高等数学定积分应用习题答案
高等数学第05章 定积分及其应用习题详解

0
x 1 sin tdt 0dt 1 , 2
b a
f ( x)dx 在 几 何 上 表 示 由 曲 线 y f ( x) , 直 线
x a, x b 及 x 轴所围成平面图形的面积. 若 x a, b时,f ( x) 0, 则 b f ( x)dx 在几何 a
上表示由曲线 y f ( x) ,直线 x a, x b 及 x 轴所围平面图形面积的负值. (1)由下图(1)所示, 1 xdx ( A1 ) A1 0 .
n
2
i
i 1
n
2
1 1 1 1 1 n(n 1)(2n 1) = (1 )(2 ) 3 n 6 6 n n 1 1 2 当 0时 (即 n 时 ) ,由定积分的定义得: x d x = . 0 3
= 5. 利用定积分的估值公式,估计定积分
4 3
1 1
(4 x 4 2 x 3 5) dx 的值.
上任取一点 i 作乘积 f ( i ) xi 的和式:
n
f ( i ) xi c ( xi xi1 ) c(b a) ,
i 1 i 1
n
n
记 max{xi } , 则
1i n
b a
cdx lim f ( i ) xi lim c(b a) c(b a) .
x
0
(t 1)dt ,求 y 的极小值
解: 当 y x 1 0 ,得驻点 x 1 , y '' 1 0. x 1 为极小值点, 极小值 y (1)
( x 1)dx - 2
高等数学(同济大学第五版)第六章 定积分的应用

习题6−21. 求图6−21 中各画斜线部分的面积:(1)解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为61]12[)(12231=−=−=x x dx x x A . 2300∫ 解法一x 轴上的投影区间为[0, 1]. 所求的面积为0 画斜线部分在y 轴上的区间为[1, e ]. 所求的面积为(2)画斜线部分在 1|)()(11=−=−=∫x x e ex dx e e A ,0 解法二投影 1)1(|ln ln =−−=−==∫∫e e dy y y ydy A e e e . 111(3)解 画斜线部分在x 轴上的投影区间为[−3, 1]. 所求的面积为332]2)3[(132=−−=∫−dx x x A . (4)解 [−1, 3]. 所求的面积为画斜线部分在x 轴上的投影区间为 332|)313()32(3132312=−+=−+=−−∫x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积:(1) 221x y =与x 2+y 2=8(两部分都要计算); 解:388282)21222228(2020020221−−=−−=−−=∫∫∫∫dx x dx x dx x dx x x A 323cos 16402+=−=∫πtdt . 48π346)212−=−ππS . 2(2=A (2)xy =1与直线y =x 及x =2; 解:所求的面积为∫=A −=−202ln 23)1(dx x x . e x , y =e −x 与直线x =1;解:所求的 (3) y =面积为∫−+=−=−1021)(e e dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0).解所求的面积为a b e dy e A ba yb a y −===∫ln ln ln ln3. 求抛物线y =−x 2+4x −3及其在点(0, −3)和(3, 0)处的切线所围成的图形的面积. 解: 过点(0, −3)处的切线的斜率为4, 切线方程为y =4(x −3)., 切线方程为y =−2x +6.y ′=−2 x +4.过点(3, 0)处的切线的斜率为−2两切线的交点为)3 ,23(, 所求的面积为 49]34(62[)]34(34[2302332=−+−−+−+−+−−−=∫∫dx x x x x x x A . 4. 求抛物线y 2=2px 及其在点),2(p p 处的法线所围成的图形的面积. 解2y ⋅y ′=2p .在点处, 1),2(==′p p y p y ,),2(p p 法线的斜率k =−1, 法线的方程为)2(p x p y −−=−, 即y p x −=23.),2(p p 求得法线与抛物线的两个交点为和)3,29(p p −. 法线与抛物线所围成的图形的面积为233232316)612123()223(p y p y y p dy p y y p A p p pp =−−=−−=−−∫. 5. 求由下列各曲线 所围成的图形的面积;(1)ρ=2a cos θ ;解:所求的面积为∫∫==2221πθθ −202cos 4)cos 2(2ππθθd a d a A =πa 2. a cos 3t , y =a sin 3t ;解2(2)x =所求的面积为∫∫∫===204220330sin cos 34)cos ()sin (44ππtdt t a t a d t a ydx A a 2206204283]sin sin [12a tdt tdt a πππ=−=∫∫.(3)ρ=2 解所求的面积为a (2+cos θ ) 2202220218)cos cos 44(2)]cos 2(221a d a d a A πθθθθθππ=++=+=∫∫. 6. 求由摆线x =a (t −sin t ), y =a (1−cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积. 解:所求的面积为∫∫∫−=−−==a a a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a =++−=∫. 7. 求对数螺线ρ=ae θ(−π≤θ≤π)及射线θ=π所围成的图形面积.解所求的面积为)(42)(2ππ−−∫∫e d e a d ae 11222222πππθπθθθ−−===e a . 8. 求下列各曲线所围成图形的公共部分的面积.(1)ρ=3cos θ 及ρ=1+cos θ解曲线ρ=3cos θ 与ρ=1+cos θ 交点的极坐标为A)3,23(πA , )3,23(π−B . 由对称性, 所求的面积为 πθθθθπππ45])cos 3(21)cos 1(21[2232302=++=∫∫d d A . (2)θρsin 2=及解θρ2cos 2=.6,22(π.曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M 所求的面积为 2316]2cos 21)sin 2(21[24602−+=+=∫∫πθθθθπππd d A .于曲线e x 下方, 9. 求位y =该曲线过原点的切线的左方以及x 轴上方之间的图形的面积. 解 设直线y =kx 与曲线y =e x 相切于A (x 0, y 0)点, 则有x y e y kx y x x 00)(0000, , y 0=e , k =e .所求面 ⎪⎩⎪⎨⎧==′==ke 求得x 0=1积为21ln 21)ln 1(00020e dy y y y y y e dy y y e e e e e=⋅+−=−∫∫. 10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值. 解 设弦的倾角为α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为10A A A +=. 显然当2πα=时1=0; 当, A 2πα1因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为 <时, A >0. 20300383822a x a dx ax A a a ===∫. 1. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转, 计算得旋转体的体积.1所 解 所得旋转体的体积为20022224000x a axdx dx y V xx x πππ====∫ 00x a π∫. 12. 由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得转所得旋转体的体积为两个旋转体的体积.解 绕x 轴旋πππ712871207206202====∫∫x dx x dx y V x . 绕y 轴旋转所得旋转体的体积为∫∫−=−⋅⋅=803280223282dy y dy x V y ππππ ππ56453328035=−=y . 所围成的图形, 绕x 轴旋, 计算所得旋转体的体积. 解 由对称性, 所求旋转体的体积为13. 把星形线转3/23/23/2a y x =+ dx x a dx y V a a ∫=2222π∫−=0333)(2π 0 3024224210532)33(2a dx x x a x a a a π=−+−=∫.14. 用积分方法证明图中球缺的体积为)(2H R H V −=π.3证明 ∫∫−−−==R H R RH R dy y R dy y x V )()(222ππ)3()1(32y y R R H R =−=−ππ 32H R H −.15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的体积:(1的旋转体)2x y =,2y x =, 绕y 轴; πππ)(22=−=∫∫dy y ydy V 解 103)5121(10521010=−y y . (2)ax a y ch =, x =0, x =a , y =0, 绕x 轴; 解 ∫∫∫===102ch udu 302202 ch )(a x dx a x a dx x y V a aπππ令 au1022)()2(u u u du e e −=++=∫2231032122144u e u e a a −−+ππ )2sh 2(43+a π= . (3)216)5(2=−y , 绕x 轴.解 +x ∫∫−−−−−−+=44224422)165()165(dx x dx x Vππ 24021601640π∫=−=dx x .x =(t −sin t ),=a (1−cos t )的一拱, y =0, 绕直线y =2a . 解 a dy y a dx a V02202)2()2( 23237)8πππa t a a =+−=. 16. 求圆盘 (4)摆线a y a 2∫∫−−=ππππ∫−+−=πππ202223)sin (])cos 1([8t t da t a a 0sin cos 1(tdt a ∫232222a y x ≤+绕x =−b (b >a >0)旋转所成旋转体 解 的体积.∫∫−−−−−−+=a a a a dy y a b dy y a b V222222)()(ππ 2202228ππb a dy y a b a=−=∫.17. 设有一截锥体, 其高为h , 上、下底均为椭圆, 椭圆的轴2a 、2b 和2A 、求这截锥体的体积.解 建立坐标系如图. 过y 轴上y 点作垂直于y 轴的平面, 则 易得其长分别为2B , 平面与截锥体的截面为椭圆,长短半轴分别为y h a A A −−, y hb B B −−. 积为π)()(y 截面的面h h B B y a A A −⋅b −−−.于是截锥体的体积为])(2[61)()(b V h=∫0AB a h dy y h b B B y h a A A +++=−−⋅−−π.计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角.x 且垂直于x () 件知, 它是边长为bA aB 18. 形的立体体积 解 设过点轴的截面面积为A x ,由已知条xR −2的等边三角形的面积, 其值为)(3)(22x R x A −=, 322334)(3R dx x R VR=−=∫R所以 − a.