一元二次方程应用题分类练习
人教版九年级上第21章《一元二次方程》实际应用题练习含答案

《一元二次方程》实际应用题专项练习(一)1.今年国庆中秋双节同庆,某店推出了莲蓉蛋黄月饼和流心芝士月饼两种月饼,其中莲蓉蛋黄月饼每盒成本15.5元售价40元,流心芝士月饼每盒成本18元售价48元.两种月饼均为整盒出售,不售散装.中秋节前,莲蓉蛋黄月饼和流心芝士月饼共销售了400盒,销售总额为17440元.(1)中秋节前,莲蓉蛋黄月饼卖了多少盒?(2)为迎接双节,中秋当日该店大促销,莲蓉蛋黄月饼“买一送一”(买一盒送一盒)但销售单价不变,其当日销量(不算赠品)达到中秋前售卖的莲蓉蛋黄月饼总销量的;流心芝士月饼每盒销售单价减少,其当日销量比中秋节前流心芝士月饼总销量增加了5a%.中秋当日两种月饼的销售利润为2736元,求a的值.2.某商场销售一批衬衫,平均每天可售出30件,每件盈利50元.为了扩大销售,增加盈利,商场采取了降价措施.经调查发现,衬衫的单价每降1元,商场平均每天可多售出2件.(1)若某天该衬衫每件降价5元,则当天该衬衫的销量为件,当天可获利元;(2)设每件衬衫降价x元,则商场日销售量增加件,每件衬衫盈利元(用含x的代数式表示);(3)如果商场销售这批衬衫要保证每天盈利200元,同时尽快减少库存,那么衬衫的单价应降多少元?3.随着现代互联网技术的广泛应用和快递行业的高速发展,网上购物的人越来越多,“双十一”当天更是成为了全民狂欢的网购节.据统计,某天猫官方旗舰店在2017年和2019年“双十一”当天的订单量分别为20万件和45万件,现假设该旗舰店每年“双十一”当天的订单量增长率相同.(1)求该旗舰店“双十一”当天订单量的年平均增长率;(2)如果该旗舰店的客服平均每人每天最多可以处理0.2万件订单,那么该旗舰店现有的250名客服能否当天完成2020年“双十一”网购节的所有订单?如果不能,请问至少还需要增加多少名客服?4.“新冠”疫情蔓延全球,口罩成了人们的生活必需品.某药店销售普通口罩和N95口罩,今年3月份的进价如表:普通口罩N95口罩进价(元/包)8 20(1)计划N95口罩每包售价比普通口罩售价贵16元,7包普通口罩和3包N95口罩总售价相同,求普通口罩和N95口罩每包售价;(2)按(1)中售价销售一段时间后,发现普通口罩的日均销售量为120包,当每包售价降价1元时,日均销售量增加20包.该药店秉承让利于民的原则,对普通口罩进行降价销售,但要保证当天的利润为320元,求此时普通口罩每包售价.5.“疫情”期间,某小区准备搭建一个面积为12平方米的矩形临时隔离点ABCD,如图所示,矩形一边利用一段已有的围墙(可利用的围墙长度仅有5米),另外三边用9米长的建筑材料围成,为方便进出,在与围墙平行的一边要开一扇宽度为1米的小门EF,求AB的长度为多少米?6.今年某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件.为了促进疫情期间的市民消费,从而扩大销售,商场决定采取适当降价的方式促销.经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?7.如图,在Rt△ABC中,∠B=90°,AB=8cm,BC=10cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,AP=CQ?(2)经过几秒后,△PBQ的面积等于15cm2?8.10月份,是柚子上市的季节,柚子味酸甜,略带苦味,含有丰富的维生素c和大量的营养元素.有健胃补血,降血糖等功效,百果园大型水果超市的红心柚与沙田柚这两种水果很受欢迎,红心柚售价12元/千克,沙田柚售价9元/千克.(1)若第一周红心柚的销量比沙田柚的销量多200千克,要使这两种水果的总销售额不低于6600元,则第一周至少销售红心柚多少千克?(2)若该水果超市第一周按照(1)中红心柚和沙田柚的最低销量销售这两种水果,并决定第二周继续销售这两种水果,第二周红心柚售价降低了a%,销量比第一周增加了a%,沙田柚的售价保持不变,销量比第一周增加了a%,结果这两种水果第二周的总销售额比第一周增加了%,求a的值.9.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.世界卫生组织提出:如果1人传播10人以上而且被传染的人已经确定为新冠肺炎,那么这个传播者就可以称为”超级传播者”.如果某地区有1人不幸成为新冠肺炎病毒的携带者,假设一个病毒携带者每轮传染的人数相同,经过两轮传染后共有81人成为新冠肺炎病毒的携带者.(1)请判断最初的这名病毒携带者是”超级传播者”吗?求他每轮传染的人数;(2)若不加以控制传染渠道,经过3轮传染,新冠肺炎病毒的携带者共有多少人?10.如图,有一道长为10m的墙,计划用总长为54m的篱笆,靠墙围成由六个小长方形组成的矩形花圃ABCD.若花圃ABCD面积为72m2,求AB的长.参考答案1.解:(1)设中秋节前,莲蓉蛋黄月饼卖了x盒,则流心芝士月饼卖了(400﹣x)盒,依题意得:40x+48(400﹣x)=17440,解得:x=220.答:中秋节前,莲蓉蛋黄月饼卖了220盒.(2)依题意得:(40﹣2×15.5)×220×+[48(1﹣)﹣18]×(400﹣220)(1+5a%)=2736,整理得:3a2+25a﹣148=0,解得:a1=4,a2=﹣(不合题意,舍去).答:a的值为4.2.解:(1)30+2×5=40(件),(50﹣5)×40=1800(元).故答案为:40;1800.(2)设每件衬衫降价x元,则商场日销售量增加2x件,每件衬衫盈利(50﹣x)元.故答案为:2x;(50﹣x).(3)设衬衫的单价应降m元,则每件衬衫盈利(50﹣m)元,商场日销售量为(30+2m)件,依题意得:(50﹣m)(30+2m)=2000,整理得:m2﹣35m+250=0,解得:m1=10,m2=25,又∵要尽快减少库存,∴m=25.答:衬衫的单价应降25元.3.解:(1)设该旗舰店“双十一”当天订单量的年平均增长率为x,依题意得:20(1+x)2=45,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).答:该旗舰店“双十一”当天订单量的年平均增长率为50%.(2)45×(1+50%)=67.5(万件).∵0.2×250=50(万件),50<67.5,∴该旗舰店现有的250名客服不能当天完成2020年“双十一”网购节的所有订单. 设需要增加m 名客服,依题意得:0.2×(250+m )≥67.5,解得:m ≥87,又∵m 为正整数,∴m 的最小值为88.答:该旗舰店现有的250名客服不能当天完成2020年“双十一”网购节的所有订单,至少还需要增加88名客服.4.解:(1)设普通口罩每包的售价为x 元,N 95口罩每包的售价为y 元.依题意得:,解得:. 答:普通口罩每包的售价为12元,N 95口罩每包的售价为28元.(2)设普通口罩每包的售价降低m 元,则此时普通口罩每包的售价为(12﹣m )元,日均销售量为(120+20m )包.依题意得:(12﹣m ﹣8)(120+20m )=320,整理得:m 2+2m ﹣8=0,解得:m 1=2,m 2=﹣4(不合题意,舍去),∴12﹣m =10.