气加热,加试样中含有砷的化合物,则生成的AsH 3在管内受热分解生成亮黑色的单质砷称为“砷镜”.这一方法能 检出0.0001毫克的砷.有关反应的化学方程式为
22.具有双核10个电子的共价化合物的化学式是 ,三核10个电子的 共价化合物的化学式是 ,四核10个电子的共价化合物的化学式是 ,五核10个电子的共价化合物的化学式是 .以上四种化合物的热稳定性由小到大的顺序是 . 23.短周期元素X 、Y 、Z 在元素周期表中的位置关系如右图.
(1)X 元素单质化学式为 ,若X 核内质子数与中子数相等,则X 单质 的摩尔
质量为 ;
(2)自然界中存在的一种含Y 元素的另一种元素的天然矿物,其名称是 ,该矿物与浓H 2SO4反应的化学方程式为 .
24.有A 、B 、C 、D 、E 五种主族元素,其原子的最外层电子数依次为1、2、7、6、4,原 子序 数按E 、B 、C 、A 、D 的顺序依次增大.D 的最高价氧化物的式量与气态氢化物的式量之比为1. 57∶1,且该原子核内有45个中子,A 、B 、C 原子的次外层都有8个电子,E 原子的次外层有2 个电子. (1)计算D 的原子量 ;
(2)画出D 的原子结构示意图 ;
(3)写出元素符号:A 、B 、C 、D 、E ;
(5)按酸性由强到弱、碱性由弱到强的顺序写出它们最高价氧化物对应水化物的化学式 ; 三、计算题
25.某元素的同位素A
Z X ,它的氯化物XCl 2 1.11g 溶于水制成溶液后, 加入1mol/L 的AgNO 3溶液20mol 恰好完全反应.若这种同位素原子核内有20个中子,求: (1)Z 值和A 值;
(2)X 元素在周期表中的位置;
(3)把X 的单质放入水中,有何现象?写出反应的化学方程式.
26.有原子量均大于10的A 、B 两种元素,它们之间可形成化合物X 和Y.已知等物质的量的X 和Y 的混合物的密度是相同条件下H 2密度的18.5倍,其中X 与Y 的质量比为3∶4.4,经测定X 的组成为AB ,Y 的组成为A 2B.试通过计算确定A 、B 是什么元素.
单元检测参考答案
一、1.B 2.B 3.BD 4.C 5.AC 6.AB 7.AD 8.C 9.C 10.C 11.D 12.AD 1 3.AC 14.A 15.CD 16.C 17.B 18.BD 19.B 20.C
(2)
(3)K、Al、Cl、Se、C
(4)HClO4、H2SeO4、H2CO3、Al(OH)3、KOH
三、25.(1)Z=20 A=40
(2)第四周期,ⅡA族
(3)有气泡产生 Ca+2HCO Ca(OH)2+H2↑ 26. A——N
B——O。

相关文档
最新文档