如图, 在x 处取一宽为dx 的边梯形, 小曲边梯形绕y 积近似为2πx ⋅f (x )dx , 这就是体积元素, 即 dV =2πx ⋅f (x )dx ,y 轴旋转所成的旋转体的体积为==bab dx x xf dx x xf V)(2)(2ππ.用题19和结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积. 解.19. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为=bdx x xf V )(2π∫ 证明 小曲轴旋转所得的旋转体的体于是平面图形绕 ∫a∫ 20. 利2002)sin cos (2cos 2sin 2πππππππ=+−=−==∫∫x x x x xd xdx x V .y =ln x 上相应于83≤≤ 21. 计算曲线x 的一段弧的长度.解 ∫∫∫+=+=′+=82838x32321)1(1)(1dx x x dx dx x y s ,t 12−=t x ,x +21=, 即 则令23ln 211111113223232222322+=−+=t s −=−⋅−=∫∫∫∫dt t dt d t t dt t tt t .)3(x − 22. 计算曲线3弧的长度. x y =上相应于1≤x ≤3的一段 解x x x y 3−=, 1x y 2−=′,x 121x x y 4112+−=′, 214)(12x y +=′+,121x为所求弧长3432)232(21)1(213131−=+=+=∫x x x dx xx s .23. 计算半立方抛物线被抛物线32x y =32)1(32−=x y 截得的一段弧的长度.解 由⎪⎩⎪⎨⎧=−=3)1( 32232x y x y 得两曲线的交点的坐标为36 ,2(, )36 ,2(−. 所求弧长为∫′+=21212dx y s .因为2y x y 2)1(−=′,)1(23)1()134−=−2)1(2−=′y y x ,32()1(242−−==′y x y 所以 x x x . ]1)25[(98)1)1−x 3(13232(231232121−=−=−+=∫∫d x dx x s . 抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长.24. 计算∫∫∫+=+=′+=y yydy sy p p dy p y dy y x 02202021)(1)(1 解y y p y p p 2222])2[+++=y p y 02ln(21+p 2y p y py p py 2222ln2++++=.25. 计算星形线t a x 3cos =, 的全长.解 用参数方程的弧长公式.t a y 3sin = dt t y t x s =∫′+′2022)()(4π∫⋅+−⋅=202222]cos sin 3[)]sin (cos 3[4πdt t t a t t aa tdt t 6cos sin 1220==∫π.26. 将绕在圆(半径为a )上的细线放开拉直, 使细线与圆周始终相切, 细线端点画出的轨迹叫做圆的渐伸线, 它的方程为 )sin (cos t t t a x +=, )cos (sin t t t a y −=.计算这曲线上相应于t 从0变到π的一段弧的长度. 解 由参数方程弧长公式∫∫+=′+′=ππ022022)sin ()cos ()]([)]([dtt at t at dt t y t x s 0∫22ππa tdt a ==.cos t )上求分摆线第一拱成1: 3 解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0), 则 27. 在摆线x =a (t −sin t ), y =a (1−的点的坐标.∫∫+−=′+′=0220220]sin [)]cos 1([)]t ([)]([)(t t dt t a t a dt y t x t s)2cos 1(42sin 2000ta dt t a t −==∫.当t 0=2π时, 得第一拱弧长s (2π)=8a . 为求分摆线第一拱为1: 3的点为A (x , y ), 令a ta 22cos 1(40=−,32解得0π=t , 因而分点的坐标为:a a x )32()2sin 2(−=−=πππ, 横坐标23 纵坐标33a a y 23)32cos1(=−=π,故所求分点的坐标为)23 ,)2332((a a −π. ρθa e =相应于自θ=0到的一段弧长 28. 求对数螺线θ=ϕ. 解 用极坐标的弧长公式. θθθρθρϕθθϕd ae e d a a ∫∫+=′+=22022)()()()(s )1−θ(11202+=+=∫ϕθθa a e aa d e a .29线1相应于自 . 求曲ρθ=43=θ至34=θ.的一段弧长 极坐标公式可得所求的弧长 解 按∫∫−+=′+=344322234322)1()1()()(θθθθθρθρd d s23ln 1251134322+=+=∫θθθd .30. 求心形线ρ=a (1+cos θ )的全长. 解 用极坐标的弧长公式. θθθθθρθρππd a a d s ==2 ∫∫−++′+0222022)sin ()cos 1()()(2a d a 82∫cos 4==πθθ.习题6−31. 由实验知道, 弹簧在拉伸过程中, 需要的力F (单位: N )与伸长量s (单位: cm)成正比, 即F =ks (k 为比例常数). 如果把弹簧由原长拉伸6cm , 计算所作的功.解 将弹簧一端固定于A , 另一端在自由长度时的点O 为坐标原点, 建立坐标系. 功元素为dW =ksds , 所求功为18216260===∫s k ksds W k(牛⋅厘米).2. 直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽. 设温度保持不变, 要使蒸汽体积缩小一半, 问需要作多少功? 解 由玻−马定律知:ππ80000)8010(102=⋅⋅==k PV .设蒸气在圆柱体内变化时底面积不变, 高度减小x 厘米时压强 为P (x )牛/厘米2, 则ππ80000)]80)(10[()(2=−⋅x x P , π−=80800)(x P .功元素为dx x P dW )()10(2⋅=π,所求功为 2ln 8008018000080800)10(400402πππππ=−=−⋅⋅=∫∫dx dx W(J).3. (1)证明: 把质量为m 的物体从地球表面升高到h 处所作的功是 hR mgRhW +=,其中g 是地面上的重力加速度, R 是地球的半径;(2)一颗人造地球卫星的质量为173kg , 在高于地面630km 处进入轨道. 问把这颗卫星从地面送到630的高空处, 克服地球引力要作多少功?已知g =9.8m/s 2, 地球半径R =6370km .证明 (1)取地球中心为坐标原点, 把质量为m 的物体升高的功元素为dy ykMm dW 2=, 所求的功为 )(2h R R mMh k dy y kMm W hR R+⋅==∫+.(2)533324111075.910)6306370(106370106301098.51731067.6×=×+×××××⋅×=−W (kJ).4. 一物体按规律3ct x =作直线运动, 媒质的阻力与速度的平方成正比. 计算物体由x =0移至x =a 时, 克服媒质阻力所作的功. 解 因为3ct x =, 所以23)(cxt x v =′=, 阻力4229t kc kv f −=−=. 而32)(cx t =, 所以34323429)(9)(x kc cx kc x f −=−=. 功元素dW =−f (x )dx , 所求之功为 37320343203432072799)]([a kc dx x kcdx x kc dx x f Wa aa ===−=∫∫∫. 5. 用铁锤将一铁钉击入木板, 设木板对铁钉的阻力与铁钉击入木板的深度成正比, 在击第一次时, 将铁钉击入木板1cm . 如果铁锤每次打击铁钉所做的功相等, 问锤击第二次时, 铁钉又击入多少?解 设锤击第二次时铁钉又击入h cm , 因木板对铁钉的阻力f 与铁钉击入木板的深度x (cm)成正比, 即f =kx , 功元素dW =f dx =kxdx , 击第一次作功为 k kxdx W 21101==∫,击第二次作功为 )2(212112h h k kxdx W h+==∫+.因为, 所以有 21W W =)2(21212h h k k +=, 解得12−=h (cm).6. 设一锥形贮水池, 深15m , 口径20m , 盛满水, 今以唧筒将水吸尽, 问要作多少功?解 在水深x 处, 水平截面半径为x r 3210−=, 功元素为dx x x dx r x dW 22)3210(−=⋅=ππ,所求功为 ∫−=1502)3210(dx x x Wπ∫+−=15032)9440100(dx x x x π =1875(吨米)=57785.7(kJ).7. 有一闸门, 它的形状和尺寸如图, 水面超过门顶2m . 求闸门上所受的水压力. 解 建立x 轴, 方向向下, 原点在水面. 水压力元素为xdx dx x dP 221=⋅⋅=, 闸门上所受的水压力为21252252===∫x xdx P (吨)=205. 8(kN).8. 洒水车上的水箱是一个横放的椭圆柱体, 尺寸如图所示. 当水箱装满水时, 计算水箱的一个端面所受的压力.解 建立坐标系如图, 则椭圆的方程为11)43()43(2222=+−y x .压力元素为dx x x dx x y x dP 22)43()43(38)(21−−⋅=⋅⋅=,所求压力为∫∫−⋅⋅+=−−⋅=222322cos 43cos 43)sin 1(4338)43()43(38ππtdx t t dx x x Pππ169cos 49202==∫tdx (吨)=17.3(kN). (提示: 积分中所作的变换为t x sin 4343=−)9. 有一等腰梯形闸门, 它的两条底边各长10m 和6m , 高为20m . 较长的底边与水面相齐. 计算闸门的一侧所受的水压力.解 建立坐标系如图. 直线AB 的方程为x y 1015−=,压力元素为dx x x dx x y x dP )5110()(21−⋅=⋅⋅=,所求压力为1467)5110(200=−⋅=∫dx x x P (吨)=14388(千牛).10. 一底为8cm 、高为6cm 的等腰三角形片, 铅直地沉没在水中, 顶在上, 底在下且与水面平行, 而顶离水面3cm , 试求它每面所受的压力. 解 建立坐标系如图.腰AC 的方程为x y 32=, 压力元素为dx x x dx x x dP )3(34322)3(+=⋅⋅⋅+=,所求压力为168)2331(34)3(34602360=+=+=∫x x dx x x P (克)=1.65(牛).11. 设有一长度为l 、线密度为μ的均匀细直棒, 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M , 试求这细棒对质点M 的引力.解 建立坐标系如图. 在细直棒上取一小段dy , 引力元素为dy ya Gm y a dy m G dF 2222+=+⋅=μμ, dF 在x 轴方向和y 轴方向上的分力分别为dF r a dF x −=, dF rydF y =.2202222022)(1)(l a a l Gm dy y a y a aGm dy y a Gm r a F l lx +−=++−=+⋅−=∫∫μμμ,)11()(12202222022l a a Gm dy y a y a Gm dy y a Gm r y F l ly +−=++=+⋅=∫∫μμμ. 12. 设有一半径为R 、中心角为 ϕ 的圆弧形细棒, 其线密度为常数 μ . 在圆心处有一质量为m 的质点F . 试求这细棒对质点M 的引力. 解 根据对称性, F y =0.θμcos 2⋅⋅⋅=Rdsm G dF xθθμθθμd R Gm R Rd Gm cos cos )(2=⋅=,θθμϕϕd R Gm F x ∫−=2cos2sin 2cos 220ϕμθθμϕR Gm d R Gm ==∫. 