答:此时普通口罩每包的售价为10元.5.解:设AB =x 米,则BC =(9+1﹣2x )米,根据题意可得,x (10﹣2x )=12,解得x 1=3,x 2=2,当x =3时,AD =4<5,当x =2时,AD =6>5,∵可利用的围墙长度仅有5米,∴AB 的长为3米.答:AB 的长度为3米.6.解:设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x 元,由题意,得(360﹣x﹣280)(5x+60)=7200,解得:x1=8,x2=60.∵有利于减少库存,∴x=60.答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.7.解:(1)设经过x秒后,AP=CQ,则AP=xcm,CQ=(10﹣2x)cm,依题意,得:x=10﹣2x,解得:x=.答:经过秒后,AP=CQ.(2)设经过y秒后,△PBQ的面积等于15cm2,则BP=(8﹣y)cm,BQ=2ycm,依题意,得:(8﹣y)×2y=15,化简,得:y2﹣8y+15=0,解得:y1=3,y2=5.答:经过3秒或5秒后,△PBQ的面积等于15cm2.8.解:(1)设第一周销售红心柚x千克.则沙田柚(x﹣200)千克,根据题意得:12x+9(x﹣200)≥6600,解得:x≥400.答:第一周至少销售红心柚400千克;(2)根据题意得:12(1﹣a%)×400(1+a%)+9×200(1+a%)=6600(1+%),∴a1=45,a2=0(舍去).答:a的值为45.9.解:(1)设每人每轮传染x人,依题意,得:1+x+(1+x)•x=81,解得:x1=8,x2=﹣10(不合题意,舍去),∵8<10,∴最初的这名病毒携带者不是“超级传播者”;(2)81×(1+8)=729(人),答:若不加以控制传染渠道,经过3轮传染,共有729人成为新冠肺炎病毒的携带者.10.解:设AB的长是xm,则BC的长是(18﹣x)m.根据题意,得x(18﹣x)=72,解这个方程,得x1=6,x2=12,当x=6时,18﹣x=12>10(不合题意,舍去).当x=12时,18﹣x=6符合题意.答:AB的长是12m.《一元二次方程》实际应用题专项练习(二)1.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?2.全球疫情爆发时,医疗物资极度匮乏,中国许多企业都积极的宣布生产医疗物资以应对疫情,某工厂及时引进了一条口罩生产线生产口罩,开工第一天生产500万个,第三天生产720万个,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是1500万个/天,若每增加1条生产线,每条生产线的最大产能将减少50万个/天.①现该厂要保证每天生产口罩6500万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?②是否能增加生产线,使得每天生产口罩15000万件,若能,应该增加几条生产线?若不能,请说明理由.3.万州区某民营企业生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多150元.(1)求甲、乙商品的出厂单价分别是多少元?(2)为促进万州经济持续健康发展,为商家搭建展示平台,为行业创造交流机会,2019年万州区举办了多场商品展销会.外地一经销商计划购进甲商品200件,购进乙商品的数量是甲的4倍,恰逢展销会期间该企业正在对甲商品进行降价促销活动,甲商品的出厂单价降低了a%,该经销商购进甲的数量比原计划增加了2a%,乙的出厂单价没有改变,该经销商购进乙的数量比原计划减少了,结果该经销商付出的总货款与原计划的总货款恰好相同,求a的值(a>0).4.某村计划建造如图所示的矩形蔬菜温室,要求长为24m,宽为12m,在温室内,沿前侧内墙保留2m宽的空地,其它三侧内墙各保留等宽的通道.当通道的宽为多少时,蔬菜种植区域的面积是210m2?5.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长沙某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递总件数分别为10万件和14.4万件,现假定该公司每月投递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投0.5万件,那么该公司现有的29名快递投递员能否完成今年6月份的快递投递任务?如果不能,请问需要至少增加几名业务员?6.温润有度,为爱加温.近年来设计精巧、物美价廉的暖风机逐渐成为人们冬天必备的“取暖神器”,今年11月下旬某商场计划购进A、B两种型号的暖风机共900台,每台A型号暖风机售价为600元,每台B型号暖风机售价为900元.(1)若要使得A、B两种型号暖风机的销售额不低于69万元,则至多购进多少台A型号暖风机?(2)由于质量超群、品质卓越,11月下旬购进的A、B两种型号的暖风机全部售完.该商场在12上旬又购进了A、B两种型号的暖风机若干台,并且进行“双12”促销活动,每台A型号暖风机的售价比其11月下旬的售价优惠a%,A型号暖风机12月上旬的销售量比其在(1)问条件下的最高购进量增加a%,每台B型号暖风机的售价比其11月下旬的售价优惠a%,B型号暖风机12月上旬的销售量比其在(1)问条件下的最低购进量增加a%,A、B两种型号的暖风机在12月上旬的销售额比(1)问中最低销售额增加了a%,求a的值.7.柚子糖度高、酸味低,有益身体健康,深受大家喜爱.某水果店在去年8月份购进福建蜜柚和泰国青柚共900个,福建蜜柚进价为6元/个,泰国青柚进价为20元个,两种柚子的总进价不超过12400元.(1)该水果店去年8月份购进福建蜜柚最少多少个?(2)今年8月份,该水果店用和去年8月份相同的进价购进两种柚子,福建蜜柚购进数量为去年8月份购进数量的最小值,售价为16元/个.泰国青柚购进数量为去年8月份购进数量的最大值,售价为30元/个,两种柚子全部卖出.今年9月份,该水果店购进与上个月数量相同,进货单价相同的福建蜜柚.为了进一步占领市场份额,水果店对福建蜜柚进行了降价促销,它的售价在上个月的基础上先降价a%,再“买三送一”(每买3个就免费赠送1个,即4个装成一袋,一袋以3个的价格出售,但消费者只能整袋购买).受各种因素的影响,与上个月相比,泰国青柚的进价下降40%,进货量下降a%,售价上涨2a%.两种柚子卖完后,该水果店今年9月份销售两种柚子的总利润比上个月上涨,求a的值.8.为实现“先富带动后富,从而达到共同富裕”,某县为做好“精准扶贫”,2017年投入资金1000万元用于教育扶贫,以后投入资金逐年增加,2019年投入资金达到1440万元.(1)从2017年到2019年,该县投入用于教育扶贫资金的年平均增长率是多少?(2)假设保持这个年平均增长率不变,请预测一下2020年该县将投入多少资金用于教育扶贫?9.草根学堂院内有一块长30m,宽20m的矩形空地,准备将其建成一个矩形花坛,要求在花坛中修建三条长方形的矩形小道(如图),剩余的地方种植花草,要使种植花草的面积为532m2,那么小道的宽度应为多少米?(注:所有小道宽度相等)10.