中考数学复习9 一次函数的图象与性质

合集下载

初中数学教学课例《一次函数的图像与性质复习》课程思政核心素养教学设计及总结反思

初中数学教学课例《一次函数的图像与性质复习》课程思政核心素养教学设计及总结反思

知识,还要关注不确定知识。让学生经历真实的探究、 创造、协作与问题解决,发展学生的核心素养;在此过 程中,一切基础知识、基本技能均成为学生探究的对象 和使用的工具,其目的是产生学生自己的思想和理解。
思想
学生通过自主、探究、合作交流的学习方式,在复
习知识中感受到由抽象到具体在到一般的过程。在教学
中始终以数学学习的组织者、引导者和合作者的角色出
学生学习能 现在教学活动中,把课堂还给学生,以学生为主体,培
力分析 养他们的思维能力和表达能力。在练习的设计中,注意
习题的形式多样,难度适当,既巩固了本课所学知识,
题。
知识与技能:
1、理解并说出一次函数的概念
2、理解一次函数的图象及性质,能根据 k、b 的值
判断一次函数图象经过的象限,能根据图象经过的象限
判断 k、b 的符号
教学目标
3、会用待定系数法求解一次函数解析式
过程与方法:
1 学生通过自主、探究、合作交流的学习方式,在

复习知识中感受到由抽象到具体在到一般的过程;
又培养了学生的学习能力,进一步体现了数学来源于生
活,又应用于生活的教育理念。
引导学生从整体了解本章知识,进而了解本节课的
学习任务,明确学习目标、学生识记目标,并了解本节 教学策略选
在中考中的要求,激发学习的动力,鼓励学生多角度归 择与设计
纳,既有知识总结,又有方法的提炼,感悟点滴,从而
将知识系统化。
教学过程
一、多元导入、明确目标(让学生从一次函数的单
元知识树主干出发,逐条枝干阅读)进而了解本节课的 学习任务,明确学习目标、学生识记目标,并了解本节 在中考中的要求,激发学习的动力。
二、以题带知,构建网络 知识点 1:一次函数与正比例函数的概念: 1、下列函数(1)y=3πx;(2)y=8x-6;(3)y=; (4)y=-8x;(5)y=5-4x+1(6)y=kx+b 中,是一次函 数的有()个 A.4 个 B.3 个 C.2 个 D1 个 (让学生做题,相互讨论,重点强调第六个 k 不为 0) 引出知识点 1:一次函数与正比例函数的概念(课 件展示)紧跟巩固训练 2、已知,若函数 y=(m-1)xm2+3 是关于 x 的一次 函数,求 m 的值 教师强调这类题目主要考察对函数解析式的特征 的理解,突出两点:一指数为 1 二系数不为 0 知识点 2:一次函数的图象与性质 1、不画图像,仅从函数解析式能否分析出直线 y=3x、y=3x+4 与 y=3x-4 具有怎样的位置关系 2、一次函数 y=x 图象经过象限,若将函数图象向上 平移 1 个单位得到直线解析式为,y 随 x 的增大而此直

中考数学基础复习第10课一次函数的图象与性质课件

中考数学基础复习第10课一次函数的图象与性质课件
第10课 一次函数的图象与性质
【知识清单】
一次函数的图象和性质 1.图象
正比例函数 y=kx(k≠0)
一次函数 y=kx+b(k≠0)
图象关系
是经过点(0,0)和点(1,___k___)的一条直线
是经过点(0,b__ )和点(____kb,0)的一条直线
一次函数y=kx+b的图象可由正比例函数y=kx的图象 平移得到,b>0,向___上____移动___b___个单位,b<0, 向___下____移动___-_b___个单位
∵m-n=4,∴m-(-2m+2)=4,解得m=2,n=-2,
∴点P的坐标为(2,-2).
反思:函数的性质可以结合图象来理解求解.
考点3 与方程(组)、不等式的关系 例3.(202X·乐山)直线y=kx+b在平面直角坐标系中的位置如图所示,求不等式 kx+b≤2的解.
【解析】根据图象得出直线y=kx+b经过(0,1),(2,0)两点,
2
.5
2
【联系课标】 【课标要求】 一次函数 (1)会利用待定系数法确定一次函数的表达式 (2)会画一次函数的图象 (3)能根据一次函数的图象和表达式探索并理解其性质 (4)体会一次函数与二元一次方程的关系
【考点剖析】 考点1 一次函数表达式的确定 例1.(202X·黔西南)如图,正比例函数的图象与一次函数y=-x+1的图象相交于 点P,点P到x轴的距离是2,求这个正比例函数的表达式.
变式1.(202X·广州)一次函数y=-3x+1的图象过点(x1,y1),(x1+1,y2),
(x1+2,y3),则 ( B )
A.y1<y2<y3

2023中考数学复习:一次函数的图象和性质

2023中考数学复习:一次函数的图象和性质

C.3
B
)
D.4
15
16
基础全练
挑战高分中考创新练中考 创 新 练17.(2022·湖北鄂州)数形结合是解决数学问题常用的思想方法.如图,一次

函数y=kx+b(k,b为常数,且k<0)的图象与直线y= x都经过点A(3,1),当


kx+b< x时,x的取值范围是(

A.x>3
B.x<3
C.x<1
= ,
在△AOD和△BOC中,ቐ∠ = ∠,∴△AOD≌△BOC(SAS).
17
18
= ,
19
20
11
12
13
14
挑战高分
基础全练
中考创新练
根据以上信息,解答下列问题:
(1)当输入的x值为1时,输出的y值为
;
(2)求k,b的值;
(3)当输出的y值为0时,求输入的x值.
解:(1)当x=1时,y=8×1=8.故答案为:8;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
挑战高分
基础全练
中考创新练
− + = ,
的解是(
)
= − +
= ,
A.ቊ
=
= ,
B.ቊ
=
1
2
3
4
= −,
C.ቊ
=
5
6
7
8
= ,
D.ቊ
=
9
10
11
12
13
14
挑战高分

中考数学复习之一次函数的图象与性质(含答案)

中考数学复习之一次函数的图象与性质(含答案)