引力的大小为2sin 2ϕμR Gm , 方向自M 点起指向圆弧中点.总 习 题 六1. 一金属棒长3m , 离棒左端xm 处的线密度为11)(+=x x ρ (kg/m ). 问x 为何值时, [0, x ]一段的质量为全棒质量的一半? 解 x 应满足∫∫+=+300112111dt t dt t x.因为212]12[110−+=+=+∫x t dt t x x, 112[2111213030=+=+∫t dt t ,所以1212=−+x ,45=x (m).2. 求由曲线ρ=a sin θ, ρ=a (cos θ+sin θ)(a >0)所围图形公共部分的面积. 解∫++⋅=43222)sin (cos 21)2(21ππθθθπd a a S24322241)2sin 1(28a d a a −=++=∫πθθπππ.3. 设抛物线c bx ax y ++=2通过点(0, 0), 且当x ∈[0, 1]时, y ≥0. 试确定a 、b 、c 的值, 使得抛物线与直线x =1, y =0所围图形的面积为c bx ax y ++=294,且使该图形绕x 轴旋转而成的旋转体的体积最小.y c bx ax +=+ 解 因为抛物线2y 通过点(0, 0), 所以c =0, 从而 bx ax +=2.bx ax y +=2与直线x =1, y =0所围图形的面积为抛物线23)(102b a dx bx ax S +=+=∫. 令9423=+b a , 得968a b −=. 该图形绕x 轴旋转而成的旋转体的体积为 )235()(221022ab b a dx bx ax V ++=+=∫ππ)]968(2)968(315[22a a a a −+−+=π. 令0)]128(181********[=−+−⋅+2=a a a ddV π, 得35−=a , 于是b =2. 4. 求由曲线23x y =与直线x =4, x 轴所围图形绕y 轴旋转而成的旋转体的体积.解 所求旋转体的体积为πππ751272224027403=⋅=⋅=∫x dx x x V . 5. 求圆盘1)2(22≤+−y x 绕y 轴旋转而成的旋转体的体积.解 )2(122312∫−−⋅⋅=dx x x Vπ 2224cos )sin 2(4 sin 2ππππ=+=−∫−tdt t t x 令.6. 抛物线221x y =被圆322=+y x 所需截下的有限部分的弧长. 解 由⎪⎩⎪⎨⎧==+222213x y y x 解得抛物线与圆的两个交点为)1 ,2(−, )1 ,2(, 于是所求的弧长为2022202])1ln(2112[212x x x x dx x s ++++=+=∫ )32ln(6++=.,解 建立坐标系如图. 将球从水中取出时, 球的各点上升的高度均为2r . 在x 处取一厚度为dx 的薄片, 在将球从水中取出的过程中, 薄片在水下上升的高度为r +x ,在水上上升的高度为r −x . 在水下对薄片所做的功为零,在水上对薄片所做的功为dx x r x r g dW ))((22−−=π,对球所做的功为g r x d x r x r g W rr 22234))((ππ=−−=∫−. 8. 边长为a 和b 的矩形薄板, 与液面成α 角斜沉于液体内,长边平行于液面而位于深h 处, 设a >b , 液体的比重为ρ, 试求薄板每面所受的压力.解 在水面上建立x 轴, 使长边与x 轴在同一垂面上, 长边的在x 轴上的投影区间为[0, b cos α], 在x 处x 轴到薄板的距离为h +x tan α. 压力元素为 上端点与原点对应. 长边dx x h ga dx a x h g dP )tan (cos cos )tan (ααρααρ+=⋅⋅+⋅=, 薄板各面所受到的压力为)sin 2(21)tan (cos cos 0αρααραb h gab dx x h ga P b +=+=∫. 9. 设星形线t a x 3cos =,t a y 3sin =上每一点处的线密度的大小等于该点到原点距离的立方, 在原点O 处有一单位质点, 求星形线在第一象限的弧段对这质点的引力. 解 取弧微分ds 为质点, 则其质量为ds y x ds y x 322322)()(+=+, 其中tdt t a dt t a t a ds cos sin 3])sin [(])cos [(2323=′+′=.设所求的引力在x 轴、y 轴上的投影分别为F x 、F y , 则有∫+⋅++⋅⋅=202222322)()(1πds y x x y x y x G F x 2204253sin cos 3Ga tdt t Ga ==∫π, ∫+⋅++⋅⋅=22222322)()(1πds y x y y x y x G F x 2204253sin cos 3Ga tdt t Ga ==∫π, 所以)53 ,53(22Ga Ga =F .。
第六章 定积分的应用

解:方法一,
如图,曲线的参数方程为
⎧ ⎨ ⎩
x y
= =
4 5
cos t + 4sin
t
,
0 ≤ t ≤ 2π ,那么
∫ ∫ 所求旋转体的体积为V =
4π
−4
⋅
y12 ( x)dx
−
4π
−4
⋅
y22 ( x)dx
∫ ∫ = 4π 0 (4sin t + 5)2d cos t − 4π 2π (4sin t + 5)2d cos t
解:如图,
∫ ∫ A =
2π a
ydx =
2π a2 (1− cos t )2 dt
0
0
= 3a2π
3、在[0,1] 上给定函数 y = x 2 ,问 t 取何值时,图中曲边三角形 OACO 与 ADBA 的面积之和最小?
何时最大?
解:设 A(t, t 2 ), (0 ≤ t ≤ 1) ,记曲边三角形 OACO 与 ADBA 的面积 y
这一小块闸门所受压力即压力元素为 dP = ρ gx 50 − x dx ,于是所求压力为 5
∫ P = 20 ρ gx 50 − x dx = 14373 (KN)
0
5
5、设有一长度为 l 、线密度为 μ 的均匀细直棒,在与棒的一端平行距离为 a 单位处有一质量为 m 的质点 M ,试求这细棒对质点的引力。 解:如图,去 y 轴经过细直棒,棒的一端为原点,质点 M 位于 x 轴上,取 y 为积分变量,其变化
62
∫ ∫ S = 2[
π 6
1(
02
2 sinθ )2 dθ +
π 4 π 6
1 2
高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。
专升本高等数学(二)-定积分计算方法及其应用

专升本高等数学(二)-定积分计算方法及其应用(总分:97.00,做题时间:90分钟)一、{{B}}填空题{{/B}}(总题数:6,分数:13.00).(分数:2.00)填空项1:__________________ (正确答案:0)解析:[解析] [*]为奇函数..(分数:2.00)填空项1:__________________ (正确答案:2)解析:[解析] [*].(分数:2.00)填空项1:__________________ (正确答案:0)解析:[解析] 令[*],先证明[*].再用定积分区间可加性合并得 [*].(分数:3.00)填空项1:__________________ (正确答案:π)解析:[解析] [*].(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] [*]6. 1.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] [*]二、{{B}}解答题{{/B}}(总题数:6,分数:84.00)对比计算.(分数:36.00)2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:(设[*]=t,则x=t2,dx=2tdt.[*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(5). 2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(6). 2.00)__________________________________________________________________________________________ 正确答案:(方法一凑微分法. [*] 方法二换元法,用方程思想构造等式.设[*],则dx=-dt. [*] 所以 [*])解析:(7)..(分数:2.00)__________________________________________________________________________________________ 正确答案:(令lnx=t,则x=e t,dx=e t dt.当x=1时,t=0;当x=e时,t=1.[*])解析:(8).求曲线x=acos3t,y=asin3t所围成的平面图形的面积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(星形线(见下图)是关于x和y对称的.[*] 参数t从0变到[*]正好是它在第一象限部分,所以 [*])解析:(9).[-2,2]上的定积分.(分数:2.00)__________________________________________________________________________________________ 正确答案:(在有限个点上改变被积函数的函数值,不会影响积分值.也就是说,在闭区间上有有限个第一类间断点时,还能用牛顿—莱布尼兹公式计算定积分. [*])解析:(10).设f(x)=3x2,求f(x).(分数:2.00)__________________________________________________________________________________________ 正确答案:(设[*],则f(x)=3x2-A,两边积分得[*]故[*].)解析:(11).已知f(π)=-2,求f(0).(分数:2.00)正确答案:(因[*] 移项得[*][f(x)+f"(x)]sinxdx=f(0)-2=6,故f(0)=8.)解析:(12).设f(0)=1,f(2)=3,f'(2)=5.(分数:2.00)__________________________________________________________________________________________ 正确答案:(设2x=f,则[*]当x=0时,t=0;当x=1时,t=2.[*] 因为f(0)=1,f(2)=3,f'(2)=5,所以[*]xf"(2x)dx=2.)解析:(13).试分析k,a,b 2.00)__________________________________________________________________________________________ 正确答案:([*] 所以当[*],a=0,b=8时,有[*].)解析:(14).设f(x)=e-t2dt f(x)dx.(分数:2.00)__________________________________________________________________________________________ 正确答案:(分部积分得 [*])解析:(15).求k 2.00)__________________________________________________________________________________________ 正确答案:(因为 [*] 所以 [*] 令[*],解得[*].)解析:(16).当a为何值时,抛物线y=x2与三条直线x=a,x=a+1,y=0所围成的图形面积最小,求将此图形绕x 轴旋转一周所得到的几何体的体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(设所围面积为S(a).