今年8月双福国际农贸市场某水果批发商用2.2万元购得“象牙芒”和“红富士苹果”共400箱,其中,“象牙芒”、“红富士”的数量比为5:3.已知每箱“象牙芒”的售价是每箱“红富士”的售价的2倍少10元,预计3月可全部销售完.(1)该批发商想通过本次销售至少盈利8000元,则每箱“象牙芒”至少卖多少元?(总利润=总销售额﹣总成本)(2)实际销售时,受中央“厉行节约”号召的影响,在保持(1)中最低售价的基础上,“象牙芒”的销售下降了%,售价下降了a%;“红富士”的销售量下降了a%,但售价不变.结果导致“象牙芒”、“红富士”的销售总额相等.求a的值.参考答案1.解:(1)设y与x的函数关系式为y=kx+b(k≠0),将(22,36),(24,32)代入y=kx+b,得:,解得:,∴y与x的函数关系式为y=﹣2x+80(20≤x≤28).故答案为:y=﹣2x+80(20≤x≤28).(2)依题意,得:(x﹣20)(﹣2x+80)=150,整理,得:x2﹣60x+875=0,解得:x1=25,x2=35(不合题意,舍去).答:每本纪念册的销售单价是25元.2.解:(1)设每天增长的百分率为x,依题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每天增长的百分率为20%;(2)①设应该增加m条生产线,则每条生产线的最大产能为(1500﹣50m)万件/天,依题意,得:(1+m)(1500﹣50m)=6500,解得:m1=4,m2=25,又∵在增加产能同时又要节省投入,∴m=4.答:应该增加4条生产线;②设增加a条生产线,则每条生产线的最大产能为(1500﹣50a)万件/天,依题意,得:(1+a)(1500﹣50a)=15000,化简得:a2﹣29a+270=0,∵△=(﹣29)2﹣4×1×270=﹣239<0,方程无解.∴不能增加生产线,使得每天生产口罩15000万件.3.解:(1)设甲商品的出厂单价是x元/件,则乙商品的出厂单价是x元/件,根据题意得:3x﹣2×x=150,解得:x=90,∴x =60.答:甲、乙商品的出厂单价分别是90、60元.(2)由题意得:, 解得:a 1=0(舍去),a 2=15.答:a 的值为15.4.解:设通道的宽为xm ,则蔬菜种植区域为长(24﹣2﹣x )m ,宽(12﹣2x )m 的矩形, 依题意,得:(24﹣2﹣x )(12﹣2x )=210,整理,得:x 2﹣28x +27=0,解得:x 1=1,x 2=27(不合题意,舍去).答:当通道的宽为1m 时,蔬菜种植区域的面积是210m 2.5.解:(1)设该快递公司投递总件数的月平均增长率为x ,根据题意,得10(1+x )2=14.4解得x 1=0.2,x 2=﹣2.2(不符合题意,舍去),答:该快递公司投递总件数的月平均增长率为20%.(2)由(1)得,14.4×1.2=17.28(万件),29×0.5=14.5,14.5<17.28,故不能完成任务.因为(17.28﹣14.5)÷0.5=5.56,所以还需要至少增加6名业务员.答:需要至少增加6名业务员.6.解:(1)设购进x 台A 型号暖风机,则购进(900﹣x )台B 型号暖风机, 依题意,得:600x +900(900﹣x )≥690000,解得:x ≤400.答:至多购进400台A 型号暖风机.(2)依题意,得:600(1﹣a %)×400(1+a %)+900(1﹣a %)×(900﹣400)(1+a %)=690000(1+a%),整理,得:150a﹣12a2=0,解得:a1=12.5,a2=0(不合题意,舍去).答:a的值为12.5.7.解:(1)设该水果店去年8月份购进福建蜜柚x个,则购进泰国青柚(900﹣x)个,依题意,得:6x+20(900﹣x)≤12400,解得:x≥400.答:水果店去年8月份购进福建蜜柚最少400个.(2)由(1)可知:今年8月份,该水果店购进福建蜜柚400个、泰国青柚500个.依题意,得:[16(1﹣a%)×﹣6]×400+[30(1+2a%)﹣20×(1﹣40%)]×500(1﹣a%)=[(16﹣6)×400+(30﹣20)×500]×(1+),整理,得:90a﹣3.6a2=0,解得:a1=25,a2=0(不合题意,舍去).答:a的值为25.8.解:(1)设该地投入教育扶贫资金的年平均增长率为x,根据题意,得:1000(1+x)2=1440,解得:x=0.2或x=﹣2.2(舍),答:从2017年到2019年,该地投入教育扶贫资金的年平均增长率为20%;(2)2020年投入的教育扶贫资金为1440×(1+20%)=1728万元.9.解:设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532.整理,得x2﹣35x+34=0.解得,x1=1,x2=34.∵34>20(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.10.(1)设象牙芒有5x箱,则红富士有3x箱,根据题意得:5x+3x=400,解得x=50,则象牙芒有250箱,红富士有150箱.设每箱象牙芒y元,则250(2y﹣10)+150y﹣22000≥8000.解得:y≥50,∴2y﹣10≥90答:每箱“象牙芒”至少卖90元;(2)根据题意得:250(1﹣a%)•90(1﹣a%)=150(1﹣a%)•50,令t=a%,整理,得:4t2﹣5t+1=0,……(7分)解得:t=1(不合题意,舍去)或t=0.25,∴a=25.答:a的值为25.。
一元二次方程应用题分类讲练

开启 智慧
销售问题
2.某商店从厂家以每件21元的价格购进一批商品,
若每件商品售价为x元,则每天可卖出(350-10x)件, 但物价局限定每件商品加价不能超过进价的20%. 商店要想每天赚400元,需要卖出多少年来件商品? 每件商品的售价应为多少元?
一元二次方程应用
有关“动点”的面积问题
例1 在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的
2
单循环比赛的场数=队数乘以队数减1再除以2
1、要组织一场篮球联赛,赛制为单循环形式,即每两队之间比赛一场, 计划安排15场比赛,应邀请多少个球队参加比赛?
解:设应邀请x个球队参加比赛,列式得:
单循环比赛场数
=15
单循环比赛的场数=队数乘以队数减1再除以2
xx 1 15
2
x2 x 30 0
解:设每轮传染中平均一个人传染了x个人.
1+x+x(1+x)=121
x x 解方程,得
__1_0__,
1
2 __-1_2___(.不合题意,舍去)
答:平均一个人传染了____1_0___个人.
一元二次方程应用(3)
几何与方程
快乐学习 1
几何与方程
例1:一块四周镶有宽度相等的花边的镜框如下图, 它的长为8cm,宽为5cm.如果镜框中央长方形图案的
x
当x102时,352x15. 符合题意.
答:自行车棚的长和宽分别为15米和10米.
常见的图形有下列几种:
练习:
3. (2003年,舟山)如图,有长为24米的篱笆,一面利 用墙(墙的最大可用长度a为10米),围成中间隔有 一道篱笆的长方形花圃。设花圃的宽AB为x米,面积 为S米2, (1)求S与x的函数关系式;(2)如果要围成面积为 45米2的花圃,AB的长是多少米?