中考数学复习之一次函数的图象与性质(含答案)1.一个正比例函数的图象经过点(2,-1),则它的表达式为 ( )A. y =-2xB. y =2xC. y =-12xD. y =12x 2.若b >0,则一次函数y =-x +b 的图象大致是 ( )3.一次函数y =x +2的图象与y 轴的交点坐标为( )A. (0,2)B. (0,-2)C. (2,0)D. (-2,0)4. 将直线y =2x -3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A. y =2x -4B. y =2x +4C. y =2x +2D. y =2x -2 5.等腰三角形底角与顶角之间的函数关系是( )A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数 6.如图,直线y =kx +b (k ≠0)经过点A (-2,4),则不等式kx +b >4的解集为 ( )A. x >-2B. x <-2C. x >4D. x <47. 一次函数y =kx -1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A. (-5,3)B. (1,-3)C. (2,2)D. (5,-1)8.如图,直线l 是一次函数y =kx +b 的图象,如果点A (3,m )在直线l 上,则m 的值为 ( )A. -5B. 32C. 52 D. 79. 点A (x 1,y 1),B (x 2,y 2)在一次函数y =12x +b 的图象上,且x 1>x 2,则y 1与y 2的大小关系是_____________.10.已知点A 是直线y =x +1上一点,其横坐标为-12.若点B 与点A 关于y 轴对称,则点B 的坐标为_____________.11. 如图,一次函数l 1∶y =k 1x +b 1与l 2∶y =k 2x +b 2的图象交于P 点,则方程组⎩⎨⎧y =k 1x +b 1y =k 2x +b 2的解为_____________.12.如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (-2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象相交于点C ,点C 的横坐标为1. (1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.13. 如图,在平面直角坐标系中,直线y =-43x +4与x 轴、y 轴分别交于A 、B 两点,点C 在第二象限,若BC =OC =OA ,则点C 的坐标为 ( )A. (-5,2)B. (-3,5)C. (-2,2)D. (-3,2)14. 如图,在平面直角坐标系中,点A (0,4)、B (3,0),连接AB ,将△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A ′处,折痕所在的直线交y 轴正半轴于点C ,则直线BC 的解析式为_______________.15.如图,在平面直角坐标系中,直线y=-x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.16.问题:探究函数y=|x|-2的图象与性质.小华根据学习函数的经验,对函数y=|x|-2的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)在函数y=|x|-2中,自变量x可以是任意实数;(2)下表是y与x的几组对应值.①m=________;②若A(n,8),B(10,8)为该函数图象上不同的两点,则n=________;(3)如图,在平面直角坐标系xOy中,描出以上表中各对应值为坐标的点,并根据描出的点,画出该函数的图象;根据函数图象可得:①该函数的最小值为________;②已知直线y1=12x-12与函数y=|x|-2的图象交于C、D两点,当y1≥y时x的取值范围是_____________.17.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是__________(写出一个即可).18.当-2≤x≤2时,函数y=kx-k+1(k为常数且k<0)有最大值3,则该函数的解析式为_______________.参考答案:1-4 CCAA 5-8 BACC 9. y 1>y 2 10. (12,12) 11. ⎩⎨⎧x =-1y =-212. 解:(1)∵点C 的横坐标为1,且在y =3x 的图象上,∴C 点坐标为(1,3),将A 、C 点的坐标代入y =kx +b , 得⎩⎨⎧6=-2k +b 3=k +b ,解得⎩⎨⎧k =-1b =4; (2)由(1)知直线AC 的函数解析式为y =-x +4,当y =0时,解得x =4, ∴B 点坐标为(4,0),即OB =4, ∴S △BOC =12×4×3=6,∴S △COD =13×6=2,△COD 边OD 上的高为C 点的横坐标1, 则S △COD =12×1×|y D |=2,∴|y D |=4,∵点D 在y 轴负半轴上,∴y D =-4,故D 点的坐标为(0,-4). 13. A14. y =-12x +3215. 解:(1)∵直线y =-x +3过点A (5,m ),∴m =-5+3=-2, ∴点A 的坐标为(5,-2), 由平移可得点C 的坐标为C (3,2), 设直线CD 的解析式为y =kx +b (k ≠0), ∵直线CD 与直线y =2x 平行, ∴k =2,∵点C (3,2)在直线CD 上,∴2×3+b =2, 解得b =-4,∴直线CD 的解析式为y =2x -4; (2)∵直线y =-x +3与y 轴的交点为B , ∴点B 的坐标为(0,3),∵直线CD 的解析式为y =2x -4, 令y =0,则x =2,∴直线CD 与x 轴的交点为(2,0);设直线CD 平移到经过点B (0,3)时的解析式为y =2x +b 1, ∴3=2×0+b 1,解得b 1=3,∴此时直线CD 的解析式为y =2x +3, 令y =0,则x =-32,∴平移后的直线CD 与x 轴的交点为(-32,0),∴直线CD 沿EB 方向平移,平移到经过点B 的位置时,直线CD 在平移过程中与x 轴交点的横坐标的取值范围为-32≤x ≤2. 16. 解:(2)①1;②-10;(3)该函数的图象如解图;①-2;②-1≤x ≤3. 17. -1(答案不唯一) 18. y =-23x +53。

中考数学辅导之—一次函数的图象和性质

中考数学辅导之—一次函数的图象和性质

中考数学辅导之—一次函数的图象和性质一次函数是本章中最重要的一个单元,在课本中,讲叙本部分内容的篇幅虽然不长,但利用它的概念、性质解决的题目却不少,而且有些题目还较难,并且从这部分内容开始,我们将学习利用代数的方法去解决几何问题,这是同学们过去从未涉及到的方法,所以不管从解题思路、解题方法上还是从所学知识的综合应用上的要求都有较大幅度的提高,可能会使同学们感到有时无从下手,“很难学”是同学们普遍的反映。

在本讲中,我们将要补充一些必要的知识,讲解几个例题,以便使同学们体会解题思路和解题方法,从而达到较好的掌握本部分知识的目的。

一、学习要求:1.理解一次函数和正比例函数的概念。

2.会画正比例函数及一次函数的图象。

3.理解并掌握正比例函数和一次函数的性质。

4.会利用待定系数法确定正比例及一次函数的解析式。

5.会解关于一次函数的较难的题目。

二、知识要点:1.正比例函数和一次函数是分别用)0(≠=k kx y 和)0(≠+=k b kx y 来定义的,其中x 是自变量,y 是自变量的函数,k 是自变量的系数,是常数,这两种函数解析式都是方程,而且它的图象上的点的坐标都是对应方程的解,因此,一次函数与一次方程有密不可分的关系。

2.课本中,用具体的函数利用描点法得出正比例函数)0(≠=k kx y 和一次函数)0(≠+=k b kx y 的图象都是一条直线,既然是一条直线,我们只要描出两点即可确定该直线。