[*]S'(a)=(a+1)2-a2=2a+1令[*]S"(a)=2>0,所以[*]为最小的面积[*])解析:(17).设f(x) 2.00)__________________________________________________________________________________________ 正确答案:(令[*],dx=-dt. [*])解析:(18).直线x=1把圆x2+y2=4分成左、右两部分,求右面部分绕y轴旋转一周所得的旋转体体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(直线x=1与圆x2+y2=4的交点是[*],右部分绕y轴旋转一周所得几何体的体积为[*])解析:计算下列定积分.(分数:10.00)2.00)正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(5).设,求 2.00)__________________________________________________________________________________________ 正确答案:([*])解析:计算下列定积分.(分数:10.00)2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:(由于公式sin2x=[*](1-cos2x),所以[*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(5). 2.00)__________________________________________________________________________________________ 正确答案:(证明设[*],则dx=-dt,当x=0时,[*];当[*]时,t=0. [*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(3).设函数f(x)在区间[a,b]上连续,,求 2.00)__________________________________________________________________________________________ 正确答案:(设t=a+b-x,则dt=-dx,当x=a时,t=b;当x=b时,t=a.于是, [*] 而[*],所以 [*]) 解析:(4). 2.00)__________________________________________________________________________________________ 正确答案:(设1-x=t,则x=1-t,dx=-dt.当x=0时,t=1;当x=1时,t=0.于是 [*])解析:(5).f(x).(分数:2.00)__________________________________________________________________________________________ 正确答案:([*] 故 [*])解析:(6).设f(x)为连续函数,,且φ'(x)并讨论φ'(x)在x=0处的连续性.(分数:2.00)__________________________________________________________________________________________ 正确答案:(f(0)=φ(0)=0,令y=xt,[*]两边对x求导得φ'(x)=[*] 由导数定义,有 [*] 故φ'(x)在x=0处连续.)解析:(7).证明:若f(x)在[-a,a] 2.00)__________________________________________________________________________________________ 正确答案:(因为f(x)在[-a,a]上连续,则[*] 对于[*],令设x=-t,则dx=-dt.当x=-a时,t=a;当x=0时,t=0.于是, [*] 从而 [*])解析:(8).当k?又为何值时发散?(分数:2.00)__________________________________________________________________________________________ 正确答案:(当k≠1时 [*] 当k=1时,[*].所以广义积分[*]当k>1时收敛,当k≤1时发散.)解析:(9).求曲线y=2lnx,过曲线上点(e,2)处的切线及y=0所围成的图形的面积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(因为[*],过点(e,2)切线斜率为[*],切线方程为[*].即[*] 切线经过原点(0,0),曲线y=2lnx(即[*])经过点(1,0)和(e,2)所围成图形面积为 [*])解析:设平面图形是由曲线y=x2和x=y2围成,试求该图形:(分数:6.00)(1).绕x轴旋转一周而形成的立体图形的体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(绕x轴旋转一周而形成的立体图形的体积[*])解析:(2).绕y轴旋转一周而形成的立体图形的体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(绕y轴旋转一周而形成的立体图形的体积[*])解析:(3).设函数f(x)=x2,求f(x)在区间[0,2]上的最大值与最小值.(分数:2.00)__________________________________________________________________________________________ 正确答案:(由于定积分[*]是一确定的实数,设[*].对f(x)的等式两边积分有 [*] 于是 [*] 由上式解得[*].令f'(x)=2x=0得驻点x=0.当x∈(0,2)时,恒有f'(x)>0,表明f(x)在区间(0,2)内严格增加,所以f(0)=[*]是函数f(x)在[0,2]的最小值,[*]是函数f(x)在[0,2]的最大值.)解析:设某产品的边际成本函数为C'(q)=4+0.25q(万元/吨),边际收入为R'(q)=80-q(万元/吨),其中q为产量.(分数:4.00)(1).求产量由10吨增加到50吨时,总成本和总收入各增加多少?(分数:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(2).设固定成本为10万元,求总成本函数和总收入函数.(分数:2.00)__________________________________________________________________________________________ 正确答案:([*]由于固定成本为10万元,所以总成本函数为C(q)=4q+[*]q2+10又由于[*],故当q=0时无收入,即R(0)=0=C.所以总收入函数为R(q)=80q-[*]q2)解析:。
江苏专转本高等数学 定积分 例题加习题

- 106 -第四章 定积分本章主要知识点● 定积分计算● 特殊类函数的定积分计算 ● 变限积分● 定积分有关的证明题 ● 广义积分敛散性 ● 定积分应用(1)面积 (2)旋转体体积一、定积分计算定积分计算主要依据牛顿—莱伯尼兹公式:设⎰+=C x F dx x f )()(,则()()()()bb a af x dx F b F a F x =-=⎰。
其主要计算方法与不定积分的计算方法是类似的,也有三个主要方法,但需要指出的是对于第Ⅱ类直接交换法,注意积分限的变化:()111()()()()()(())x t bb aa t x f x dx f t t dt ϕϕϕϕϕϕ---=='=⎰⎰。
例4.1.111)edx x ⎰解:原式=e11)ln d x ⎰=32125((ln )ln )|33ex x +=例4.2.30dx ⎰ 解:原式t x t x =+-==11222 1121t tdt t -+⎰=32 121t t dt t -+⎰=322125()|33t t -= 例4.3.⎰22sin πxdx x- 107 -解:原式=⎰-22cos 21πx xd =⎰+-2022cos 21|2cos 21ππxdx x x =20|2sin 414ππx +=4π 二、特殊类函数的定积分计算1.含绝对值函数利用函数的可拆分性质,插入使绝对值为0的点,去掉绝对值,直接积分即可。
例4.4.⎰--21|1|dx x解:原式=121 1(1)(1)x dx x dx --+-⎰⎰=212|)2(2x x -+=)121(02--+=25例4.5.⎰--++22|)1||1(|dx x x解:原式=112211(|1||1|)(|1||1|)(|1||1|)x x dx x x dx x x dx ---++-+++-+++-⎰⎰⎰=112211(11)(11)(11)x x dx x x dx x x dx ------++++-+++-⎰⎰⎰=112211222xdx dx xdx ----++⎰⎰⎰=212122|4|x x ++---=)14(4)41(-++--=102.分段函数积分例4.6.⎩⎨⎧≤+>=0,10,)(2x x x x x f ,求⎰-11)(dx x f解:原式=⎰⎰-+0110)()(dx x f dx x f =⎰⎰-++01102)1(dx x dx x =103012|31|)2(x x x ++- =31)121(+--=65- 108 -例4.7.⎩⎨⎧≤>+=1,1,12)(x x x x x f ,求⎰-+12)1(dx x f解:原式11221(1)()u x f x dx f u du =+--=+==⎰⎰1211()()f u du f u du -+⎰⎰1222111(21)0()udu u du u u -=++=++⎰⎰624=-=3.奇函数积分如果 ()f x 为定义在[],a a -的奇函数,则()0aaf x dx -≡⎰,这是一个很重要考点。
济南大学高等数学C(一)5定积分及其应用-疑难解答