一元二次方程的应用题分类练习(超全)

一元二次方程的应用类型一:增长率☞考点说明:平均增长率是指在上一个时间点的基础上增加的量占上一个时间点总量的百分之几,在利用平均增长率处理一元二次方程问题时,要注意单位“1”的变化.【易】1.某农机厂4月份生产零件50万个,第二季度共生产零件182万个.设该厂5,6月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【易】2.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20%B.25%C.50%D.62.5%【易】3.某工厂计划用两个月把产量提高21%,如果每月比上月提高的百分数相同,求这个百分数.若设每月提高的百分数为x,原产量为a,可列方程为a(1+x)2=a(1+21%),那么解此方程后依题意作答,正确的是()A.这个百分数为2.1%或10%B.x1=2.1,x2=0.1C.x1=﹣2.1,x2=0.1D.这个百分数为10%【易】4.红光机械厂九月份生产零件50万个,十一月份生产零件72万个,设该机械厂九、十月份生产零件数量的月平均增长率为x,则可列方程为()A.50(1+x)2=72B.50(1﹣x)2=72C.72(1﹣x)2=50D.50×2(1+x)=72【中】5.据统计,某小区2011年底拥有私家车125辆,2013年底私家车的拥有量达到180辆.(1)若该小区2011年底到2014年底私家车拥有量的年平均增长率相同,则该小区到2014年底私家车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.类型二:降低率☞考点说明:平均降低率是指在上一个时间点的基础上减少的量占上一个时间点总量的百分之几,在利用平均降低率处理一元二次方程问题时,要注意单位“1”的变化.【易】1.兰州市政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x,由题意可列方程为______.【易】2.某厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,降低到了每件160元,平均每月降低率为()A.15%B.20%C.5%D.25%【易】3.某药品原价每盒25元,两次降价后,每盒降为16元,则平均每次降价的百分率是()A.10%B.20%C.25%D.40%【易】4.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.设这种药品成本的年平均下降率为x,则x为()A.3%B.6%C.8%D.10%一元二次方程的应用——数字问题类型一:位值原理的应用☞考点说明:常见的数字问题有两类:一类是应用位值原理表示数字的大小,并列出方程;另一类只需要用到数字之间的关系,比较直观.【易】1.有一个三位数,它的个位数字比十位数字大3,十位数字比百位数字小2,三个数字的平方和的9倍比这个三位数小20,求这个三位数.【易】2.已知某两位数,个位数字与十位数字之和为12,个位数字与十位数字之积为32,求这个两位数.类型二:数字关系的直接应用☞考点说明:若在数字问题中不涉及到各个数位上的数字的特征,而只已知某几个数之间的关系时,一般不需要用到位值原理,此时只需要直接设未知数表示出各个数字之间的关系即可.【易】1.两连续偶数的积是120,求这两个数.【中】2.五个连续整数,前三个数的平方和等于后两个数的平方和,求这五个整数.一元二次方程的应用——几何问题类型一:面积公式的直接应用☞考点说明:在处理面积问题时常会用到一些典型图形的面积公式.【易】1.某学校准备修建一个面积为200m2的矩形花圃,它的长比宽多10m,设花圃的宽为xm,则可列方程为()A.x(x-10)=200B.2x+2(x-10)=200C.x(x+10)=200D.2x+2(x+10)=200【易】2.如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为xm,从图(2)的思考方式出发列出的方程是__________.【易】3.如图,在一块长为22m.宽为17m的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形一边平行),剩余部分种上草坪,使草坪面积为300m2.若设道路宽为xm,则根据题意可列方程为________.A.17B.26C.30D.13【易】5.从正方形铁片上截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是()A.8cm B.64cm C.8cm2D.64cm2【易】6.要用一根铁丝围成一个面积为120cm2的长方形,并使长比宽多2cm,则长方形的长是______cm.【易】7.如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动__________m.【易】8.若一直角三角形的三条边长为三个连续偶数,且面积为24cm2,则此三角形的三条边长分别为__________.【易】9.把一块长与宽之比为2∶1的铁皮的四角各剪去一个边长为10cm的小正方形,折起四边,可以做成一个无盖的盒子.如果这个盒子的容积是1500cm3,那么铁皮的长和宽各是多少?若设铁皮的宽为x cm,则正确的方程是()A.(2x-20)(x-20)=1500B.(2x-10)(x-20)=1500C.10(2x-20)(x-20)=1500D.10(x-10)(x-20)=1500【易】10.如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140D.(40﹣2x)(32﹣2x)=1140【中】11.一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.类型二:动点问题☞考点说明:动点问题是与几何相关的类型题中的难点问题,一般需要列出动点运动相关的表达式,在根据方程的解法解出所需的值即可.【难】1.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答问题:当t为何值时,△PBQ是直角三角形?【难】2.已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于2cm?(3)在(1)中,△PQB的面积能否等于7cm2?说明理由.【难】3.如图,已知A、B、C、D为长方形的四个顶点,AB=16cm,AD=6cm,动点P、Q 分别从点A、C同时出发,点P以3cm/s的速度沿AB至BC移动,一直到点C为止,点Q 以2cm/s的速度向点D移动.问:(1)P、Q两点从出发开始几秒时,四边形PBCQ的面积是33平方厘米?(2)P、Q两点从出发开始几秒时,AP+DQ等于长方形ABCD周长的?一元二次方程的应用——销售问题☞考点说明:最重要的是两种利润公式的应用及折扣公式(即降价公式)的应用.【易】1.某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施.调查发现,如果这种贺年卡的售价每降低0.1元,那么平均每天可多售出100张.商场要想平均每天盈利120元,则每张贺年卡应降价__________元.【易】2.某商品原价200元,连续两次降价a%后,售价为148元,下列所列方程正确的是() A.200(1+a%)2=148B.200(1-a%)2=148C.200(1-2a%)=148D.200(1-a2%)=148【易】3.某商店出售一种商品,若每件10元,则每天可销售50件,售价每降低1元,可多买6件,要使该商品每天的销售额(总售价)为504元,设每件降低x元,则可列方程为()A.(50+x)(10﹣x)=504B.50(10﹣x)=504C.(10﹣x)(50+6x)=504D.(10﹣6x)(50+x)=504【易】4.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为()A.8%B.18%C.20%D.25%【中】5.某超市将进价为40元的商品按50元出售,每天可卖500件.如果这种商品每涨价1元,那么其销售量就减少10件.超市若靠卖这种商品每天赚得8000元的利润,应把这种商品的售价定为每件多少元?【中】6.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?【中】7.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【中】8.某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?一元二次方程的应用——握手问题类型一:握手类问题☞考点说明:握手问题是一类问题,要注意其本质特点的分析,其典型特点是总体中的其中一个个体与其他的个体都有一次活动.【易】1.新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺年卡,则全组送贺卡共72张,此小组人数为()A.7B.8C.9D.10【易】2.新年来临之际,某班同学向班上其他同学互赠新年贺卡,全班共互赠贺卡2980张,设全班有x名学生,那么根据题意可列方程()A.x(x﹣1)=2980B.x(x﹣1)=2980C.x(x﹣1)=2980D.x(x+1)=2980【易】3.一个QQ群里有若干个好友,每个好友都分别给群里其他好友发送了一条消息,这样共有870条消息,求该群共有多少个好友.