微电子器件原理部分习题参考答案

合集下载

微电子器件基础第七章习题解答

微电子器件基础第七章习题解答

Pt电位低于N型半导体电位,半导体表面形成N型阻挡层
4、
N A 1017 cm3 , 4.13eV
P型硅功函数 Ws Eg EFp E


Ws

Eg
E0 Ec
p0 N A N e E Fp

E Fp E k 0T
E Fp E
N 6 1018 E k 0T ln 0.026ln 0.11eV 17 NA 10
Al电位高于N型半导体电位,半导体表面形成N型反阻挡层
不考虑界面态,与Au接触的接触电势差,
VD
WAu Ws 5.2 4.2 1.0V q q
Au电位低于N型半导体电位,半导体表面形成N型阻挡层
不考虑界面态,与Pt接触的接触电势差,
VD
WPt Ws 5.43 4.2 1.23V q q
Al-Cu
Au-Cu W-Al
( EF )m
Cu-Ag
Al-Au Mo-W Au-Pt
VD 0.32V VD 0 VD 1.02V VD 0.29V VD 0.23V
VD 0.12V Al电位高于Cu电位 VD 0.9V Cu电位高于Au电位
5、
Wm 2.5eV
红光波长 760 nm ,对应光子能量,
6.625 1034 3 108 h 1.63eV Wm 9 19 760 10 1.6 10 hc
红光照射金属时,不能从金属中激发光电子到真空中。
紫光波长 430 nm ,对应光子能量,
6.625 1034 3 108 h 2.89eV Wm 9 19 430 10 1.6 10 hc

微电子器件原理习题讲解1

微电子器件原理习题讲解1
(c)正向有源区时BE结正偏,BC结反偏,此 时注意BE结和BC结能带的变化和电场大小的 变化。
参考《晶体管原理与设计》第3章
10.5*、(a)一个双极晶体管工作于正向有源区, 基极电流iB=6.0μ A,集电极电流iC=510μ A。计 算β ,α 和iE。(b)对于iB=50μ A,iC=2.65mA, 重复(a)。
7、多晶硅发射极晶体管的优越性?
扩散晶体管: 1.器件纵向尺寸按比例减少,当发射结结深XjE减小到 200nm以下时, XjE小于发射区少子的扩散长度,这将导致 基极电流增大,电流增益下降。 2.纵向尺寸按比例减少,基区宽度减少,这将导致穿通现 象发生。虽然解决这个问题可以使用增加基区掺杂浓度的方 法,但是这将引起晶体管电流放大倍数的下降。
(2)
0
XB=1m
将各数值代入公式可得基区电子浓 度梯度为:2.25×1015cm-4
(2)基区电子浓度为理想化的线性分布,集电 极电流可以以扩散电流的形式如下 扩散系数及AE 均为已知 将各参数值代入得Ic=0.647μ A
(4)
dnB I C qDn ABE dx
(3)基极电流分两部分,基区注入发射区的空穴 和基区少子电子和多子空穴的复合。理想情况下忽 略后者。

2 ( PP / DnBnieB )dx
②、浅发射区
0

0
-WE
2 2 ( N E / DPE nieE )dx N E ( WE ) / nieE ( WE ) S P

WB
0
2 ( PP / DnB nieB )dx
影响因素: 发射区掺杂浓度;发射区中空穴扩散长度DPE和基区中电 子扩散长度;准中性基区和发射区宽度;发射区空穴扩散 系数;发射区空穴表面复合速率SP;基区空穴浓度;重掺 杂效应下发射区和基区中有效本证载流子浓度和发射区本 证载流子浓度。