第六章 定积分及其应用习题6-1 定积分的概念下列定积分:利用定积分的定义计算.1⎰21;)1(-dx x[]等分个分点,把区间中插入在闭区间解:n n 12,1.10-- ,211210=<<<<<=--n n x x x x x.3)1(2Δn n x i =--= ).,,2,1(31n i i nx i =+-=[],所以因为中取右端点为在每个区间x x f i nx ξx x i i i i =+-==-)(.31,.210.3)31(ΔΔ)(111∑∑∑===⋅+-==ni i n i i i n i i ni n x ξx ξf .2)1(939393Δ)(212121+⋅+-=+-=+-=∑∑∑===n n n i n i n x ξf n i ni i ni i 即{})Δ(232)1(93lim Δ)(lim .31210210n i i n i ni i λx max λn n n x ξf xdx ≤≤∞→=→-==⎥⎦⎤⎢⎣⎡+⋅+-==∑⎰其中⎰10.)2(dx e x[]等分个分点,把区间中插入在闭区间解:n n 11,0.10-,101210=<<<<<=-n n x x x x x.1Δn x i = ).,,2,1(0n i ni n i x i ==+=[],所以因为中取右端点为在每个区间x i i i i e x f ni x ξx x ===-)(.,.210.1ΔΔ)(111∑∑∑===⋅==ni ni i n i ξi n i i ne x e x ξf i.1)1(1)(1Δ)(111211--⋅=++++=-=∑n nnn nn nni ni i e e e ne e e e nx ξf 即{})Δ(11)1(1lim Δ)(lim .311110100n i i n nn i ni i λxx max λe e e e n x ξf dx e ≤≤∞→=→=-=--⋅==∑⎰其中,说明下列等式:利用定积分的几何意义.2;12110⎰=x xd )( ;412102⎰=-πx d x )(⎰-=ππx sinxd ;)(03 ⎰⎰-=2022.24πππx cosxd x cosxd )(角形的面积,故表示如图所示的直角三)解:(⎰1021x xd.x xd 12121210=⋅⋅=⎰ ⎰-1024112圆的面积,故表示如图所示)(x d x.414111022⎰=⋅⋅=-ππx d x ⎰-ππx x sinxd 轴上方为正面积,的面积,其中表示如图所示阴影部分)(3轴下方为负面积,故x ⎰-=ππx sinxd .0⎰-2224ππx cosxd 倍,面积的的面积,它是第一象限表示如图所示阴影部分)(⎰⎰-=2022.2πππx cosxd x cosxd 故习题6-2 定积分的性质积分的大小:比较下列各题中的两个.2;,110421021dx x I dx x I ⎰⎰==)( ;,221422121dx x I dx x I ⎰⎰==)(;)(ln ,ln 34332431dx x I dx x I ⎰⎰==)( ;)1ln(,4102101dx x I dx x I ⎰⎰+==)(.)1(,5102101dx x I dx e I x ⎰⎰+==)( ,只有有限个成立的解:)"(",10)1(42x x x x =≥∴≤≤ ,,42是连续函数又x x .,21104102I I dx x dx x >>⎰⎰即故是连续函数,,又只有有限个成立的4242,)"(",21)2(x x x x x x =≤∴≤≤ .,21214212I I dx x dx x <<⎰⎰即故是连续函数,,又33)(ln ,ln )(ln ln ,1ln ,43)3(x x x x x x <∴>∴≤≤ .,)(ln ln 2143343I I dx x dx x <<⎰⎰即故.,)1ln(),10()1ln(,0)0()()(10),10(111)(,)1ln()()4(211010I I dx x dx x x x x f x f x f x x xx f x x x f ><+∴≤<<+=<≤≤<<-+='-+=⎰⎰即即单调递减,故时,故当则设.,1,)1(,0)5(21I I e x x x n l x x >∴<+∴<+>时[],证明:上连续在及设)(,)()(3b a b a x g x f .< [].0)(,0)(,0)(,)1(>≡/≥⎰ba dx x f x f x fb a 则且上,若在[][].0)(,,0)(,0)(,)2(≡=≥⎰x f b a dx x f x f b a ba 上,则在且上,若在[][]).()(,,)()(),()(,)3(x g x f b a dx x g dx x f x g x f b a ba ba ≡=≤⎰⎰上,在则且上,若在[]⎰≥∴≥ba dx x f x fb a ,0)(,0)(,)1(上,在证明:,假设⎰=ba dx x f 0)(上,知在由],[)2(b a ,0)(≡x f 矛盾,这与0)(≡/x f .0)(⎰>∴ba dx x f ,假设反证法0)())(2(≡/x f ,则至少存在一点],[b a ξ∈,使得0)(≠ξf ,0)(≥x f ,0)(>∴ξf []上连续,在b a x f ,)( 的区间包含ξ∴,],[],[21b a c c ⊆ ,可设0)(>x f ],[21c c x ∈,易知:⎰>210)(c c dx x f , ,,而⎰⎰≥≥120)(0)(c abc dx x f dx x f ⎰⎰⎰⎰>++=∴ba c a c c bc dx x f dx x f dx x f dx x f 1212.0)()()()(矛盾,这与⎰=ba dx x f 0)([].0)(,≡∴x f b a 上,假设不成立,即在,令)()()()3(x f x g x F -=,],[)()(b a x x g x f ∈≤ .0)(≥∴x F,且⎰⎰⎰=-=b a b a ba dx x f dx x g dx x F 0)()()( ,0)()2(≡x F 知由).()(x f x g ≡即习题6-3 微积分的基本公式计算下列各导数:.1;11302dt t dx d x ⎰+)( ;112422dt t dx d x x ⎰+)( ⎰x x dt t πdx d cos sin 2)cos()3( ;1331162223x x x x +=⋅+=)()原式解:(⎥⎦⎤⎢⎣⎡+-+=⎰⎰420022112x x t dt t dt dx d )原式( ⎰⎰+-+=24020211x x t dt dx d t dt dx d x x x x 2)(114)(1122324⋅+-⋅+= ;1214483xx x x +-+= []⎰⎰-=x x dt t πdt t πdxd cos 0sin 022)cos()cos()3(原式 ⎰⎰-=x x dt t πdxd dt t πdx d sin 02cos 02)cos()cos( [][]x x πx x πcos )(sin cos )sin ()(cos cos 22--= [][].cos )(sin cos sin )(cos cos 22x x πx x π--= 计算下列各积分:.2a ax x dx x x 02302|)21()3(1-=-⎰)(2321a a -=821|)3131()1(221334212=-=+-⎰x x dx x x )( 67|)2132()()1(30122301211-=+=+=+⎰⎰x x dx x x dx x x )(⎰⎰⎰-+=ππππdx x nxdx si dx x 2020)sin (sin 11)(4|cos |cos 20=+-=πππx x 617|31|)21()(122131022010212=+=+=⎰⎰⎰x x dx x xdx dx x f )( :3求下列极限.;lim )1(02x dt e x t x ⎰→ .sin )sin (lim )2(0320220⎰⎰→x x x dtt t dt t;11lim )1(002===→e ex x 原式解: 320220320220sin 2lim sin sin sin 2lim )2(xx x dt t xx x dt t xx xx ⋅⋅=⋅=⎰⎰→→原式3020sin 2lim xdtt xx ⎰→=.323sin 2lim 22==→x x x .)(0cos 500dxdyx y y dt t dt e .xyt的导数所确定的隐函数求由方程==+⎰⎰求导,得对解:原方程左、右两边x0cos =+x dx dy e y .1sin cos cos -=-=∴x x e x dx dy y.)(602的极值求函数⎰-=xt dt te x f .2)(x xex f -='解: ,令02=-x xe0=x 得极值点 01)0(>=''f .f x f x 0)0()(0==∴有极小值时函数[](),证明函数内可导且上连续,在在设0)(,,)(.7<'x f b a b a x f ().0)(,)(1)(<'-=⎰x F b a dt t f ax x F xa内的一阶导数在 2)()())(()(a x dtt f a x x f x F xa ---='⎰证明:)()())(())((2x ξa a x a x ξf a x x f ≤≤----= )())(()()(x ηξax ξx ηf a x ξf x f <<--'=--=,0,0,0)(>->-<'a x ξx ηf .0)(<'∴x F习题6-4 定积分的换元积分法计算下列定积分:.1;02121)3cos()3sin()1(33=-=+-=+⎰πππππx dx πx 解:;16921)49(81)49()49(41)49()2(122123123=+-=++=+-----⎰⎰x x d x x dx ;31cos 31cos cos cos sin )3(203202202=-=-=⎰⎰πππφφd φφd φφ;2)2sin 4121(22cos 1sin )cos 1()4(000202πθθθd θθd θθd θππππ=-=-==-⎰⎰⎰;232)2(31)2(2212)5(202322202202=--=---=-⎰⎰x x d x dx x x;1)6(2102dx x x -⎰,cos ),20(sin tdt dx πt t x =≤≤=令.164sin 41812141241cos cos cos 20202202202202πt t dtt os4c dt t sin tdt t sin tdt t t sin πππππ=-=-===⋅⋅=⎰⎰⎰⎰)()(原式;45)7(11⎰--xxdx;2,45,452dt tdx t x t x -=-==-则令;61)53(8185)2(45133131322=-=-=--=⎰⎰t t dt t dt t tt 原式;1)8(41⎰+xdx,2,,2tdt dx t x t x ===则令;23ln 22)1ln (2)111(212212121-=+-=+-=+=⎰⎰t t dt t t tdt 原式;2121)]21([)(21)9(11021010222---=-=--=⎰⎰--e e t d e dt te tt t;212ln 2)ln 1(2)ln 1()ln 1(ln 1ln ln 1)10(212121212121-+=+=++=+=+⎰⎰⎰-x x d x xxd x x dx .41arctan )2arctan(1)2(54)11(12122122πx x dx x x dx ==+=++=++------⎰⎰ ;32)31(31)sin 3sin 31(21)cos 3(cos 212cos cos )12(222222=--=+=+=---⎰⎰ππππππx x dx x x xdx x .34)(cos 32)(cos 32cos cos cos cos sin cos )sin (cos sin cos )cos 1(cos cos cos )13(202302232002200222222223=-=-=⋅+-==-⋅=-------⎰⎰⎰⎰⎰⎰⎰ππππππππππππx x xd x x d x xdx x dx x x dxx x dx x x dx x x .22sin 2sin 2cos 2cos 2cos 2cos 22cos 1)14(2202200020=-=-===+⎰⎰⎰⎰⎰πππππππππx x dx x dx x dxx dx x dx x 列定积分:利用函数奇偶性计算下.2;1arcsin 1212122dx xx ⎰--)()(.12sin )2(552432dx x x x x ⎰-++ 为偶函数,故)(解:221arcsin )()1(xx x f -=;324arcsin 32arcsin 21arcsin 232103210221022πx x arcsin d x dx xx ===-=⎰⎰)()()(原式.012sin )()2(2432=++=为奇函数,故原式x x x x x f 证明下列各题:.3;)0(11)1(11212⎰⎰>+=+xx x xdx x dx ;)1()1()2(1010dx x x dx x x mnnm⎰⎰-=-.cos 2cos )3(2010010dx x dx x ππ⎰⎰=右边;左边令证明:=+=+=+-=-==⎰⎰⎰xx x x dx t dt t dt t dt t dx t x 1121121122211111,1,1)1( 右边;左边,则令=-=-=--=-=-==-⎰⎰⎰dx x x dt t t dt t t dt dx t x t x nmnmnm101001)1()1()()1(,,11)2(,cos cos cos )3(2102010010xdx xdx xdx