类型二:比赛问题中的“握手”模型☞考点说明:比赛中的循环赛是典型的“握手问题”.【易】1.某市工会组织了一次篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛.这次参赛队的数目为()A.12B.11C.9D.10【易】2.某市要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【易】3.周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?一元二次方程的应用——传播问题☞考点说明:病毒传播的特点是每次增长的基数都在发生变化.【易】1.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91.设每个枝干长出x个小分支,则x满足的关系式为()A.x+x2=91B.1+x2=91C.1+x+x2=91D.1+x(x﹣1)=91【易】2.有一个人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,经过三轮传染后共有多少人患流感?【中】3.2014年西非埃博拉病毒疫情是自2014年2月开始爆发于西非的大规模病毒疫情,截至2014年12月02日,世界卫生组织关于埃博拉疫情报告称,几内亚、利比里亚、塞拉利昂、马里、美国以及已结束疫情的尼日利亚、塞内加尔与西班牙累计出现埃博拉确诊、疑似和可能感染病例17290例,其中6128人死亡.感染人数已经超过一万,死亡人数上升趋势正在减缓,在病毒传播中,每轮平均1人会感染x个人,若1个人患病,则经过两轮感染就共有81人患病.(1)求x的值;(2)若病毒得不到有效控制,三轮感染后,患病的人数会不会超过700人?一元二次方程的应用——存款利息问题☞考点说明:注意利息的计算公式及计算利息的方式.【易】1.孙老师前年存了5000元一年期的定期储蓄,到期后自动转存,今年到期后,共取得5300元,求这种储蓄的年利率.(精确到0.1%).【易】2.小红的妈妈前年存了5000元一年期的定期储蓄、到期后自动转存、今年到期扣除利息税(利息税为利息的20%)共得5145元,求这种储蓄的年利率.(精确到0.1%)【中】3.某公司向工商银行贷款30万元,这种贷款要求公司在两年到期时,一次性还清本息,利息是本金的12%,该公司用这笔贷款经营,两年到期时,除还清贷款的本金和利息外,还盈余9.6万元,若经营期间每年与上一年相比资金增长的百分数相同,求这个百分数.。
初三数学一元二次方程常考应用题型附答案解析

初三数学一元二次方程常考应用题型附答案解析一、列一元二次方程解决率类问题例1、今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元。
假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 (B.2500(1+x)2=3500C.2500(1+x%)2=3500D.2500(1+x)+2500(1+x)2=3500【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.例2、为落实素质教育要求,促进学生全面发展,某市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元。
则该学校为新增电脑投资的年平均增长率是,从2009年到2011年,该中学三年为新增电脑共投资万元。
【解答】解:设该学校为新增电脑投资的年平均增长率是x11(1+x)2=18.59x=30%(则该学校为新增电脑投资的年平均增长率是30%11×(1+30%)=14.3万元11+14.3+18.59=43.89万元故答案为:30%;43.89练习1、股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。
已知一只股票某天跌停,之后两天时间又涨回到原价。
若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=【解答】解:设平均每天涨x,则90%(1+x)2=1,即(1+x)2=,故选B。
(2、某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.﹣220%D.30%【解答】解:设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2解得:x1=0.2=20%,x2=﹣2.2(舍去),故每年投资的增长率为为20%,故选:A3、随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆。
一元二次方程试题及实际应用题总括

一元二次方程练习题一、填空1. 一元二次方程 化为一般形式为: , 二次项系数为: , 一次项系数为: , 常数项为: 。
2. 关于x 的方程 ,当 时为一元一次方程;当时为一元二次方程。
3. 已知直角三角形三边长为连续整数, 则它的三边长是 。
4. ; 。
5. 直角三角形的两直角边是3︰4, 而斜边的长是15㎝, 那么这个三角形的面积是 。
6. 若方程 的两个根是 和3, 则 的值分别为 。
7. 若代数式 与 的值互为相反数, 则 的值是 。
8. 方程 与 的解相同, 则 = 。
9. 当 时, 关于 的方程 可用公式法求解。
二、10. 若实数 满足 , 则 = 。
三、11.若 , 则 = 。
四、12.已知 的值是10, 则代数式 的值是 。
五、选择1. 下列方程中, 无论取何值, 总是关于x 的一元二次方程的是( )(A )02=++c bx ax (B )x x ax -=+221(C )0)1()1(222=--+x a x a (D )0312=-+=a x x 2. 若 与 互为倒数, 则实数 为( )(A )±21(B )±1 (C )±22 (D )±2 3. 若 是关于 的一元二次方程 的根, 且 ≠0, 则 的值为( )(A )1- (B )1 (C )21- (D )21 4. 关于 的一元二次方程 的两根中只有一个等于0, 则下列条件正确的是( )(A )0,0==n m (B )0,0≠=n m (C )0,0=≠n m (D )0,0≠≠n m5. 关于 的一元二次方程 有实数根, 则( )(A )k <0 (B )k >0 (C )k ≥0 (D )k ≤06. 已知 、 是实数, 若 , 则下列说法正确的是( )(A )x 一定是0 (B )y 一定是0 (C )0=x 或0=y (D )0=x 且0=y7. 若方程 中, 满足 和 , 则方程的根是( )(A )1, 0 (B )-1, 0 (C )1, -1 (D )无法确定六、解方程1. 选用合适的方法解下列方程(1))4(5)4(2+=+x x (2)x x 4)1(2=+(3)22)21()3(x x -=+ (4)31022=-x x四、解答题已知等腰三角形底边长为8, 腰长是方程 的一个根, 求这个三角形的腰。
九年级数学一元二次方程应用题专项练习

九年级数学一元二次方程应用题专项练习 类型一:传播问题 1. 某种植物的主干长出a 个支干,每个支干又长出同样数目的小分支,则主干、支干和小分支的总数为 2.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,求每个枝干长出多少小分支? 3.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? 4.有一人患了流感,进过两轮传染后共有64人患了流感。
(1) 求每轮传染中平均一个人传染了几个人; (2) 如果不及时控制,第三轮又有多少人被传染? 5.某养鸡场突发流感疫情,一只带病毒的小鸡经过两天的传染后,使鸡场共有169只小鸡感染患病,在每一天的传染中平均一只小鸡传染了几只小鸡? 6.某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24 000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌. (1)每轮分裂中平均每个有益菌可分裂出多少个有益菌? (2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?类型二:握手问题:分析:n 个人见面,任意两个人都要握一次手。
一个人握手(n-1) 次,n 个人握手n(n-1)次,是单项问题,甲与乙握手同乙与甲握手应算作一次,故总共握手 次。
赠卡问题:n 个人相互之间送卡片,送卡片的时候,你送我一张,我也要送你一张,是双项问题,一个人送(n-1)张,n 个人既全班送n(n-1)张。