微电子器件_电子科技大学中国大学mooc课后章节答案期末考试题库2023年

微电子器件_电子科技大学中国大学mooc课后章节答案期末考试题库2023年

微电子器件_电子科技大学中国大学mooc课后章节答案期末考试题库2023年1.处于平衡态的PN结,其费米能级EF()。

答案:处处相等2.由PN结能带图可见,电子从N区到P区,需要克服一个高度为()的势垒。

答案:3.不考虑势垒区的产生-复合电流,Jdn和Jdp在PN结的势垒区()。

答案:均为常数4.正向偏置增加了耗尽层内的载流子浓度且高于其热平衡值,这导致了该区域内载流子出现()过程占优。

答案:复合5.对突变PN结,反向电压很大时,可以略去,这时势垒电容与()成反比。

答案:6.在开关二极管中常采用掺金的方法来提高开关管的响应速度。

也可采用掺铂、电子辐照、中子辐照等方法,其目的是()。

答案:引入复合中心降低少子寿命7.双极晶体管效应是通过改变()。

答案:正偏PN结的偏压来控制其附近反偏结的电流8.在缓变基区晶体管中,由于基区中存在内建电场,基区渡越时间变为()。

9.在测量ICBO时,双极型晶体管的发射结和集电结分别处于()。

答案:反偏和反偏10.为了降低基极电阻,通常采用对非工作基区进行()的掺杂。

答案:高浓度、深结深11.ICBO代表( ) 时的集电极电流,称为共基极反向截止电流。

答案:发射极开路、集电结反偏12.以下哪些措施可以增大MOSFET的饱和区漏极电流:()。

减小栅氧化层厚度13.以下哪些措施可以降低MOSFET的亚阈区摆幅:()。

答案:降低衬底掺杂浓度14.以下哪些措施可以防止MOSFET的沟道穿通:()。

答案:增加衬底掺杂浓度15.当MOSFET的栅极电压较大时,随着温度的温度升高,漏极电流将()。

答案:减小16.MOSFET的()是输出特性曲线的斜率,()是转移特性曲线的斜率。

漏源电导,跨导17.以下哪些措施可以缓解MOSFET阈电压的短沟道效应:()。

答案:减小氧化层厚度18.PN结的空间电荷区的电荷有()。

答案:施主离子受主离子19.PN结的内建电势Vbi与()有关。

答案:温度材料种类掺杂浓度20.反向饱和电流的大小主要决定于半导体材料的()。

微电子器件基础第五章习题解答

微电子器件基础第五章习题解答

p

ni
exp

Ei EFp k0T


Ei

EFp

k0T
ln
p ni
小注入下,空穴准费米能级,
Ei

E
p F
0.026ln
p0 p ni
0.026ln
2.25 105 1014 1.5 1010
0.026ln 6.67 103 0.23eV
8. 解:从题意知,P型半导体,小注入下,复合中心的电子产生率等于空穴捕获率,
第五章 非平衡载流子
1.
N Ge p 1104 s, p 1013cm3
解:
U

p
p

1013 1104
1017
cm3s1
2. 空穴在半导体内均匀产生,其产生率 g p
解: 由空穴连续性方程,
p t
Dp
2 p x2

p
E
p x
E
p p x
p p g p
3. N Si
p 1106 s
g p 1022 cm3s1 0 10cm
解: 半导体内光生非平衡空穴浓度,
p p g p 106 1022 1016 cm3s1
光照下,半导体的电导率,

0
1 pq


rn rp Nt rp rn

1 Nt rp

1 Nt rn
p
n
10. Nt 1016 cm3
解:根据PP158给出数据,
在N型硅中,金的受主能级起作用,金负离子对空穴的俘获系数,

微电子器件基础第六章习题解答课件

微电子器件基础第六章习题解答课件

垒 区
电 子 扩
N 中
散性
区区
反向小注入下,P区接电源负极,N区接电源正 极,势垒区电场强度增加,空间电荷增加,势垒 区边界向中性区推进。
势垒区与N区交界处空穴被势垒区强电场驱向P 区,漂移通过势垒区后,与P区中漂移过来的空 穴复合。中性N区平衡空穴浓度与势垒区与N区 交界处空穴浓度形成浓度梯度,不断补充被抽取 的空穴,对PN结反向电流有贡献。
注入空穴在N区与势垒区交界处堆积,浓 度比N区平衡电子浓度高,形成浓度梯度, 产生流向中性N区的空穴扩散流,扩散过 程中不断与中性N区漂移过来的电子复合, 经过若干扩散长度后,全部复合。
3、 解、
VR
P
N
IR
n p0 np
pn0
pn
xp 0 x n
x
JR(JpJn)
Jp
Jn
P空
中穴 势
性 区
扩 散 区
k0T q
2 i
np
2
npp1Ln
1
nLp
kq0Tnpi212
n p
1
pLn
1
nLp
kq0Tbb1i22