因为正比例函数是过原点的直线,当然坐标原点是所描的两点中的一个,另外一个是1=x 时y=k 就是点),1(k ,所以正比例函数的图像是过(0,0)、(1,k )两点的直线。

而一次函数与两条坐标轴各有一个交点(注意:与x 轴、y 轴交点的坐标是极其重要的),那么“两点确定一条直线”中的两点就可以取这两个交点,由于一次函数与x 轴的交点必在x 轴上,而在x 轴上的点的特点是纵坐标为0,即:在一次函数)0(≠+=k b kx y 中,当y=0时可得kx+b=0,解此方程得x=-k b ,从而得出一次函数)0(≠+=k b kx y 与x 轴交于(-kb ,0)点;同理,由一次函数)0(≠+=k b kx y 与y 轴交点的横坐标为0可以得出:它与y 轴的交点为(0,b );因此一次函数)0(≠+=k b kx y 的图象是过它与x 轴的交点(-kb ,0)和它与y 轴的交点(0,b )两点的直线。

中考数学考点10一次函数图像与性质总复习(解析版)

中考数学考点10一次函数图像与性质总复习(解析版)

一次函数的图像与性质【命题趋势】在中考中.主要以选择题、填空题和解答题形式出现.主要考查一次函数的图像与性质.确定一次函数的解析式.一次函数与方程(组)、不等式的关系。