1. 参加一次联欢会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?学校:班别:姓名:学号:2.要组织一次篮球联赛,赛制为单循环形式(每两队之间都比赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?3.线段AB上有n个点(含端点),问线段AB上共有多少条线段?4.一个n边形,共有多少条对角线?n边形的所有对角线与它的各边共形成多少个三角形?5.某班同学毕业时都将自己的照片向全班其它同学各送一张表示留念,全班共送了1035张照片,那么全班有多少位学生?三、增长率问题1.小明学习非常认真,学习成绩直线上升,第一次月考数学成绩是80分,第二次月考增长了10%,第三次月考又增了10%,问他第三次数学成绩是多少?2.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1-2x)=16 C.16(1+x)2=25 D.25(1-x)2=163.某厂今年一月的总产量为500万元,三月的总产量为720万元,设平均每月增长率是x,列方程( )A.500(1+x)2=720B. 500 (1+x2)=720C.720(1-2x)=500D.720(1+x)2=5004.某经济开发区今年一月份工业产值达50亿元,三月份产值为72亿元,问二月、三月平均每月的增长率是多少?5. 某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.6. 某市为争创全国文明卫生城,2018年市政府对市区绿化工程投入的资金是2000万元,2020年投入的资金是2420万元,且从2018年到2020年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2022年需投入多少万元?四、一元二次方程与面积问题1. 如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为多少?2.某校九年级6个班的学生在学校矩形操场上举行庆新年的联谊活动,学校划分6个全等的矩形场地分给各班级之间留4米宽的过道(如图所示),已知操场的长是宽的2倍,6个班级所占场地面,求学校操场的宽为多少米.积的总和是操场面积的9163.在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?4.在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动,问几秒后△PBQ的面积等于8 m2?5.如图,某校准备一面利用墙,其余—面用篱笆围成一个矩形花辅ABCD.已知旧墙可利用的最大长度为13 m,篱笆长为24 m,设垂直于墙的AB边长为xm.(1)若围成的花圃面积为70m 2时,求BC的长;(2)如图,若计划将花圃中间用一道篱笆隔成两个小矩形,且花圃面积为78 m2,请你判断能否围成这样的花圃?如果能,求BC的长;如果不能,请说明理由.五、一元二次方程与销售问题1. 某果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个,如果要使产量增加15.2%,那么应多种多少棵桃树?2.某商场购进了一批单价为100元的名牌衬衫,当销售价为150元时,平均每天可售出20件,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果衬衫单价每降价1元,商场平均每天可多售出4件,另外,这批衬衫平均每天要扣除其它成本50元,若商场平均每天盈利2750元,衬衫单价应定为多少元?3. 某旅游景点为了吸引游客,推出的团体票收费标准如下:如果团体人数不超过25人,每张票价150元,如果超过25人,每增加1人,每张票价降低2元,但每张票价不得低于100元,阳光旅行社共支付团体票价4800元,则阳光旅行社共购买多少张团体票.4.某品牌童装平均每天可售出20件,每件盈利40元.为了迎接国庆,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?5.某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元。
湘教版九年级数学上学期(第一学期)《一元二次方程》应用题归类练习及答案解析.docx
(新)湘教版九年级数学上册 一元二次方程 应用题归类练习前言:(新)湘教版九年级数学上册一元二次方程的应用主要讲了三种类型的应用题:①增长率问题,引例(动脑筋)和例1。
②销售、利润问题,例2。
③几何图形的面积与动点移动形成的几何图形的面积,引例(动脑筋)例3,例4。
复习题中还出现了数字方面的应用题。
无论哪一种题型都离不开教材第50页的议一议,要建立好一元二次方程的模型,才能去很好的解一元二次方程。
在这里把(新)湘教版九年级数学上册一元二次方程的应用归一下类,供大家参考!一、 增长率问题:1、某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为7600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为 .2、2015年1月20日遵义市政府工作报告公布:2013年全市生产总值约为1585亿元,经过连续两年增长后,预计2015年将达到2180亿元.设平均每年增长的百分率为x ,可列方程为 .3、某机械厂七月份生产零件50万个,第三季度生产零件196万个,如果每月的平均增长率x 相同,则下列方程正确的是( )A.250(1)196x +=B. 25050(1)196x ++=C.()()250501501196+x x +++=D. ()()505015012196+x x +++=4、满洲里市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?5、全民健身和医疗保健是社会普遍关注的问题,2014年,某社区共投入30万元用于购买健身器材和药品.(1)若2014年社区购买健身器材的费用不超过总投入的,问2014年最低投入多少万元购买药品?(2)2015年,该社区购买健身器材的费用比上一年增加50%,购买药品的费用比上一年减少,但社区在这两方面的总投入仍与2014年相同.①求2014年社区购买药品的总费用;②据统计,2014年该社区积极健身的家庭达到200户,社区用于这些家庭的药品费用明显减少,只占当年购买药品总费用的,与2014年相比,如果2015年社区内健身家庭户数增加的百分比与平均每户健身家庭的药品费用降低的百分比相同,那么,2015年该社区用于健身家庭的药品费用就是当年购买健身器材费用的,求2015年该社区健身家庭的户数.二、销售、利润问题:6、新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x元,可列方程为.7、百货大楼服装柜销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十•一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要使平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?请先填空后再列方程求解:设每件童装降价元,那么平均每天就可多售出件,现在一天可售出件,每件盈利元.8、水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?9、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?10、某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把化简后的结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.11、随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?12、某公司生产的商品的市场指导价为每件150元,公司的实际销售价格可以浮动x个百分点(即销售价格=150(1+x%)),经过市场调研发现,这种商品的日销售量y(件)与销售价格浮动的百分点x之间的函数关系为y=﹣2x+24.若该公司按浮动﹣12个百分点的价格出售,每件商品仍可获利10%.(1)求该公司生产销售每件商品的成本为多少元?(2)当实际销售价格定为多少元时,日销售利润为660元?(说明:日销售利润=(销售价格一成本)×日销售量)(3)该公司决定每销售一件商品就捐赠a元利润(a≥1)给希望工程,公司通过销售记录发现,当价格浮动的百分点大于﹣2时,扣除捐赠后的日销售利润随x增大而减小,直接写出a的取值范围.三、面积、动点问题:13、在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶上宽度相同的金色纸边,制成一幅矩形挂图(如图②),使整个挂图的面积是80平方分米,设金色纸边宽为x分米,可列方程为.14、在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400cm2,设金色纸边的宽为xcm,则可列方程.15、如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?16、如图,长方形ABCD(长方形的对边相等,每个角都是90°),AB=6cm,AD=2cm,动点P、Q分别从点A、C同时出发,点P以2厘米/秒的速度向终点B移动,点Q以1厘米/秒的速度向D移动,当有一点到达终点时,另一点也停止运动.设运动的时间为t,问:(1)当t=1秒时,四边形BCQP面积是多少?(2)当t为何值时,点P和点Q距离是3cm?(3)当t= 以点P、Q、D为顶点的三角形是等腰三角形.(直接写出答案)17、已知:如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间t(s),解答下列各问题:(1)经过秒时,求△PBQ的面积;(2)当t为何值时,△PBQ是直角三角形?(3)是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出t的值;不存在请说明理由.18、如图所示,在△ABC中∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度运动,点Q从点B开始沿BC边向点C以2cm/s的速度运动.