5、 解、 硅突变PN结,
n 5 c ,p m 1 1 6 s ;0 p 0 . 1 c ,n m 5 1 6 s 0
N区、P区多子浓度, nn0nq 1n51.611 0 1913 59.0 31104 cm 3 pp0pq 1p0.11.61 1 0 19501 0.31107 cm 3
正向小注入下,忽略势垒区复合和表面复合,空穴电流密度等于势垒区 与空穴扩散区交界处的空穴扩散电流密度,电子电流密度等于势垒区与电 子扩散区交界处电子扩散电流密度,
Jp qDp ddpn xx xxn qDp pLnp0ekq0TV1 Jn qD n ddnp xx xxp qD n nLpn0ekq0TV1

微电子器件_电子科技大学中国大学mooc课后章节答案期末考试题库2023年

微电子器件_电子科技大学中国大学mooc课后章节答案期末考试题库2023年

微电子器件_电子科技大学中国大学mooc课后章节答案期末考试题库2023年1.线性缓变结的耗尽层宽度正比于【图片】。

参考答案:正确2.反向偏置饱和电流可看成是由中性区内少数载流子的产生而导致的。

参考答案:正确3.减薄p+n突变结的轻掺杂区厚度,不但能减少存储电荷,还能降低反向抽取电流。

参考答案:错误4.在异质结双极型晶体管中,通常用()。

参考答案:宽禁带材料制作发射区,用窄禁带材料制作基区5.( )的集电结反向电压VCB称为共基极集电结雪崩击穿电压,记为BVCBO。

参考答案:发射极开路时,使6.【图片】对高频小信号注入效率的影响的物理意义是,【图片】的存在意味着【图片】必须先付出对势垒区充放电的多子电流【图片】后,才能建立起一定的【图片】。

这一过程需要的时间是()。

参考答案:发射结势垒电容充放电时间常数7.某长方形扩散区的方块电阻为200Ω,长度和宽度分别为100μm和20μm,则其长度方向的电阻为()。

参考答案:1KW8.要提高均匀基区晶体管的电流放大系数的方法()。

参考答案:减小基区掺杂浓度_减小基区宽度9.防止基区穿通的措施是提高()。

参考答案:增大基区宽度_增大基区掺杂浓度10.从发射结注入基区的少子,由于渡越基区需要时间tb ,将对输运过程产生三方面的影响( )。

参考答案:时间延迟使相位滞后_渡越时间的分散使减小_复合损失使小于111.晶体管的共发射极输出特性是指以输入端电流【图片】作参量,输出端电流【图片】与输出端电压【图片】之间的关系。

参考答案:正确12.电流放大系数与频率成反比,频率每提高一倍,电流放大系数下降一半,功率增益降为四分之一。

参考答案:正确13.特征频率【图片】代表的是共发射极接法的晶体管有电流放大能力的频率极限,而最高振荡频率【图片】则代表晶体管有功率放大能力的频率极限。

参考答案:正确14.模拟电路中的晶体管主要工作在()区。

参考答案:放大15.共发射极电路中,基极电流IB是输入电流,集电极电流IC是输出电流。

电子科技大学微电子器件 (习题解答)

电子科技大学微电子器件 (习题解答)

s Emax
qND

x
xi2 处,E3
Emax
q
s
NA xp
,
由此得:xp
s Emax
qNA
(2) 对于无 I 型区的PN结,
xi1 0,
xi2 0,
E1
q
s
ND (x
xn ),
E3
q
s
NA(x
xp )

x
0 处,电场达到最大, Emax
q
s
ND xn
q
s
NA xp
E
Emax
E1
E3
x
0
表面上,两种结构的 Emax 的表达式相同,但由于两种结构 的掺杂相同,因而Vbi 相同(即电场曲线与横轴所围面积相同), 所以两种结构的 xn、xp与 Emax 并不相同。
WB
dWB dVCE
0 NBdx
IC VA
WB
VA 0 NBdx
N
B
(WB
)
dWB dVCE
对均匀基区,VA
WB dWB dVCE
式中,dWB dxdB , VCE VCB VBE

VBE
保持不变,所以 dVCE
dVCB ,
于是:VA
WB dxdB dVCB
1
xdB
2s N
2DB n
,
将n
106 s 及 WB 、DB
之值代入,得: 0.9987。
7、
b
WB2 2DB
2
1
1
1.1251011(s)
8、以 NPN 管为例,当基区与发射区都是非均匀掺杂时, 由式(3-33a)和式(3-33b),