一次函数与二次函数、反比例函数综合也是中考重点之一。

【中考考查重点】一、结合具体情景体会一次函数的意义.能根据已知条件确定一次函数的表达式;二、利用待定系数法确定一次函数的表达式;三、根据一次函数画出图像.探索并理解k>0和k<0时.图像的变化情况;四、体会一次函数与二元一次方程的关系考点一:一次函数及其图像性质概念一般地.形如y=kx+b(k,b为常数.k≠0)的函数.叫做一次函数.当b=0十.即y=kx.这时称y是x的正比例函数(一次函数的特殊形式)增减性k>0k<0从左向右看图像呈上升趋势.y随x的增大而增大从左向右看图像呈下降趋势.y随x的增大而较少图像(草图)b>0b=0b<0b<0b=0 b<0经过象限一、二、三一、三一、三、四一、二、四二、四二、三、四与y轴的交点位置b>0.交点在y轴正半轴上;b=0,交点在原点;b<0.交点在y轴负半轴上【提分要点】:1.若两直线平行.则;2.若两直线垂直.则1.(2021春•大安市期末)一次函数y=2x﹣1图象经过象限()A.一、二、三B.一、二、四C.二、三、四D.一、三、四【答案】D【解答】解:∵一次函数y=2x﹣1.k=2>0.b=﹣1<0.∴该函数图象经过一、三、四象限.故选:D.2.(2021秋•肃州区期末)对于一次函数y=x+6.下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0.6)【答案】D【解答】解:A、∵一次函数y=x+6中k=1>0.∴函数值随自变量增大而增大.故A 选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(﹣6.0).(0.6).∴此函数与x轴所成角度的正切值==1.∴函数图象与x轴正方向成45°角.故B选项正确;C、∵一次函数y=x+6中k=1>0.b=6>0.∴函数图象经过一、二、三象限.故C选项正确;D、∵令y=0.则x=﹣6.∴一次函数y=x+6与x轴的交点坐标分别为(﹣6.0).故D选项错误.故选:D.3.(2021秋•东港市期中)点A(﹣1.y1)和点B(﹣4.y2)都在直线y=﹣2x上.则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y2【答案】B【解答】解:∵k=﹣2<0.∴y随x的增大而减小.又∵点A(﹣1.y1)和点B(﹣4.y2)都在直线y=﹣2x上.且﹣1>﹣4.∴y1<y2.故选:B4.(2021秋•三水区期末)若一次函数y=kx+b的图象经过第一、二、四象限.则一次函数y=bx+k的图象大致是()A.B.C.D.【答案】D【解答】解:一次函数y=kx+b过一、二、四象限.则函数值y随x的增大而减小.因而k<0;图象与y轴的正半轴相交则b>0.因而一次函数y=bx﹣k的一次项系数b>0.y随x的增大而增大.经过一三象限.常数项k<0.则函数与y轴负半轴相交.因而一定经过一三四象限.故选:D.考点二:一次函数解析式的确定方法待定系数法步骤1.设:一般式y=kx+b(k≠0)(题干中未给解析式需设)2.代:找出一次函数图像上的两个点.并且将点坐标代入函数解析式.得到二元一次方程组;3.求:解方程(组)求出k、b的值;4.写:将k、b的值代入.直接写出一次函数解析式5.(2021秋•尤溪县期中)已知一次函数y=x+b过点(﹣1.﹣2).那么这个函数的表达式为()A.y=x﹣1B.y=x+1C.y=x﹣2D.y=x+2【答案】A【解答】解:把(﹣1.﹣2)代入y=x+b得:﹣2=﹣1+b.解得:b=﹣1.则一次函数解析式为y=x﹣1.故选:A.6.(2021春•海珠区期末)已知一次函数y=mx﹣4m.当1≤x≤3时.2≤y≤6.则m的值为()A.3B.2C.﹣2D.2或﹣2【答案】C【解答】解:当m>0时.一次函数y随x增大而增大.∴当x=1时.y=2且当x=3时.y=6.令x=1.y=2.解得m=.不符题意.令x=3.y=6.解得m=﹣6.不符题意.当m<0时.一次函数y随x增大而减小.∴当x=1时.y=6且当x=3时.y=2.令x=1.y=6.解得m=﹣2.令x=3.y=2.解得m=﹣2.符合题意.∴故选:C.7.(2021秋•萧山区月考)已知y与x﹣2成正比例.且当x=1时.y=1.则y与x之间的函数关系式为.【答案】y=﹣x+2【解答】解:设y=k(x﹣2)(k≠0).将x=1时y=1代入.得1=k(1﹣2).解得k=﹣1.所以y=﹣x+2;故答案为:y=﹣x+2.8.(2021春•古丈县期末)某个一次函数的图象与直线y=x+6平行.并且经过点(﹣2.﹣4).则这个一次函数的解析式为()A.y=﹣x﹣5B.y=x+3C.y=x﹣3D.y=﹣2x﹣8【答案】C【解答】解:由一次函数的图象与直线y=x+6平行.设直线解析式为y=x+b.把(﹣2.﹣4)代入得:﹣4=﹣1+b.即b=﹣3.则这个一次函数解析式为y=x﹣3.故选:C.考点三:一次函数图像的平移平移前平移方式(m>0)平移后简记y=kx+b 向左平移m个单位长度y=k(x+m)+bx左加右减向右平移m个单位长度y=k(x-m)+b向上平移m个单位长度y=kx+b+m等号右端整体上加下减向下平移m个单位长度y=kx+b-m9.(2021秋•金安区校级期中)将直线y=2x向右平移1个单位.再向上平移1个单位后.所得直线的表达式为()A.y=2x﹣1B.y=2x C.y=2x+4D.y=2x﹣2【答案】A【解答】解:将直线y=2x向右平移1个单位.再向上平移1个单位后.所得直线的解析式为y=2(x﹣1)+1.即y=2x﹣1.故选:A.10.(2021春•米易县期末)一次函数y=2x﹣4的图象由正比例函数y=2x的图象()A.向左平移4个单位长度得到B.向右平移4个单位长度得到C.向上平移4个单位长度得到D.向下平移4个单位长度得到【答案】D【解答】解:将正比例函数y=2x的图象向下平移4个单位即可得到y=2x﹣4的图象.故选:D.11.(2021秋•长丰县月考)已知点A(2.4)沿水平方向向左平移3个单位长度得到点A'.若点A'在直线y=x+b上.则b的值为()A.1B.3C.5D.﹣1【答案】C【解答】解:∵点A(2.4)沿水平方向向左平移3个单位长度得到点A'.∴点A'的坐标为(﹣1.4).又∵点A'在直线y=x+b上.∴4=﹣1+b.∴b=5.故选:C考点四:一次函数与方程(组)、不等式与一元一次方程的关系方程ax+b=0(a≠0)的解是一次函数y=ax+b(a≠0)的函数值为0时自变量的取值.还是直线y=ax+b(a≠0)与x轴交点的横坐标与二元一次方程组的关系方程组的解时直线的交点坐标与一元一次不等式的关系1.从“数”来看(1)kx+b>0的解集是y=kx+b中.y>0时x的取值范围(2)kx+b><0的解集是y=kx+b中.y<0时x的取值范围2.从“形”上看(1)kx+b>0的解集是y=kx+b函数图像位于x上方部分对应的点的横坐标(2)kx+b<0的解集是y=kx+b函数图像位于x下方部分对应的点的横坐标12.(2021秋•乐平市期中)一次函数y=kx+b的图象如图所示.则关于x的方程kx+b =0的解为()A.x=0B.x=3C.x=﹣2D.x=﹣3【答案】B【解答】解:∵直线与x轴交点坐标为(3.0).∴kx+b=0的解为x=3.故选:B.13.(2021秋•安徽期中)已知一次函数y=ax﹣1与y=mx+4的图象交于点A(3.1).则关于x的方程ax﹣1=mx+4的解是()A.x=﹣1B.x=1C.x=3D.x=4【答案】C【解答】解:∵一次函数y=ax﹣1与y=mx+4的图象交于点A(3.1).∴ax﹣1=mx+4的解是x=3.故选:C.14.(2021春•沧县期末)如图.直线y=x+5和直线y=ax+b相交于点P(20.25).根据图象可知.方程x+5=ax+b的解是()A.x=20B.x=5C.x=25D.x=15【答案】A【解答】解:∵直线y=x+5和直线y=ax+b相交于点P(20.25).∴方程x+5=ax+b的解为x=20.故选:A.15.(2020秋•建湖县期末)如图.一次函数y=kx+b(k≠0)的图象经过点A(﹣1.﹣2)和点B(﹣2.0).一次函数y=2x的图象过点A.则不等式2x<kx+b≤0的解集为()A.x≤﹣2B.﹣2≤x<﹣1C.﹣2<x≤﹣1D.﹣1<x≤0【答案】B【解答】解:∵由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(﹣1.﹣2).∴不等式2x<kx+b的解集是x<﹣1.∵一次函数y=kx+b的图象与x轴的交点坐标是B(﹣2.0).∴不等式kx+b≤0的解集是x≥﹣2.∴不等式2x<kx+b<0的解集是﹣2≤x<﹣1.故选:B.16.(2021秋•兴宁区校级月考)如图.直线y=kx+b交x轴于点A(﹣2.0).直线y=mx+n交x轴于点B(5.0).这两条直线相交于点C(2.c).则关于x的不等式组的解集为()A.x<5B.1<x<5C.