(1)如果P、Q分别从A、B同时出发3秒,则四边形APQC的面积是.(2)如果P、Q分别从A、B同时出发,经过几秒钟,使S△PBQ=8cm2.(3)如果P、Q分别从A、B同时出发,经过几秒钟后,以P、Q、B三点为顶点的△与△ABC相似?19、如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q 分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP= 6cm,BQ= 12cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于10cm2?(4)经过几秒时△BPQ的面积达到最大?并求出这个最大值.四、数字问题:20、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片.如果全班有x名学生,根据题意,列出方程为.21、根据题意,列出方程:已知某两位数,个位数字与十位数字之和为12,个位数字与十位数字之积为32,求这个两位数;五、行程问题:22、“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m小时,求m的值.一元二次方程应用题归类练习参考答案:1、8100×(1﹣x)2=7600 .2、1585(1+x)2=2180 .3、C4、解:(1)设平均每次降价的百分率是x,根据题意列方程得,5000(1﹣x)2=4050,解得:x1=10%,x2=1.9(不合题意,舍去);答:平均每次降价的百分率为10%.(2)方案一的房款是:4050×100×0.98+3600=400500(元);方案二的房款是:4050×100﹣1.5×100×12×2=401400(元)∵400500元<401400元.5、解:(1)设2014年购买药品的费用为x万元,根据题意得:30﹣x≤×30,解得:x≥10,则2014年最低投入10万元购买药品;(2)①设2014年社区购买药品的费用为y万元,则购买健身器材的费用为(30﹣y)万元,2015年购买健身器材的费用为(1+50%)(30﹣y)万元,购买药品的费用为(1﹣)y万元,根据题意得:(1+50%)(30﹣y)+(1﹣)y=30,解得:y=16,30﹣y=14,则2014年购买药品的总费用为16万元;②设这个相同的百分数为m,则2015年健身家庭的户数为200(1+m),2015年平均每户健身家庭的药品费用为(1﹣m)万元,依题意得:200(1+m)•(1﹣m)=(1+50%)×14×,解得:m=±,∵m>0,∴m==50%,∴200(1+m)=300(户),则2015年该社区健身家庭的户数为300户.6、(40﹣x)(20+2x)=1200 .7、请先填空后再列方程求解:设每件童装降价x 元,那么平均每天就可多售出2x 件,现在一天可售出20+2x 件,每件盈利40﹣x 元.解:设每件童装降价x元,则(40﹣x)(20+2x)=1200即:x2﹣30x+200=0解得:x1=10,x2=20∵要扩大销售量,减少库存∴舍去x1=10答:每件童装应降价20元.8、(1)100+200x (用含x的代数式表示);(2)根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,∵每天至少售出260斤,∴x=1.答:张阿姨需将每斤的售价降低1元.9、解:(1)设每件衬衫应降价x元,根据题意得(40﹣x)(20+2x)=1200,整理得2x2﹣60x+400=0解得x1=20,x2=10.因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快,故每件衬衫应降20元.答:每件衬衫应降价20元.(2)设商场平均每天赢利y元,则y=(20+2x)(40﹣x)=﹣2x2+60x+800=﹣2(x2﹣30x﹣400)=﹣2[(x﹣15)2﹣625]=﹣2(x﹣15)2+1250.∴当x=15时,y取最大值,最大值为1250.答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1250元.10、解:(1)销售单价(元)x销售量y(件)1000﹣10x销售玩具获得﹣10x2+1300x﹣30000利润w(元)(2)﹣10x2+1300x﹣30000=10000,解之得:x1=50 x2=80,答:玩具销售单价为50元或80元时,可获得10000元销售利润.11、解:(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得,=,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设B型空气净化器的售价为x元,根据题意得;(x﹣1200)(4+)=3200,解得:x=1600,答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.12、解:(1)设该公司生产销售每件商品的成本为z元,依题意得:150(1﹣12%)=(1+10%)z,解得:z=120,答:该公司生产销售每件商品的成本为120元;(2)由题意得(﹣2x+24)[150(1+x%)﹣120]=660,整理得:x2+8x﹣20=0,解得:x1=2,x2=﹣10,此时,商品定价为每件135元或153元,日销售利润为660元;(3)根据题意得:1≤a≤6.13、(2x+6)(2x+8)=80 .14、(80+2x)(50+2x)=5400 .15、解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.16、解:(1)如图1,∵四边形ABCD是矩形,∴AB=CD=6,AD=BC=2,∠A=∠B=∠C=∠D=90°.∵CQ=1cm,AP=2cm,∴AB=6﹣2=4cm.∴S==5cm2.答:四边形BCQP面积是5cm2;(2)如图1,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t.∵AP=2t,∴PE=6﹣2t﹣t=6﹣3t.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=9,解得:t=.如图2,作PE⊥CD于E,∴∠PEQ=90°.∵∠B=∠C=90°,∴四边形BCQE是矩形,∴PE=BC=2cm,BP=CE=6﹣2t.∵CQ=t,∴QE=t﹣(6﹣2t)=3t﹣6在Rt△PEQ中,由勾股定理,得(3t﹣6)2+4=9,解得:t=.综上所述:t=或;(3)如图3,当PQ=DQ时,作QE⊥AB于E,∴∠PEQ=90°,∵∠B=∠C=90°,∴四边形BCQE是矩形,∴QE=BC=2cm,BE=CQ=t.∵AP=2t,∴PE=6﹣2t﹣t=6﹣3t.DQ=6﹣t.∵PQ=DQ,∴PQ=6﹣t.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=(6﹣t)2,解得:t=.如图4,当PD=PQ时,作PE⊥DQ于E,∴DE=QE=DQ,∠PED=90°.∵∠B=∠C=90°,∴四边形BCQE是矩形,∴PE=BC=2cm.∵DQ=6﹣t,∴DE=.∴2t=,解得:t=;如图5,当PD=QD时,∵AP=2t,CQ=t,∴DQ=6﹣t,∴PD=6﹣t.在Rt△APD中,由勾股定理,得4+4t2=(6﹣t)2,解得t1=,t2=(舍去).综上所述:t=,,,.故答案为:,,,.17、解:(1)经过秒时,AP=cm,BQ=cm,∵△ABC是边长为3cm的等边三角形,∴AB=BC=3cm,∠B=60°,∴BP=3﹣=cm,∴△PBQ的面积=BP•BQ•sin∠B=×××=;(2)设经过t秒△PBQ是直角三角形,则AP=tcm,BQ=tcm,△ABC中,AB=BC=3cm,∠B=60°,∴BP=(3﹣t)cm,△PBQ中,BP=(3﹣t)cm,BQ=tcm,若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°,当∠BQP=90°时,BQ=BP,即t=(3﹣t),t=1(秒),当∠BPQ=90°时,BP=BQ,3﹣t=t,t=2(秒),答:当t=1秒或t=2秒时,△PBQ是直角三角形.(3)过P作PM⊥BC于M,△BPM中,sin∠B=,∴PM=PB•sin∠B=(3﹣t),∴S△PBQ=BQ•PM=•t•(3﹣t),∴y=S△ABC﹣S△PBQ=×32×﹣×t×(3﹣t)=t2﹣t+,∴y与t的关系式为y=t2﹣t+,假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的,则S四边形APQC=S△ABC,∴t2﹣t+=××32×,∴t2﹣3t+3=0,∵(﹣3)2﹣4×1×3<0,∴方程无解,∴无论t取何值,四边形APQC的面积都不可能是△ABC面积的.18、解:(1)如果P、Q分别从A、B同时出发3秒,那么AP=3cm,BQ=6cm,则BP=3cm.四边形APQC的面积=△ABC的面积﹣△PBQ的面积=×6×8﹣×6×3=24﹣9=15(cm2).故答案为15cm2;(2)设经过x秒钟,S△PBQ=8cm2,BP=6﹣x,BQ=2x,∵∠B=90°,∴BP×BQ=8,∴×(6﹣x)×2x=8,∴x1=2,x2=4,答:如果点P、Q分别从A、B同时出发,经过2或4秒钟,S△PBQ=8cm2;(3)设经过y秒后,以P、Q、B三点为顶点的三角形与△ABC相似:①若△PBQ~△ABC,则有=,即=,解得:y=;②若△QBP~△ABC,则有=,即=,解得:y=.