微电子器件 简答题 答案更正

微电子器件    简答题   答案更正

微电子器件
期末考试复习题答案更正及补充
(简答题部分)
主?
答:当 V 比较小时,以 J r 为主; 当 V 比较大时,以 J d 为主。

E G 越大,则过渡电压值就越高。

补:7 、 什么是小注入条件?什么是大注入条件?写出小注入条件和大注入条件下的结定律,并讨论两种情况下中性区边界上载流子浓度随外加电压的变化规律。

大注入,就是注入到半导体中的非平衡少数载流子浓度接近或者超过原来的平衡多数载流子浓度时的一种情况。

改:14、提高基区掺杂浓度会对晶体管的各种特性,如 γ、α、β、
TE C 、EBO BV 、pt V 、A V 、bb r '等
产生什么影响?
改:16、①双极晶体管的理想的共发射极输出特性曲线图,并在图中标出饱和区与放大区的分界线,
②厄尔利效应③击穿现象的共发射极输出特性曲线图。

【重点题】
某突变结的雪崩击穿临界电场为 E C = 4.4 ×105 V/cm ,雪崩击穿电压为 220V ,试求发生击穿时
的耗尽区宽度 x dB 。

解:当 N A >> N D 时, J dn << J dp
降低
虚线代表 V BC = 0 ,或 V CE = V BE ,即放大区与饱和区的分界线。

在虚线右侧,V BC < 0 ,或 V CE >V BE ,为放大区;
在虚线左侧,V BC > 0 ,或 V CE < V BE ,为饱和区。

B dB
C 3B dB 5C 12
2222010cm 10μm 4.410V x E V x E -=⨯====⨯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dI dT
C2
exp
EG kT
qV
EG kT
qV
2
I
EG kT
qV
2
1 dI I dT
EG qV kT 2
31、 当 N- 区足够长时,开始发生雪崩击穿的耗尽区宽度为:
xdB
2VB EC
2 144 32
9μm
当 N- 区缩短到 W = 3m 时,雪崩击穿电压成为:
VB
'
VB
q 1.61019 C, S 1.0451012 F cm ,
代入 | Emax |中,得:| Emax | 1.52 104 V cm
8、(1)
N
I
P
xi1 xn xi1 0 xi2
xi2 xp
在 N型区,
dE1 dx
q
s
ND
,
E1
q
s
ND x C1
边界条件:在
x
xi1
xn
处,E1
WB dWB dVCE
式中,dWB dxdB , VCE VCB VBE

VBE
保持不变,所以 dVCE
dVCB ,
于是:VA
WB dxdB dVCB
1
xdB
2s N
qNB
C
(
(Vbi VCB ) NC NB)
2
1
dxdB dVCB
2qNB
(NC
s NC
NB )(Vbi
2
VCB
qV kT
1
Jdp Ln Dp NA Ln p NA 1 Jdn Lp Dn ND Lp n ND
24、 PN 结的正向扩散电流为
I
I0
exp
qV kT
式中的 I0 因含 ni2 而与温度关系密切,因此正向扩散电流可表为
I
C1ni2
exp
qV kT
C2
exp
EG kT
qV
于是 PN 结正向扩散电流的温度系数与相对温度系数分别为
100
6、

J nE
qDBnB (0) , WB
可得:nB (0)
J nEWB qDB
,

JnE 0.1Acm2 , WB 2 104 cm, q 1.6 1019 C, DB 15cm2 s1
之值代入,得: nB (0) 8.331012 cm3
又由
nB (0)
np0
exp
qVBE kT