﹣2<x<5D.x<﹣2【答案】D【解答】解:y=kx+b<0.则x<﹣2.y=mx+n>0.则x<5.关于x的不等式组的解集为:x<﹣2.故选:D.17.(2020秋•西林县期末)如图所示是函数y=kx+b与y=mx+n的图象.则方程组的解是()A.B.C.D.【答案】C【解答】解:∵函数y=kx+b与y=mx+n的图象交于点(3.4).∴方程组的解是.故选:C.1.(2021春•扎兰屯市期末)将直线y=﹣2x﹣2向右平移1个单位长度.可得直线的表达式为()A.y=2x B.y=﹣2x﹣4C.y=﹣2x D.y=﹣2x+4【答案】C【解答】解:由“左加右减”的原则可知.把直线y=﹣2x﹣2向右平移1个单位长度.可得直线的解析式为:y=﹣2(x﹣1)﹣2.即y=﹣2x.故选:C.2.(2021春•玉田县期末)下列有关一次函数y=﹣6x﹣5的说法中.正确的是()A.y的值随着x值的增大而增大B.函数图象与y轴的交点坐标为(0.5)C.当x>0时.y>﹣5D.函数图象经过第二、三、四象限【答案】D【解答】解:∵y=﹣6x﹣5.﹣6<0.﹣5<0.∴y随x的增大而减小.故选项A不符合题意;当x=0时.y=﹣6×0﹣5=﹣5.即函数图象与y轴的交点坐标为(0.﹣5).故选项B不符合题意;当x>0时.y<﹣5.故选项C不符合题意;函数图象经过第二、三、四象限.故选项D符合题意;故选:D.3.(2021春•红寺堡区期末)点P1(x1.y1).点P2(x2.y2)是一次函数y=﹣4x+3图象上的两个点.且x1<x2.则y1与y2的大小关系是()A.y1>y2B.y1>y2>0C.y1<y2D.y1=y2【答案】A【解答】解:∵k=﹣4<0.∴y随x的增大而减小.又∵x1<x2.∴y1>y2.故选:A.4.(2021秋•运城期中)在平面直角坐标系中.一次函数y=kx+3(k≠0)的图象经过点A(2.﹣1).则这个一次函数的表达式是()A.y=﹣2x+3B.y=x+3C.y=2x+3D.y=x+3【答案】A【解答】解:∵一次函数y=kx+3(k≠0)的图象经过点A(2.﹣1).∴2k+3=﹣1解得k=﹣2.∴一次函数的表达式是y=﹣2x+3.故选:A.5.(2021秋•南海区期中)如图.一次函数y=kx+b的图象经过点(2.0)、(0.1).则下列结论正确的是()A.k=1B.关于x的方程kx+b=0的解是x=2C.b=2D.关于x的方程kx+b=0的解是x=1【答案】B【解答】解:A.∵一次函数y=kx+b的图象经过点(2.0)、(0.1).∴.解得:.故选项A不符合题意;B.由图象得:关于x的方程kx+b=0的解为x=2正确.故选项B符合题意;C.由图象得:当x=0时.y=1.即b=1.故选项C不符合题意;D.由图象得:y=0.即kx+b=0时.x=2.∴关于x的方程kx+b=0的解是x=2.故选项D不符合题意;故选:B.6.(2021秋•滕州市期中)直线y=ax+b(a≠0)过点A(0.2).B(1.0).则关于x的方程ax+b=0的解为()A.x=0B.x=2C.x=1D.x=3【答案】C【解答】解:方程ax+b=0的解.即为函数y=ax+b图象与x轴交点的横坐标.∵直线y=ax+b过B(1.0).∴方程ax+b=0的解是x=1.故选:C.7.(2021秋•龙凤区期末)一次函数y=mx﹣n(m.n为常数)的图象如图所示.则不等式mx﹣n≥0的解集是()A.x≥2B.x≤2C.x≥3D.x≤3【答案】D【解答】解:由图象知:不等式mx﹣n≥0的解集是x≤3.故选:D.8.(2020秋•开化县期末)如图.直线y=2x+n与y=mx+3m(m≠0)的交点的横坐标为﹣1.则关于x的不等式2x+n<mx+3m<0的整数解为()A.﹣1B.﹣2C.﹣3D.﹣3.5【答案】B【解答】解:∵直线y=2x+n与y=mx+3m(m≠0)的交点的横坐标为﹣1.∴关于x的不等式2x+n<mx+3m的解集为x<﹣1.∵y=x+3=0时.x=﹣3.∴mx+3m<0的解集是x>﹣3.∴2x+n<mx+3m<0的解集是﹣3<x<﹣1.所以不等式2x+n<mx+3m<0的整数解为﹣2.故选:B.9.(2021春•单县期末)已知方程组的解为.则直线y=﹣x+2与直线y =2x﹣7的交点在平面直角坐标系中位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解答】解:∵方程组的解为.∴直线y=﹣x+2与直线y=2x﹣7的交点坐标为(3.﹣1).∵x=3>0.y=﹣1<0.∴交点在第四象限.故选:D.10.(2021春•武陵区期末)对于实数a.b.我们定义符号max{a.b}的意义为:当a≥b 时.max{a.b}=a;当a<b时.max{a.b}=b;如:max{4.﹣2}=4.max{3.3}=3.若关于x 的函数为y=max(2x﹣1.﹣x+2}.则该函数的最小值是()A.2B.1C.0D.﹣1【答案】B【解答】解:当2x﹣1≥﹣x+2时.解得:x≥1.此时y=2x﹣1.∵2>0.∴y随x的增大而增大.当x=1时.y最小为1;当2x﹣1<﹣x+2时.解得:x<1.此时y=﹣x+2.∵﹣1<0.∴y随x的增大而减小.综上.当x=1时.y最小为1.故选:B.11.(2020秋•成安县期末)如图.若直线y=kx+b与x轴交于点A(﹣4.0).与y轴正半轴交于B.且△OAB的面积为4.则该直线的解析式为()A.B.y=2x+2C.y=4x+4D.【答案】A【解答】解:∵A(﹣4.0).∴OA=4.∵×4×OB=4.解得OB=2.∴B(0.2).把A(﹣4.0).B(0.2)代入y=kx+b.∴.解得.∴直线解析式为y=x+2.故选:A.12.(2021春•饶平县校级期末)已知2y﹣3与3x+1成正比例.则y与x的函数解析式可能是()A.y=3x+1B.C.D.y=3x+2【答案】C【解答】解:∵2y﹣3与3x+1成正比例.则2y﹣3=k(3x+1).当k=1时.2y﹣3=3x+1.即y=x+2.故选:C.13.(2021秋•榆林期末)已知直线l1交x轴于点(﹣3.0).交y轴于点(0.6).直线l2与直线l1关于x轴对称.将直线l1向下平移8个单位得到直线l3.则直线l2与直线l3的交点坐标为()A.(﹣1.﹣4)B.(﹣2.﹣4)C.(﹣2.﹣1)D.(﹣1.﹣1)【答案】A【解答】解:设直线l1为y=kx+b.∵直线l1交x轴于点(﹣3.0).交y轴于点(0.6).∴.解得.∴b=﹣4.∴直线l1为y=2x+6.将直线l1向下平移8个单位得到直线l3:y=2x+6﹣8=2x﹣2.∵直线l2与直线l1关于x轴对称.∴直线l2交x轴于点(﹣3.0).交y轴于点(0.﹣6).∴直线l2为y=﹣2x﹣6.解得.∴直线l2与直线l3的交点坐标为(﹣1.﹣4).故选:A.1.(2021•长沙)下列函数图象中.表示直线y=2x+1的是()A.B.C.D.【答案】B【解答】解:∵k=2>0.b=1>0.∴直线经过一、二、三象限.故选:B.2.(2021•嘉峪关)将直线y=5x向下平移2个单位长度.所得直线的表达式为()A.y=5x﹣2B.y=5x+2C.y=5(x+2)D.y=5(x﹣2)【答案】A【解答】解:将直线y=5x向下平移2个单位长度.所得的函数解析式为y=5x﹣2.故选:A.3.(2021•陕西)在平面直角坐标系中.将直线y=﹣2x向上平移3个单位.平移后的直线经过点(﹣1.m).则m的值为()A.﹣1B.1C.﹣5D.5【答案】D【解答】解:将直线y=﹣2x向上平移3个单位.得到直线y=﹣2x+3.把点(﹣1.m)代入.得m=﹣2×(﹣1)+3=5.故选:D.4.(2021•抚顺)如图.直线y=2x与y=kx+b相交于点P(m.2).则关于x的方程kx+b =2的解是()A.x=B.x=1C.x=2D.x=4【答案】B【解答】解:∵直线y=2x与y=kx+b相交于点P(m.2).∴2=2m.∴m=1.∴P(1.2).∴当x=1时.y=kx+b=2.∴关于x的方程kx+b=2的解是x=1.故选:B.5.(2020•牡丹江)两个一次函数y=ax+b和y=bx+a.它们在同一个直角坐标系的图象可能是()A.B.C.D.【答案】B【解答】解:当a>0.b>0时.一次函数y=ax+b和y=bx+a的图象都经过第一、二、三象限.当a>0.b<0时.一次函数y=ax+b的图象经过第一、三、四象限.函数y=bx+a的图象经过第一、二、四象限.当a<0.b>0时.一次函数y=ax+b的图象经过第一、二、四象限.函数y=bx+a的图象经过第一、三、四象限.当a<0.b<0时.一次函数y=ax+b和y=bx+a的图象都经过第二、三、四象限.由上可得.两个一次函数y=ax+b和y=bx+a.它们在同一个直角坐标系的图象可能是B中的图象.故选:B.6.(2021•乐山)如图.已知直线l1:y=﹣2x+4与坐标轴分别交于A、B两点.那么过原点O且将△AOB的面积平分的直线l2的解析式为()A.y=x B.y=x C.y=x D.y=2x【答案】D【解答】解:如图.当y=0.