ππππ⎰⎰⎰+=则令,,dt dx t πx -=-=,cos cos )(cos cos 201020100210210xdx tdt dt t xdx πππππ⎰⎰⎰⎰==-= .cos 2cos cos cos 201020102010010xdx xdx xdx xdx ππππ⎰⎰⎰⎰=+=故习题6-5 定积分的分部积分法计算下列定积分:.1);1(414121121ln 21)21(ln ln )2(21221212121+=-=⋅-==⎰⎰⎰e xe dx x x x x x xd xdx x e e e ee;2sin 2)cos (cos )cos (sin )3(2020202020πx πdx x x x x xd xdx x πππππ-=+-=---=-=⎰⎰⎰;2ln 33cos ln 33cos cos 133cos sin 33tan tan tan sec cos )4(303030303030302302-=+=+=-=-===⎰⎰⎰⎰⎰⎰πx πx d x πdx x x πdx x x x x d x dx x x dx xx ππππππππ;ln )5(41dx xx ⎰,2,2tdt dx t x t x ===,则令;42ln 8)22ln 4(2)214ln 2(2)ln ln (2ln 22ln 212221212212212-=-=⋅⋅-=-===⎰⎰⎰⎰dt t tt t d t t t dt t tdt t t 原式.214)arctan (218)111(2181121arctan 21)21()6(10102102210210210-=--=+--=+⋅-==⎰⎰⎰⎰πx x πdx x πdx x x x x x arctamxd xarctamxdx ).2(51cos ,2cos 5cos 42)2cos cos (2)cos (22sin sin sin cos )7(202202202202202202202202202202-=∴-=--=⋅-+=--=⋅-==⎰⎰⎰⎰⎰⎰⎰⎰ππx ππxπx ππx πxππxππx πxπxπxe xdx e e xdx e xdxe e dx e x x e e x d e e dxe x x e x d e xdx e 故;)sin(ln )8(1⎰edx x,,dt e dx e x t x ln t t ===,则令,sin 11cos 1sin )sin cos (1sin cos 1sin cos sin sin sin )sin(ln 101010101110101dt e t e e dt e t t e e tde e dt e t t e tde dt e t dx x t tt t tttte⎰⎰⎰⎰⎰⎰⎰⋅-+-=⋅+-=-=⋅-==⋅=.21)1cos 1(sin sin )sin(ln ,1)1cos 1(sin sin 210110+-=⋅=+-=⋅∴⎰⎰⎰e dt e t dx x e dt e t tet 故.12ln 23ln 31ln ln )1ln()9(32323221--=⋅-==+⎰⎰⎰dt t t t t tdt dx x ;sin )10(20dx x π⎰,2,2tdt dx t x t x ===,则令.2sin 22cos 2cos 2)cos (22sin 00000πtπdt t t t t d t dt t t πππππ=+=+-=-=⋅=⎰⎰⎰原式.22)1(111ln ln ln )ln (ln )11(1111111111e e e e e dxx x dx x x dx x dx x dx x eeeee e e e -=--+-+-=-++-=+-=⎰⎰⎰⎰⎰利用递推公式计算:.2.)1()2(;sin )1(299102990100100dx x J xdx x J π⎰⎰-==.212,)12(2)12()12(sin )12(sin )12(sin cos ]cos )12([sin cos sincos )cos (sin sin ,sin )1()1(22)1(222)1(2020220120120120120122022----------=∴-=---=---+=-++-=-===⎰⎰⎰⎰⎰⎰⎰m m m m mm πmπm πm 2-2m πm πm πm πm m πm m J mm J J m mJ J m J m xdxx m xdx x m xdx x dxx x sin m x x x x x x x xd x xdx sin x x J xdx x J 故则设解:.2196959897100999897100991009910011000482492492502100J J J J J J ⋅⋅⋅⋅==⋅==-==⨯⨯⨯⨯ 故.224969810013959799,22100200πJ πxdx J π⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===⎰ 故而.224969810013959799sin )sin ()(sin ,sin ]2,0[,cos )2(10020990299πdt t dt t t J tdt dx πt t x ππ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==-=-=∈=⎰⎰ ,则令习题6-6 广义积分算广义积分的值:收敛性,如果收敛,计判别下列各广义积分的.1;4141)4(41)3(040404=-=--=∞+-∞+-∞+-⎰⎰xx xex d e dx e.21sin ,1sin 2,sin 1]sin sin [1sin 1cos 1cos cos )cos (sin )4(00000000000==∴-=+-=-=-=-+-=-=⎰⎰⎰⎰⎰⎰⎰⎰⎰∞+-∞+-∞+-∞+-∞+-∞+-∞+-+∞-+∞-+∞-+∞-dx x e dx x e dx x e dx x e x e x d e dx x e dxx e xe x d e dx x e xxxx xxxx xxx 故.)2(2)2arctan(1)2(54)5(22πππx x dx x x dx =--=+=++=++∞+∞-∞+∞-∞+∞-⎰⎰ .1]1)1([lim 1)1(21lim 1)6(21210221102=+--=---=---→→⎰⎰b x x d dx x x b b b ;1()7(203⎰-)x dx .1(1,1,1111,,11203103013103013113113发散)都发散,原式,则令⎰⎰⎰⎰⎰⎰⎰-∴+==-=-=-==-----x dx dt t dt t dt tdt t dt t dt t dt dx t x t x.1)8(21⎰-x xdx.38)3(2)1(22)1(,2,1,1110310210222=+=+=+==+==-=-⎰⎰t t dt t dt t t t tdt dx t x t x t x 原式,则令 )1()(ln 111ln ln )(ln )(ln 212≠+⋅-==-∞+⎰⎰⎰k C x k x x d x x dx k k x x dxk .k k k k 解:取得最小值?为何值时,这广义积分当发散?为何值时,这广义积分收敛?当为何值时,广义积分当时,当1=k ⎰x x dx ln C x xxd +==⎰ln ln ln ln⎪⎩⎪⎨⎧≠⋅-==∴∞+-+∞∞+⎰1|)(ln 1111|ln ln )(ln 2122k x k k x x x dx k k时,当1)1(=k .,原广义积分发散原式+∞= 时,当1)2(<k .,|)(ln 1121发散原式+∞=-=∞+-k x k=>时,原式当1)3(k .,)2(ln 111|)(ln 111121收敛-∞+--=⋅-k k k x k 时,当1>k 则记,)2ln 1(11)(1--=k k k f12)2(ln 1)1(1)(---='k k k f )2ln 1ln()2ln 1(111--+k k ).2ln ln 11()2(ln 1)1(11+---=-k k k ,令0)(='k f ,1>k 从而,0)2ln 1(111≠-∴-k k,02ln ln 11=+-k ,2ln ln 11-=k 即.值为唯一驻点此k时,当2ln ln 11->k 时,即02ln ln 11<+-k .0)(>'k f时,当2ln ln 11-<k .0)(该驻点是极小值点,∴<'k f时,即当1>k .)(),1(处的极小值就是最小值故唯一驻点没有边界值进行比较,时,在此区间上k f k ∞+∈习题6-7 定积分的几何应用形的面积:求由下列各曲线所围图.1 ).0(ln ,ln ,0,ln )7(;1,,)6(;2,1)5(;(8,2)4(;2,3)3(;,0,)2(;,)1(2222>>===========+==-======-a b b y a y x x y x e y e y x x y xy x y x y x y x y e y x e y x y x y x x x 与两部分都要计算).61)()1(10⎰=-=dx x x S 面积解:.1)()2(10⎰=-=dx e e S x 面积 .332)23(),6,3(),2,1(32)3(1322⎰-=--=--⇒⎩⎨⎧-==dx x x S B A x y x y 面积.342)218()4(22221⎰+=--=-πdx x x S 阴影部分的面积 .346)34282-=+-=πππS (另一部分的面积.2ln 23)1()5(21⎰-=-=dx x x S 面积.21)()6(10⎰-+=-=-ee dx e e S xx 面积.)0(,ln )7(ln ln ⎰-=-==⇒=ba yy a b dy e S e x x y 面积转的旋转体的体积:围平面图形绕指定轴旋求下列各题中的曲线所.2轴;轴绕y x x y x y ,,2,0,)1(3=== 轴;绕y y x x y ,,)2(22== 轴;绕x y x ,16)5()3(22=-+ ).0(,)4(222>>==+a b b x a y x 绕,7128)()1(2203πdx x πV x ==⎰解:,33y x x y =⇒=dy y πdy πV y ⎰⎰⋅-⋅=8023802)(2.56459632πππ=-=,)2(2y x x y =⇒=.10352)()(1022102πππdy y πdy y πV y =-=⋅-⋅=⎰⎰,165,165:16)5()3(222122x y x y y x --=-+==-+得由dx y y πdx y πdx y πV x )(22442144224421-=⋅-⋅=⎰⎰⎰---.160162102442πdx x π=-⋅=⎰-,,,:)4(22222122222y a b R y a b R y a x a y x --=-+=-±==+设得由dy R πdy R πV aa aa b ⎰⎰---=2221dy R R πaa )(2221-=⎰-dy y a b πaa 2222-⋅⋅=⎰-b a π222=.3列各题中立体的体积的立体体积公式计算下用平行截面面积为已知..)1(的正劈锥体为高底圆直径的线段为顶,的圆为底,平行且等于以半径为H R .)()2(的球缺的球体中高为半径为R H H R <.)20(1)3(2222的平面所截的劈形立体轴且与底面夹角的椭圆柱体被通过底面为椭圆πααx b y a x <<≤+ 截面的面积为:解:)1( [],,,221)(2222R R x x R h h x R x A -∈-=-⋅=:故此正劈锥体的体积为.21)(222h R πdx x R h dx x A V R R R R ⎰⎰--=-==截面的面积为:)2( [],,),()(22R H R y y R πy A -∈-=故球缺的体积为:).31()(222H R H πy d y R πV RH R -=-=⎰- 截面的面积为:)3( [],,,tan 1121)(2222ααx αax b a x b x A -∈-⋅-=故劈形立体的体积为: .tan 32tan )1(21)(2222αab dx αa x b dx x A V a a a a ⎰⎰--=-==习题6-8 定积分的经济应用.1000257)(1,求总成本函数,固定成本为已知边际成本为xx C .