N
(x)
N0
exp(
x
)
代入,得:E
kT
q
再将 kT 0.026 V, 0.4 μm 代入,得:E 650 V cm
q
1
突变结的最大电场强度表达式为:|
Emax
|
2qN0Vbi
s
2
式中:N0
NDNA ND NA
ND
1015 cm3,
Vbi
kT q
ln
NDNA ni2
0.757 V,
Emax
Ex
q
s
NDx
当 x = xn 时,E(x) = 0,因此
Emax
q
s
ND xn ,于是得:
E
x
q
s
x
xn
ND
0 x xn
(2-5a)
3、
(1)
Vbi
kT q
ln
NA ND ni2
0.026 ln
5 1032 2.25 1020
0.739 V
1
(3)
Emax
2qN0Vbi
S
QBO DE
14、 已知
IC
QB
b
若假设
1,则
IB
Ir
QB
B
所以 IC B IB b
本题与第 10 题的第(4)小题分别是两种极端情况。
15、
1
DEWB NB DBWE NE
, npn
1 DpWB NB , DnWE NE
pnp
1 DnWB NB DpWE NE
由 D kT 可知,D q
CT
10
3.6 0.4
10
9 30 (pF)
39、
IF
I0
exp
qV kT
gD
dI F dV
qI F kT
当 T 300K 时,
kT q
0.026 V,
对于 IF 10 mA 0.01 A,
gD
10 26
0.385 s,
rD
1 gD
2.6
在 100C 时,kT 0.026 373 0.0323V,
得:IC 4.55 (mA)
0.9936,
1
155,
IB
IC
0.029 (mA)
10、
(1)
1
DEWB NB
DB
WE 0
NEdx
1
DE ABqWB NB
DB ABq
WE 0
NEdx
1 QBO DE QEO DB
式中,QBO ABqWB NB 3.2 1011C, QEO 1.28109 C,
2
4.34 104
Vcm-1
(2)
xp
S
qNA
Emax
2.83105 cm
xn
S
qND
Emax
5.67 106 cm
1
xd
xp
xn
S
qN0
Emax
2Vbi Emax
2SVbi
qN0
2
3.40105 cm
4、
1
1
1
1
xd
2S
qN0
Vbi
V
2
2S
qN0
Vbi
V
2
Vbi Vbi
式中,
1
1 2
WB LB
2
1
WB2
2DB B
0.9986
将 AE 104 μm2 , 0.9986, q 1.6 1019 C,
DB 18cm2 s1, ni 1.51010 cm3, WB 0.7 104 cm,
NB 1017 cm3,
VBE 0.7 V,
kT 0.026 V 之值代入, q
qVBE kT
1
1
ro
IC VCE
VBE
AE qDB ni 2
exp
qVBE kT
1
NB
(WB
)
dWB dVCE
WB 0
NBdx
2
IC
NB (WB )
WB
dWB dVCE
0 NBdx
IC VA
WB
VA 0 NBdx
N
B
(WB
)
dWB dVCE
对均匀基区,VA
qVBE kT
1
AEq2 DEni2 QEO
exp
qVBE kT
1
再根据注入效率的定义,可得:
J nE JE
J nE JnE JpE
1
J pE J nE
1
1
QBO QBE
DE DB
1
9、
IC
AE J nC
AE J nE
AE
qDBni2 WB NB
exp
qVBE kT
)
1
VA
| VCB 0
WB
2qN
B
(
NC
s NC
NB )Vbi
2
22、
Vbi
kT q
ln
NBNC ni2
0.026 ln
11033 2.25 1020
0.757
V
1
VA
|VCB 0 WB
2qN
B
(
NC
s NC
NB
)Vbi
2
126 V
27、 实质上是 ICS 。
39、 为提高穿通电压 Vpt ,应当增大 WB 和 NB ,但这恰好与提 高 β 相矛盾。解决方法: 使 NB >> NC ,这样集电结耗尽区主要向集电区延伸,可使 基区不易穿通。
q dx
Vbi
ND1 Edx
ND2
kT q
ln n | ND1
ND2
kT q
ln
N D1 ND2
将 kT q
0.026V ,
ND1 11020 cm3,
ND2 11016 cm3
代入,得:Vbi 0.026 ln(104 ) 0.24 V
7、由第 6 题:
E kT 1 dn kT 1 dN (x) q n dx q N (x) dx
部分习题解答
部分物理常数:
q 1.6 1019 C, kT q 0.026V (T 300k),
S (Si) 11.8 8.854 1014 1.0451012 F cm ,
EG (Si) 1.09eV, ni (Si) 1.5 1010 cm3,
S (Ge) 16 8.854 1014 1.417 1012 F cm ,
2
1
1
1.1251011(s)
8、以 NPN 管为例,当基区与发射区都是非均匀掺杂时, 由式(3-33a)和式(3-33b),
JnE
qDBni2
WB 0
NBdx
exp
qVBE kT
1
AE q 2 DBni2 QBO
exp
qVBE kT
1
JpE
qDE ni2
相关文档
最新文档