﹣2x+4=0.解得x=2.则A(2.0);当x=0.y=4.则B(0.4).∴AB的中点坐标为(1.2).∵直线l2把△AOB面积平分∴直线l2过AB的中点.设直线l2的解析式为y=kx.把(1.2)代入得2=k.解得k=2.∴l2的解析式为y=2x.故选:D.7.(2021•娄底)如图.直线y=x+b和y=kx+4与x轴分别相交于点A(﹣4.0).点B(2.0).则解集为()A.﹣4<x<2B.x<﹣4C.x>2D.x<﹣4或x>2【答案】A【解答】解:∵当x>﹣4时.y=x+b>0.当x<2时.y=kx+4>0.∴解集为﹣4<x<2.故选:A.8.(2019•苏州)若一次函数y=kx+b(k.b为常数.且k≠0)的图象经过点A(0.﹣1).B (1.1).则不等式kx+b>1的解集为()A.x<0B.x>0C.x<1D.x>1【答案】D【解答】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.9.(2021•德阳)关于x.y的方程组的解为.若点P(a.b)总在直线y=x上方.那么k的取值范围是()A.k>1B.k>﹣1C.k<1D.k<﹣1【答案】B【解答】解:解方程组可得..∵点P(a.b)总在直线y=x上方.∴b>a.∴>﹣k﹣1.解得k>﹣1.故选:B.10.(2021•呼和浩特)在平面直角坐标系中.点A(3.0).B(0.4).以AB为一边在第一象限作正方形ABCD.则对角线BD所在直线的解析式为()A.y=﹣x+4B.y=﹣x+4C.y=﹣x+4D.y=4【答案】A【解答】解:过D点作DH⊥x轴于H.如图.∵点A(3.0).B(0.4).∴OA=3.OB=4.∵四边形ABCD为正方形.∴AB=AD.∠BAD=90°.∵∠OBA+∠OAB=90°.∠OAB+∠DAH=90°.∴∠ABO=∠DAH.在△ABO和△DAH中..∴△ABO≌△DAH(AAS).∴AH=OB=4.DH=OA=3.∴D(7.3).设直线BD的解析式为y=kx+b.把D(7.3).B(0.4)代入得.解得.∴直线BD的解析式为y=﹣x+4.故选:A.11.(2019•江西)如图.在平面直角坐标系中.点A.B的坐标分别为(﹣.0).(.1).连接AB.以AB为边向上作等边三角形ABC.(1)求点C的坐标;(2)求线段BC所在直线的解析式.【答案】(1)(.2)(2)y=x+.【解答】解:(1)如图.过点B作BH⊥x轴.∵点A坐标为(﹣.0).点B坐标为(.1).∴|AB|==2.∵BH=1.∴sin∠BAH==.∴∠BAH=30°.∵△ABC为等边三角形.∴AB=AC=2.∴∠CAB+∠BAH=90°.∴点C的纵坐标为2.∴点C的坐标为(.2).(2)由(1)知点C的坐标为(.2).点B的坐标为(.1).设直线BC的解析式为:y=kx+b.则.解得.故直线BC的函数解析式为y=x+.1.(2021•庐阳区校级一模)一次函数y=﹣2x﹣3的图象和性质.叙述正确的是()A.y随x的增大而增大B.与y轴交于点(0.﹣2)C.函数图象不经过第一象限D.与x轴交于点(﹣3.0)【答案】C【解答】解:∵一次函数y=﹣2x﹣3.∴该函数y随x的增大而减小.故选项A错误;与y轴交于点(0.﹣3).故选项B错误;该函数图象经过第二、三、四象限.不经过第一象限.故选项C正确;与x轴交于点(﹣.0).故选项D错误;故选:C.2.(2021•陕西模拟)平面直角坐标系中.直线y=﹣2x+m沿x轴向右平移4个单位后恰好经过(1.2).则m=()A.﹣1B.2C.﹣4D.﹣3【答案】C【解答】解:直线y=﹣2x+m沿x轴向右平移4个单位后得到y=﹣2(x﹣4)+m.∵经过(1.2).∴2=﹣2(1﹣4)+m.解得m=﹣4.故选:C.3.(2021•商河县校级模拟)若一次函数y=kx+b的图象经过一、二、四象限.则一次函数y=﹣bx+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解答】解:一次函数y=kx+b过一、二、四象限.则函数值y随x的增大而减小.因而k<0;图象与y轴的正半轴相交则b>0.因此一次函数y=﹣bx+k的一次项系数﹣b<0.y随x的增大而减小.经过二四象限.常数项k<0.则函数与y轴负半轴相交.因此一定经过二三四象限.因此函数不经过第一象限.故选:A.4.(2021•萧山区一模)已知y﹣3与x+5成正比例.且当x=﹣2时.y<0.则y关于x的函数图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限【答案】D【解答】解:∵y﹣3与x+5成正比例.∴设y﹣3=k(x+5).整理得:y=kx+5k+3.当x=﹣2时.y<0.即﹣2k+5k+3<0.整理得3k+3<0.解得:k<﹣1.∵k<﹣1.∴5k+3<﹣2.∴y=kx+5k+3的图象经过第二、三、四象限.故选:D.5.(2021•陕西模拟)一次函数y=kx+b的图象经过点A(2.3).每当x增加1个单位时.y 增加3个单位.则此函数表达式是()A.y=x+3B.y=2x﹣3C.y=3x﹣3D.y=4x﹣4【答案】C【解答】解;由题意可知一次函数y=kx+b的图象也经过点(3.6).∴.解得∴此函数表达式是y=3x﹣3.故选:C.6.(2021•蕉岭县模拟)在平面直角坐标系中.一次函数y=mx+b(m.b均为常数)与正比例函数y=nx(n为常数)的图象如图所示.则关于x的方程mx=nx﹣b的解为()A.x=3B.x=﹣3C.x=1D.x=﹣1【答案】A【解答】解:∵两条直线的交点坐标为(3.﹣1).∴关于x的方程mx=nx﹣b的解为x=3.故选:A.7.(2021•奉化区校级模拟)八个边长为1的正方形如图摆放在平面直角坐标系中.经过原点的一条直线l将这八个正方形分成面积相等的两部分.则该直线l的解析式为()A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x【答案】D【解答】解:设直线l和八个正方形的最上面交点为A.过A作AB⊥OB于B.B过A 作AC⊥OC于C.∵正方形的边长为1.∴OB=3.∵经过原点的一条直线l将这八个正方形分成面积相等的两部分.∴S△AOB=4+1=5.∴OB•AB=5.∴AB=.∴OC=.由此可知直线l经过(﹣.3).设直线方程为y=kx.则3=﹣k.k=﹣.∴直线l解析式为y=﹣x.故选:D.8.(2021•遵义一模)如图.直线y=kx+b(k<0)与直线y=x都经过点A(3.2).当kx+b>x时.x的取值范围是()A.x<2B.x>2C.x<3D.x>3【答案】C【解答】解:由图象可知.当x<3时.直线y=kx+b在直线y=x上方.所以当kx+b>x时.x的取值范围是x<3.故选:C.9.(2021•饶平县校级模拟)如图.函数y=ax+b和y=﹣x的图象交于点P.则根据图象可得.关于x.y的二元一次方程组中的解是()A.B.C.D.【答案】C【解答】解:当y=1时.﹣x=1.解得x=﹣3.则点P的坐标为(﹣3.1).所以关于x.y的二元一次方程组中的解为.故选:C.10.(2021•杭州模拟)已知直线l:y=kx+b经过点A(﹣1.a)和点B(1.a﹣4).若将直线l向上平移2个单位后经过原点.则直线的表达式为()A.y=2x+2B.y=2x﹣2C.y=﹣2x+2D.y=﹣2x﹣2【答案】D【解答】解:将直线l向上平移2个单位后经过原点.则点A(﹣1.a)和点B(1.a﹣4)平移后对应的点的坐标为(﹣1.a+2)和(1.a﹣2).∵将直线l向上平移2个单位后经过原点.∴点(﹣1.a+2)和点(1.a﹣2)关于原点对称.∴a+2+a﹣2=0.∴a=0.∴A(﹣1.0).B(1.﹣4).把A、B的坐标代入y=kx+b得..解得.∴直线AB的解析式为y=﹣2x﹣2.故选:D.11.(2021•南山区校级二模)我国古代很早就对二元一次方程组进行了研究.古著《九章算术》记载用算筹表示二元一次方程组.发展到现代就是用矩阵式=来表示二元一次方程组.而该方程组的解就是对应两直线(不平行)a1x+b1y=c1与a2x+b2y=c2的交点坐标P(x.y)据此.则矩阵式=所对应两直线交点坐标是.【答案】(﹣1.2)【解答】解:依题意.得.解得.∴矩阵式=所对应两直线交点坐标是(﹣1.2).故答案为:(﹣1.2).12.(2021•杭州模拟)已知直线y=kx+b经过点A(5.0).B(1.4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C.求点C的坐标;(3)根据图象.写出关于x的不等式2x﹣4>kx+b的解集.【答案】(1)y=﹣x+5 (2)C(3.2)(3)x>3【解答】解:(1)∵直线y=kx+b经过点A(5.0).B(1.4).∴.解得.∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C.∴.解得.∴点C(3.2);(3)根据图象可得x>3.。