+=' .5071000)257(1000)()0()(00⎰⎰++=++='+=x x x x dx xdx x C C x C 解:.30202100)(.3应追加的成本数时,增加到,求当产量由已知边际成本==-='x x x x C:解:应追加的成本数为.500)2100()(30203020=-='⎰⎰dx x dx x C.0260)(430)(.4)(设固定成本为,求最大利润,边际收益为已知边际成本x x R x x C -='+=').0(230230)430()(22固定成本为解:x x C x x dx x x C +=++=+=⎰.60)260()(2C x x dx x x R +-=-=⎰,60)(,0,0)0(2x x x R C R -=∴=∴=,33023060)()()(222x x x x x x x C x R x L -=---=-=∴ ,06)(,5,0630)(<-=''==-='x L x x x L .75)5(5=-=L x 利润为时,有最大利润,最大故当 支出增加多少?费亿元时,购买冰箱的消亿元增加至,当居民收入由的函数,的变化率是居民总收入消费支出某地区居民购买冰箱的942001)()(.5xx W x x W =').(10012001)(9494亿解:=='⎰⎰dx xdx x W .1001亿增加故购买冰箱的消费支出.20)3(20)2()1(.10100106价值万元时,求收益的资本当应满足的方程);万元时,求内部利率(当本?为何值时,公司不会亏元收入年后报废,公司每年可备使用万元购买某设备,该设(连续复利)贷款某公司按利率==b b b b %.年后的总收益::年后这笔贷款的本利和解:10,10010010)1(101.0e e =⨯),1(101001)10(1.0⎰---=e eb dt e b t ),1(101001--=e eb e 若公司不亏本,则.1101--=eb 则 ,则设内部利率为ρ)2(),1(202010010100ρtρe ρdt e ---==⎰.1510ρe ρ--=即投入资金的现值收益流现值资本价值-=)3( 100201001.0-=⎰-dt e t.20010010020020011---=--=e e总习题六计算下列极限:.1.1lim 11lim )1(11111e edt e x xx x t x ==-→→⎰ .111)(1lim 21121)(lim .1)(lim )(,1)(lim )2(2220=⋅=+=⋅+==++∞→+∞→+∞→+∞→⎰x f xx xx x f t f t f x dt t f x x t xx 原式连续且其中计算下列积分:.2.22ln 2ln 2cos 1sin ,2ln )cos 1ln(cos 1)cos 1(cos 1sin ,2ln 22tan 2tan 2tan 22sec 2sec 22cos 2cos 1,cos 1sin cos 1cos 1sin )1(2020202020202020220220220202020ππdx x x x x x x d dx x x πdx x x x x d x x dx x dx x x dx x x dx x x dx x x dx x x dx x x x ππππππππππππππ=+-=++=+-=++-=+-=-=====++++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰故而而 ;42)2(22⎰-+xdx.122tan 22sec 2122cos 212)cos 111(cos 1cos cos 22cos 2,cos 2]2,0[,sin 220202202202020-=-=-=-=+-=+=+==∈=⎰⎰⎰⎰⎰πt πdt t πdtt πdt t t tdt t tdt tdt dx πt t x ππππππ原式,则令).12(2)sin cos ()cos (sin )cos (sin )sin (cos cos sin )cos (sin cos sin 2cos sin 2sin 1)3(2440244020202202220-=--++=-+-=-=-=-+=-⎰⎰⎰⎰⎰⎰ππππππππππx x x x dx x x dx x x dx x x dxx x dx x x x x dx x .22)tan 2arctan(211)tan 2(tan 2211tan 2tan 1tan 2sec 1tan 21tan sin 2cos cos sin sin 1)4(202022022022222202222202πx x x d x x d dx x x dx x x x x xdx x x dx πππππππ==+=+=+=++=++=+⎰⎰⎰⎰⎰⎰ 且说明理由:指出下列计算中的错误4..01lim 1)3(;01,11)2(;2]1[arctan )1(1)1(1)1(4343112112111211112112=+=+=+∴+-=+-=-=+-=+⎰⎰⎰⎰⎰⎰⎰-+∞→∞∞---=----b bb tx xdx x x dx x x dx t dt x dx πx x x d x dx.0)1(2x x 以,故不能分子分母同除可以取为第一步到第二步错,因解:.2)4(4arctan 111112πππx x dx =--==+⎰--正确的做法: .x tx 0,1)2(就取不到因为这样不能令=.)3(是没有关系的限设法错误,因为它们第二步中定积分的上下解下列几何问题:.5;轴旋转的旋转体的体积所围图形绕求由y y x x y 0,4,)1(23===;轴旋转的旋转体的体积绕求圆盘y y x 1)2()2(22≤+- .940,1,,.0]1,0[)0,0()3(22积最小轴旋转而成的旋转体体,且使图形绕为所围图形的面积与直线的值,使抛物线试确定时,,且当过原点设抛物线x y x c bx ax y c b a y x c bx ax y ==++=≥∈++=应取何值?所围图形面积最小时,与抛物线)点,当直线过(已知直线b a x y b ax y b ax y ,1,0)4(2=+=+=.7512128)(4)1(80348023280212πdy y ππdy y πdy πV V V =-=⋅-⋅=-=⎰⎰⎰解:故旋转体的体积为,得由],1,1[121)2()2(222-∈-±==+-y y x y x.418124)12()12(211211221122112πdy y πdyy πdy y πdy y πV =-=-⋅=----+=⎰⎰⎰⎰----,896,94)(,0)3(1022=+=++==⎰b a dx bx ax bx ax y c 故,故由已知轴旋转体的体积绕x ),235()(22102abb a πdx bx ax πV ++=+=⎰)],98(12131)98(1801[),98(61222b b b b πV b a -++-=∴-=.0,35,2,0151,2,0]152151[22满足条件时,故当故=-==>⋅===-=c a b πdb V d b b πdb dV )(即由已知11)4(=+=b ax y ,即它所围面积,则两交点的横坐标为与抛物线设直线⎰-+=<=+=21)1()(,1221212x x dx x ax A x x x x x y ax y ),(31)()(23132122122x x x x x x a A ---+-=,01122=--⇒⎩⎨⎧=+=ax x xy ax y 是此方程的两根,有设21,x x ,1,2121-==+x x a x x ,44)(2)(221212212122212+=-+=-+=-a x x x x x x x x x x ,4))(()(,4212122122212+=-+=-+=-a a x x x x x x a x x 又 .)4(64)1(314421),1(4]))[((232222222221212123132+=++-+++=++=-+-=-a a a a a a A a a x x x x x x x x 故.1,0480,0,0)4(18212=====+=b a A a a a a dadA ,故有最小值时,故当则令解下列经济应用问题:.6?台的平均利润各为多少台与后台时,前售出台电视机的总利润售出试求的边际利润为已知某商场销售电视机需求出满足的方程)万元,求内部利率(只年,每年收益厂投产期万元扩建一个工厂,该某企业投资少?单位时,总成本减少多单位减少到由问当产量成本已知生产某产品的边际303060.2.401),20(10250)()3(.2020232)2(312,30183)()1(2.x xx L x x x x C ≥-='+-='.11120232)2(.756)30183()()1(202001232123ρtρeρ.6dt e ρdx x x dx x C C --⎰⎰⎰-===+-='=,解得:,则设内部利润为减少的成本解:,20250)10250()(.1)3(2C x x dx x x L +-=-=⎰,20250)(,0,0)0(2x x x L C L -=∴=∴=.9920)40(40=L 台电视机的总利润为:售出,5.24830745530)30(,7455)30(.2===L L ,5.24530)30()60(,7365)30()60(,14820)60(=-=-=L L L L L.5..5245302483060台的平均利润为,后台的平均利润为台时,前故售出(注:本资料素材和资料部分来自网络,仅供参考。
高等数学第五章课后习题答案

班级姓名学号1 第五章定积分1.证明定积分性质:òò=b abadxx f kdx x kf )()((k 是常数). 证:òåòå=D =D ==®=®banii ban ii x kf x kf x f k x f k)()(lim )(lim )(1010x x l l 2.估计下列积分值:(1)dxx )sin 1(4542ò+p p解:令x x f 2sin 1)(+=,则02sin cos sin 2)(===x x x x f ‘得驻点:,,221p p==x x 由23)4(,23)4(,1)(,2)2(====p p p pf f f f ,得2)(max ,1)(min ==x f x f 由性质,得pp p p2)(454££òdx x f (2)ò333arctan xdxx 解:令x x x f arctan )(=,01arctan )(2>++=xxx x f ‘,所以)(x f 在]333[,上单调增加,p p33)(max ,36)(min ==\x f x f ,)()(33333arctan 33336333-££-\òp pxdx x ,即pp32a r c t a n 9333££òx d x x班级班级 姓名姓名 学号学号3.比较下列积分值的大小:.比较下列积分值的大小: (1)dx x ò12与dxx ò13解:当10££x 时,有23x x £,且23x x -不恒等于0,0312>-\òdx x x )(,即,即 dxx dxx òò>1212。