答:经过或秒后,以P、Q、B三点为顶点的三角形与△ABC相似.19、解:(1)由题意,得AP=6cm,BQ=12cm,∵△ABC是等边三角形,∴AB=BC=12cm,∴BP=12﹣6=6cm.(2)∵△ABC是等边三角形,∴AB=BC=12cm,∠A=∠B=∠C=60°,当∠PQB=90°时,∴∠BPQ=30°,∴BP=2BQ.∵BP=12﹣x,BQ=2x,∴12﹣x=2×2x,解得x=,当∠QPB=90°时,∴∠PQB=30°,∴BQ=2PB,∴2x=2(12﹣x),解得x=6.答:6秒或秒时,△BPQ是直角三角形;(3)作QD⊥AB于D,∴∠QDB=90°,∴∠DQB=30°,∴DB=BQ=x,在Rt△DBQ中,由勾股定理,得DQ=x,∴=10,解得x1=10,x2=2,∵x=10时,2x>12,故舍去,∴x=2.答:经过2秒△BPQ的面积等于10cm2.;(4)∵△BPQ的面积==﹣x2+6x,∴当x==6时,△BPQ的面积最大,此时最大值为﹣×62+6×6=18.故答案为:6cm、12cm.20、x(x﹣1)=1640 .21、解:设个位数字为x,则十位数字为12﹣x,由题意得:x(12﹣x)=32;22、解:(1)设原时速为xkm/h,通车后里程为ykm,则有:,解得:,答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1﹣m%)(8+m)=1600,解得:m1=20,m2=0(不合题意舍去),答:m的值为20.。
一元二次方程应用题练习题:解决小王的距离问题
一元二次方程应用题练习题:解决小王的距离问题问题描述:小王骑着自行车从家出发去超市购买日常用品。
他以每小时10公里的速度骑行了一段时间后,突然遇到了一次车胎爆破。
他停下来检查,并发现需要用工具修理车胎。
小王没有带工具,所以他需要返回家里拿工具,然后再继续去超市。
在返回家的过程中,他以每小时5公里的速度骑行。
假设整个旅程共花费2.5小时,请问超市离家有多远?解题步骤:1. 首先定义超市离家的距离为x公里。
2. 根据题意,小王骑行的时间加上返回家的时间等于2.5小时。
根据骑行速度和时间的关系(速度=距离/时间),我们可以得到以下方程:10*(2.5 - t) + 5*t = x其中,t表示小王骑行的时间(小时)。
3. 将方程进行化简和整理,得到一元二次方程形式:25 - 10*t + 5*t = x化简得:25 - 5*t = x这就是我们要求解的一元二次方程。
4. 接下来,我们解这个方程,得到x的具体值。
将方程两边同时减去25,得到:-5*t = x - 25由此可以得到:t = (25 - x)/5将t的值带入原方程,得到:10*(2.5 - (25 - x)/5) + 5*((25 - x)/5) = x化简得:25 - 2*(25 - x) + x = x进一步化简得:25 - 50 + 2*x + x = x化简得:x = 755. 解得x = 75,即超市离家的距离为75公里。
综上所述,根据题意和解题步骤,我们可以得出结论:超市离家的距离为75公里。
一元二次方程应用题练题:解决小王的距离问题问题描述:小王骑着自行车从家出发去超市购买日常用品。
他以每小时10公里的速度骑行了一段时间后,突然遇到了一次车胎爆破。
他停下来检查,并发现需要用工具修理车胎。
小王没有带工具,所以他需要返回家里拿工具,然后再继续去超市。
在返回家的过程中,他以每小时5公里的速度骑行。
假设整个旅程共花费2.5小时,请问超市离家有多远?解题步骤:1. 首先定义超市离家的距离为x公里。
一元二次方程应用题与答案
一元二次方程应用题练习应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
2、若关于x 的一元二次方程220x x k +-=没有实数根,则k 的取值范围是3、如果012=-+x x ,那么代数式7223-+x x 的值4、五羊足球队举行庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?5、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人?6、将一条长20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。
一元二次方程的应用题专练
一元二次方程的应用题专练(七大类型)一、解一元二次方程应用题的步骤1.“审、设、列、解、验、答”.2.审一定要清晰不是所有的条件都要用上, 还有用来验根的, 再有就是等量关系。
3.设可以直接设也可以间接设, 有单位的, 一定要记得带单位;4.列列方程时一定要用题中的原数;5.验一元二次方程两个根, 一定要看是否都符合;6.答回到实际问题中二、各种类型题训练(一)利润问题1.公式: 售价—进价=单个利润单个利润×销售量=总利润2.降价销售例: 西瓜经营户以2元/千克的价格购进一批小型西瓜, 以3元/千克的价格出售, 每天可售出200千克。
为了促销, 该经营户决定降价销售。
经调查发现, 这种小型西瓜每降价0.1元/千克, 每天可多售出40千克。
另外, 每天的房租等固定成本共24元。
该经营户要想每天盈利200元, 应将每千克小型西瓜的售价降低多少元?练习: (1).某商店购进一种商品, 进价30元. 试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系: P=100-2X, 若商店每天销售这种商品要获得200元的利润, 那么每件商品的售价应定为多少元?每天要售出这种商品多少件?(2)服装柜在销售中发现某品牌童装平均每天可售出20件, 每件盈利40元。
为了迎接“六一”儿童节, 商场决定采取适当的降价措施, 扩大销售量, 增加盈利, 减少库存。
经市场调查发现, 如果每件童装每降价4元, 那么平均每天就可多售出8件。
要想平均每天在销售这种童装上盈利1200元, 那么每件童装应降价多少元?(3)某商场礼品柜台购进大量贺卡,一种贺卡平均每天可销售500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的措施,调查发现,如果每降价0.1元,那么商场平均每天多售出300张,商场要想每天盈利160元,每张贺卡应该降价多少元?(4).利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源, 待货物售出后再进行结算, 未售出的由厂家负责处理)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的应用
(一)传播问题
1.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?
2.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?
4.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?
6、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
(二)平均增长率问题
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是多少?
4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率?
(三)商品销售问题
3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
4.服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元。
为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。
经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件。
要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?
(四)面积问题
1.一个直角三角形的两条直角边的和是14cm,面积是24cm2,求两条直角边的长。
6.一张桌子的桌面长为6米,宽为4米,台布面积是桌面面积的2倍,如果将台布铺在桌子上,各边垂下的长度相同,求这块台布的长和宽。
10.如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直的道路,
余分作为耕地为551㎡。
则道路的宽为?
3、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2
,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.
动态几何:
1、已知:如图3-9-3所示,在△ABC 中, cm 7cm,5,90==︒=∠BC AB B ,点P 从点A 开始沿
AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿
BC 边向点C 以2cm/s 的速度移动.(1)如果Q P ,分别
从B A ,同时出发,那么几秒后,△PBQ 的面积等于4cm 2
? (2)如果Q P ,分别从B A ,同时出发,那么几秒后,PQ 的长度等于5cm ?(3)在(1)中,△PQB 的面积能否等于7cm 2
?说明理由.。