初中数学一次函数的图象和性质

初中数学一次函数的图象和性质

一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。

注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。

2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。

(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。

(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。

3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。

4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。

三是用待定系数法求函数解析式,如例2的第二小题、例7。

其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。

二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。

分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x 的关系。

解:∵y=2y1y1=3x+2,∴y=2(3x+2)=6x+4,即变量y与x的关系为:y=6x+4。

例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。

(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。

中考数学真题专题[一次函数的图像与性质]

中考数学真题专题[一次函数的图像与性质]

表达式为
A. B. C. D.
【答案】A
14.(2010 山东东营)一次函数的图象不经过( )
(A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限
【答案】B
15.(2010
湖北孝感)若直线的交点在第四象限,则整数m的值

()
A.—3,—2,—1,0 B.—2,—1,0,1
C.—1,0,1,2 D.0,1,2,3
一、选择题 1.(2010山东烟台)如图,直线y1=k1x+a与y2=k3x+b的交点坐标为
(1,2),则使y1∠ y2的x的取值范围为 A、x>1 B、x>2 C、x<1 Dx<2
【答案】C 2.(2010 浙江省温州)直线y=x+3与y轴的交点坐标是(▲) A.(0,3) B.(0,1) C.(3,O) D.(1,0) 【答案】A 3.(2010山东聊城)如图,过点Q(0,3.5)的一次函数与正比例函
∴△ABP的面积为或. 4.(2010湖北随州)某同学从家里出发,骑自行车上学时,速度v(米/
秒)与时间t(秒)的关系如图a,A(10,5),B(130,5), C(135,0). (1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;
(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动 过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度 ×时间); (3)如图b,直线x=t(0≤t≤135),与图a的图象相交于P、Q,用 字母S表示图中阴影部分面积,试求S与t的函数关系式; (4)由(2)(3),直接猜出在t时刻,该同学离开家所超过的路 程与此时S的数量关系.
【答案】B
18.(2010 贵州贵阳)一次函数的图象如图2所示,当<0时, x的取值范围是 (A)x<0 (B)x>0 (C)<2 (D)x>2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.2一次函数的图象与性质(教 案)
教学目标
1)熟知一次函数的图象与性质
2)会运用一次函数的图象与性质解一次方程(组),一次不等式(组)等。