(2)ò6pxdx 与ò6sin pxdx解:当60p££x 时,有x x £sin ,且x x sin -不恒等于0,0sin 10>-\òdx x x )(,即,即 dx x dx x òò>1010sin 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 定积分的应用习题 6-2 (A)1. 求下列函数与 x 轴所围部分的面积:]3,0[,86)1(2+-=x x y ]3,0[,2)2(2x x y -=2. 求下列各图中阴影部分的面积: 1.图 6-13.求由下列各曲线围成的图形的面积:;1,)1(===-x e y e y x x 与;)0(ln ,ln ,0ln )2(>>====a b b y a y x x y 与;0,2)3(2==-=y x y x x y 与;)1(,2)4(22--==x y x y;0,2)1(4)5(2=-=-=y x y x y 与;2,)6(2x y x y x y ===与;)0(2sin ,sin 2)7(π≤≤==x x y x y;8,2)8(222(两部分都要计算)=+=y x x y4.的图形的面积。
所围成与直线求由曲线e x e x y x y ====-,,0ln 15.的面积。
处的切线所围成的图形和及其在点求抛物线)0,3()3,0(342--+-=x x y6.的面积。
处的法线所围成的图形及其在点求抛物线),2(22p ppx y = 7.形的面积。
与两坐标轴所围成的图求曲线a y x =+8.所围图形的面积。
求椭圆12222=+by a x9.。
与横轴所围图形的面积(的一拱求由摆线)20)cos 1(),sin (π≤≤-=-=t t a y t t a x10.轴之间的图形的面积。
的切线的左方及下方与由该曲线过原点求位于曲线x e y x =11.求由下列各方程表示的曲线围成的图形的面积: ;)0(sin 2)1(>=a a θρ;)0()cos 2(2)2(>+=a a θρ ;2cos 2)3(2(双纽线)θρ=抛物体的体积。
轴旋转,计算所得旋转所围成的图形绕及直线把抛物线x x x x ax y )0(4.12002>==体的体积。
旋转轴旋转,计算所得两个轴及所围成的图形,分别绕由y x y x x y 0,2,.133===14.求下列已知曲线所围成的图形,按指定的轴旋转所产生的旋转体的体积: ;,0,,0)1(轴绕与x y a x x axcha y ====;,2sin )2(轴绕与x xy x y π== ;,)20(cos sin )3(轴绕与x x x y x y π≤≤==;0,2,ln )4(轴绕与y y x x y === ;0,2)5(2轴绕与y y x y x x y ==-=;,16)5()6(22轴绕y y x =+-。
产生的旋转体的体积旋转轴绕轴所围的图形处的切线和及其在求由抛物线x x x y )2,0()1(4.152-=积。
轴旋转所得旋转体的体所围图形绕求x y x y x 2223,4.16≥≤+求其体积。
,图面都是等边三角形为底,垂直于长轴的截一立体以椭圆)26(125100.1722-≤+y x体体积。
面都是等边三角形的立一条固定直径的所有截的圆,而垂直于底面上求底面是半径为R .18的一段弧的长度。
上相应于计算曲线83ln .19≤≤=x x y的长度。
的一段弧上相应于计算曲线)36(31)3(3.20-≤≤-=x x xy 的一段弧长。
到相应于求对数螺线ϕθθρθ===0.21a e的一段弧长。
到相应于求曲线34431.22===θθθρ 的一段弧长。
到上自求曲线10)1ln(21arctan .232==⎪⎩⎪⎨⎧+==t t t y tx 的一拱的长度。
上相应于求摆线π20sin ,cos 1.24≤≤-=-=t t t y t x习题 6-2 (B)1.求由下列各组曲线围成的图形的公共部分的面积:;cos 23)1(θρρa a ==与 ;cos 1cos 3)2(θρθρ+==与 ;2cos sin 2)3(2θρθρ==与。
的值定是大于零的常数,试确,其中图的两部分分成面积相等轴所围区域被曲线轴和与假设曲线a a ax y L y x x x y L )46(:)10(1:.22221-=≤≤-=.)3(56.32HR H V -=-π中球缺的体积为图用积分方法证明 ,求铸件的质量。
度是而成的旋转体,铁的密轴旋转围成的图形绕与直线抛物线一铁铸件,其形状为两)/(8.7101101,10.4322cm g y y x y x y =+== 积。
旋转而成的旋转体的体直线;直线轴;轴;绕所围成的图形及求4)4(2)3()2()1(02,.5=====x y y x x y x y。
旋转所成旋转体的体积绕求)0(,.6222>>-=≤+a b b x a y x。
的体积旋转而成的旋转体围成的平面图形绕直线轴和求第一象限内由曲线1.73=-=y y y y x而成的旋转体的体积。
旋转轴所围图形绕直线与(的一拱求由摆线a y x t t a y t t a x 2)20)cos 1(),sin (.8=≤≤-=-=π.)(2)(0,0.9dx x f x y x f y b x a b a⎰≤≤≤≤≤π为体积轴旋转而成的旋转体的绕证明由平面图形的分点坐标。
段长为上求分摆线第一拱的弧在摆线3:1)cos 1(),sin (.10t a y t t a x -=-=长。
所截下的有限部分的弧被圆求抛物线321.11222=+=y x x y 的长度。
截得的一段弧被抛物线计算半立方抛物线3)1(32.12232x y x y =-=的周长。
的弧长等于椭圆证明曲线22)20(sin .1322=+≤≤=y x x x y π整个弧长。
积;轴旋转而成的旋转体体所围成的图形的绕所围成的图形的面积;,或求由星形线)3()2()1()0,sin cos (.1433323232x a t a y t a x a y x >===+.4.)(1)(2)0,0)((,)(.1522R R dx x f x f x b x x f x f y xoy b aππ的球体的表面积为为并利用此公式证明半径积)为(或称为旋转体的侧面面积(称为旋转曲面)的表产生的曲面轴旋转一周绕平面上一段曲线弧利用元素法证明由+≤≤≥=⎰习题 6-3 (A)所作的功。
弹簧拉伸是比例系数),计算把(即)成正比,(单位:与伸长量)(单位:过程中,需要的力由实验知道,弹簧拉伸)(6.1cm k ks F cm s N F =,问需作多少功。
要使蒸汽体积缩小一半变,的蒸汽,设温度保持不的圆柱体内充满压强为,高为直径为)/(10)(80)(20.22cm N cm cm。
时,克服阻力所作的功移至计算物体由与速度的平方成正比,力作直线运动,介质的阻一物体按规律a x x t c x ===0.33多少?第二次时,铁钉又击入击钉所做的功相等,问锤;如果铁锤每次打击铁入木板击第一次时,将铁钉击度成正比,在力与铁钉击入木板的深板,设木板对铁钉的阻用铁锤将一铁钉击入木)(1.4cm ?全吸尽,至少做多少功了水,问把池内的水完半球形水池,其中充满的半径为)(.5m R吸尽,需要做多少功?,若要将水从池口全部,水面离池口有,口径深设一正圆锥形贮水池,)(1)(20)(15.6m m m问至少做多少功?的圆锥形沙堆,,高为,现要堆成一个半径为设沙的比重为)()()/(2.73m h m R m kN g水压力的大小。
平行,试求它每面所受且底边与水面,底在下面没在水中,顶在上离水的三角形薄片,垂直沉,高为一底为)(3)(6)(8.8cm cm cm倍,水面应升高多少?欲使闸门所受的压力加;时,闸门所受的水压力求水面在闸门顶上;,闸门上边平行于水面,高闸门,阔水坝中有一直立的矩形)2()(8)1()(6)(10.9m cm m的引力。
,试求这细棒对质点的质点为单位处有一质量一端垂直距离为的均匀细直棒,在棒的,线密度为一根长为M M m a l μ.10习题 6-3 (B)问所做的功是多少?球的比重是水的两倍,取出,需做多少功?若中与水相同,现将球从水与水面相切,球的比重球沉入水中,球的上部的半径为)(.1m R,问需做多少功?现在要将水抽出,盛满了水,容器,容积为绕其对称轴旋转而成的设有一个由抛物线)(64)(72.2332cm cm x y ππ=的压力增加多少?水面,则水对薄板一侧水面相齐,而底平行于若倒转薄板,使顶点与压力;计算薄板一侧所受的水水比重为底为相齐,薄板的高为没在水中,其底与水面等腰三角形薄片垂直沉)2()1(1,,.3a h。
,求两细杆之间的引力为杆密度,杆密度为,间距离为,位于同一直线上,相均为有两根匀质细杆,长度νμB A a l .4习题 6-4时成本的增加量。
到求产量从的函数为产量某产品的边际成本20001000002.0100)(.1x x P x P +=个单位时的总收入。
个单位,则求再生产若已经生产了个单位时的总收入;求生产,为的变化率(边际收入)个单位时,总收入某产品生产100100)2(50)1()0(100200)(.2≥-='x xx R R x毛利-固定成本提示:净利的毛利和净利。
时,求当,固定成本是,边际成本是是已知某产品的边际收益===-='-='510413)(225)(.30x C x x C x x R时才能获得最大利润。
并问每天生产多少单位,出,求总利润函数元,且产品可以全部售售单价为如果这种产品规定的销单位),求总成本函数(元元,边际成本函数为单位的固定成本为设某种产品每天生产)(18);(/24.0)(20.4x L x C x x C x +='总收入。
利润最大时的总成本与的函数关系式;总利润与产量(万元),求总成本、已知不变成本?最大产量为多少时,总利润本的增量;百台的与总收入与总成百台增加到产量从求百台),(万元百台),边际成本是(万元设某产品的边际收益是)4(1)0()3()2(51)1(/44)(/8)(.5x C xx C x x R =+='-='利润为多少?开发时,该公司所获总停止续开发多少年?并问在试判断该石油公司应连相应的成本率为以年为单位)(时间为(以每年亿元为单位)率已知某石油公司的收入,31)(9)(.63131t t C tt t R +='-='的函数关系。
与价格,求需求量为(边际需求)变化率,已知需求量的最大需求量为的函数,假设该商品的为价格某商品的需求量p Q p Q p Q p ⎪⎭⎫⎝⎛⋅-='313ln 1000)(1000.7 入函数。
,试求需求函数和总收大需求量为,而市场对该商品的最的弹性对价格已知某商品的需求量4004.8ppp Q -=η总习题六一、选择题.)()()(;)()(;)()(;)()(.)(,)(.10dx x f dx x f D dx x f C dx x f B dx x f A A b x a x x f y a b b ab ab a ⎰⎰⎰⎰⎰-====所围成的图形的面积与曲线.)()()(;)]()([)(;)]()([)(;)]()([)(.)(,)(,)(.222222122222212221dx x f x f D dx x f x f C dx x f x f B dx x f x f A V x b x a x x f y x f y b ab ab ab a ⎰⎰⎰⎰----=====ππππ旋转所得旋转体的体积所围图形绕与连续曲线.)2(cos 21)(;2cos 2)(;2cos 2)(;2cos 2)(.)()2cos ()(.340240402022222θθθθθθθθθρππππd D d C d B d A A y x y x ⎰⎰⎰⎰==-=+所围成的面积双纽线.)()(;)()(;)()(;)()(.)(.400dy y H h S D dy y h S C dy y H h S B dy y H h S A W h H S hH H h H -+--+-+=⎰⎰⎰⎰+则所作功的水塔上,为把水全部抽到离池口高的水池装满水,,深为横截面为.)(2)(;)(2)(;)()(;)()(.)(.5202022202dx x a km D dx x a km C dx x a km B dx x a km A k a m l x ll l l⎰⎰⎰⎰++----μμμμμ引力大小为,则质点和细杆之间的,已知引力系数为且到右端的距离为上的质点位于杆的延长线有质量为,的细杆长度为轴上有一线密度为常数二、填空题 ._______22,1.1积为所围成的平面图形的面及曲线==+=y x xx y ._______)0(sin .223为旋转所成旋转体的体积轴轴围成的图形绕与曲线x x x x y π≤≤=米。