3)会灵活求解一次函数解析式 教学重点与难点
重点:一次函数的图象与性质的运用
难点:与反比例函数,二次函数综合数形结合的灵活运用 . 一.考点知识整合: 考点一 一次函数的概念:
1.函数y=kx+b(k ≠0),叫做______________. 当b=0时,函数y=kx(k ≠0)叫_______________.
2.一次函数y=kx+b(k ≠0)中的b 叫做_________,它 表示图象与y 轴相交的交点的_________。

考点二 正比例函数的图象及性质
正比例函数y=kx (k 是常数,k ≠0) 的图象是过(0,0),(1,k)两点的一条直线.
考点三 一次函数y=kx+b(k ≠0)的图象与性质
一次函数y=kx+b(k ≠0) 的图象是过(0,b),
两点的一条直线
)
0,(k b
考点四 两直线平行和垂直时,斜率的关系 对于两直线
考点五 两直线的交点坐标及一次函数的图解与坐标轴围成的三角形面积
(2)一次函数与其它函数的交点坐标,解由这两个 解析式组成的二元方程,方程的解即是两函数的交 点坐标。

考点六 一次函数与一次方程(组),一元一次不等式(组)的关 一次函数的值为0时,相应的自变量的值为方程的根,
一次函数的值大于(或者小于)0,相应的自变量的为不等式的解集。

归类示例:一次函数的图象与性质
例1:函数 (k ≠0)在平面直角坐标系中的图象可能是( )
1
11b x k y l +=:2
2
2
b
x k y l +=:21//).1(l l 2
1
,
21
b b k k ≠=2
1).2(l l ⊥1
21-=⋅k k )
,0(),,()1(b y o k
b
x b kx y 轴交点为与轴交点为与直线-+=k
b b k b s 2212
=⨯-=∴∆
构成的三角形面积为这两个交点与坐标原点k
kx y +=O
X
Y
O
X
Y
O
X
Y
O
X
Y
A B C D
2.(2007.乐山)已知一次函数的图象如图所示,
当 时 ,的取值范围是( )
A B C. D.
跟进训练1
1.(2009.安徽)已知函数 的图象如图所示
,则 的图象可能是 ( )
A B C D 2.(2008.芜湖)函数 和 在同一平面直角坐标系中
的图象大致是( )
例2:(2007.乐山)如图,反比例函数
的图象与一次函数 的图象交于A 1
x <O
X
Y
-4
2 20y -<<40y -<<2
y <-4
y <-b kx y +=2O X
Y 1
-1
O
X
Y
1
1
1
1 -1
-1
-1
-1
O X
Y
O
X
Y
O
X
Y
b ax y +=
c bx ax y ++=2
O x
y B
O
x y C
O
x
y
x k
y =b
mx y +=
(1, 3),B (n, -1)两点.
(1)求反比例函数与一次函数的解析式;
(2)根据图象回答:当取何值时,反比例函数的值大于一次函数的值. 解:
跟进训练2
1.已知一次函数y=(1-a)x+4a-1的图象与y 轴交于正半轴,且y 随x 的增大而增大,求a 的取值范围。

2.画出函数y=2x+6的图象利用图象: (1)求方程2x+6=0的解; (2)求不等式2x+6 >0的解; (3)若-1≤y ≤3,求x 的取值范围。

解:函数图象如图(1)方程的解x=-3 (2)不等式的解集:x>-3
(3)若-1≤y ≤3,则
例3.如图,lA 与lB 分别表示A 步行与B 骑车同一路上行驶的路程S 与时间t 的关系。

(1).B 出发时与A 相距多少千米?
y
x
O
A
B
的图象上,在x
k y A =)3,1().1( 3
=∴k x
y 3=
∴反比例函数的解析式为的图象上,
在又x
y n B 3
)1,(=- 3
-=∴n 得:
代入)(将b mx y B A +=--)1,3(3,1⎩⎨
⎧+-=-+=b
m b m 3132
,1==b m 解得:2+=∴x y 一次函数的解析式为时,
或从图象可知:当103).2(<<-<x x 次函数的值。

反比例函数的值大于一o
x
y 6
-3 2
3
27-≤≤-
x
(2)走了一段路后,自行车发生故障,进行维修,所用的时间是多少小时? (3)B 出发后经过多少小时与A 相遇?
(4)若B 的自行车不发生故障,保持出 发时的速度前进,那么经过多少时 间与A 相遇?相遇点离B 的出发点多 远?你能用那些方法解决这个问题?在图中表示出这个相遇点C. 解:(1)由图象知:
B 出发时与A 相距10千米。

(2)由图象知
B 修理自行车所用时间为1小时。

(3)由图象知:
B 出发后3小时与A 相遇。

跟进训练3:
元旦联欢晚会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的长度,她得到的数据如下表: 纸环数x(个)
1
2 3 4 …… 彩纸链长度y (cm ) 19 36
53
70
……
(1)把上表中x 、y 的各种对应值作为点的坐标,在直角坐标系中描出 相应的点,猜想y 与x 的函数关系,并求出函数关系式。

S (千米)
0.5 1.5
10
7.5 t
B
l
A
l
;10625
:)4(+=
t s
l A
的解析式为由图象知⎪⎩⎪⎨⎧
=+=t
s t s 1510
625解方程组⎪⎪⎩⎪⎪⎨
⎧==13
1801312:s t 得.
13
180,1312,的出发点的距离为相遇点与小时相遇时间为所以B
(2)教室天花板对角线长10m ,现需沿天花板对角线各拉一根彩纸链, 则每根彩纸链至少要用多少个纸环?
解:由图象可知:y 是x 的一次函数
(2) 当y=10m=1000cm 时 解得:
每根彩纸链至少要用59个纸环
10 20 30 40 50 60 70 80 90 1 2 3 4 5 6 7
Y (cm)
,
b kx y +=设)分别代入得:
)、(将(36,29.11⎩⎨
⎧+=+=b
k b k 23619⎩⎨
⎧==2
17b k 解得:217+=∴x y 一次函数的解析式为为正整数)
(x 1000
217=+x 17
1258
=x
小结:
1.会灵活求解一次函数解析式.
2.一次函数性质的综合运用.
易错点:与反比例函数,二次函数综合数形结合的灵活运用 .。

相关文档
最新文档