三角形角平分线促优训练(一)Microsoft Word 文档

合集下载

人教版全等三角形角平分线辅助提优专项训练试卷

人教版全等三角形角平分线辅助提优专项训练试卷

人教版全等三角形角平分线辅助提优专项训练试卷一、全等三角形角平分线辅助1.如图1,在ABC 中,AF ,BE 分别是BAC ∠和ABC ∠的角平分线,AF 和BE 相交于D 点.(1)求证:CD 平分ACB ∠;(2)如图2,过F 作FP AC ⊥于点P ,连接PD ,若45ACB ∠=︒,67.5PDF ∠=︒,求证:PD CP =;(3)如图3,若23180BAF ABE ∠+∠=︒,求证:BE BF AB AE -=-.2.阅读资料,解决问题.人教版《数学九年级(下册)》的30页有这样一个思考问题:问题:如图,在ABC △中,DE BC ∥交AB ,AC 于点D ,E ,如果通过“相似的定义”证明ADE ABC △△∽?分析:根据“两直线平行,同位角相等”容易得出三对对应角分别相等,再根据“平行线分线段成比例”的基本事实,容易得出AD AE AB AC =,所以这个问题的核心时如何证明“DE AE BC AC =”. 证明思路:过点E 作EF AB ∥交BC 于点F ,构造平行四边形BDEF ,得到DE BF =,从而将比例式中的DE ,BC 转化为共线的两条线段BF ,BC ,同时也构造了基本图形“”,得到BF AE BC AC=,从而得证.解决问题:(1)①类比资料中的证明思路,请你证明“三角形内角平分线定理”.三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.已知:如图1,ABC △中,AD 是角平分线. 求证:AB BD AC DC=.②运用“三角形内角平分线定理”填空:已知:如图2,ABC △中,AD 是角平分线,7AB =,4AC =,6BC =,则BD =__________.(2)我们知道,如果两个三角形有相同的高或者相等的高,那么它们面积的比就等于底的比.请你通过研究ABD △和ACD 面积的比来证明三角形内角平分线定理.已知:如图3,ABC △中,AD 是角平分线.求证:AB BD AC DC=.3.如图,∠D =∠C =90°,点E 是DC 的中点,AE 平分∠DAB ,∠DEA =28°,求∠ABE 的大小.4.已知△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC ,求证:BC =AC +CD .5.如图,已知等腰直角三角形ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于点D ,试说明:BF =2CD .6.如图所示,在四边形ABCD 中,AC 平分,DAB CD CB ∠=,求证:180B D ∠+∠=.7.已知:如图,在ABC ∆中,AB AC >,AD 平分BAC ∠,CD AD ⊥于D ,E 是BC 的中点,求证:()12DE AB AC =-.8.如图,ABC ∆的外角ACD ∠的平分线CP 与内角ABC ∠的平分线BP 交于点P ,若40BPC ∠=︒,求CAP ∠的度数.9.如图,在ABC ∆中,AB AC >,AD 平分BAC ∠交BC 于D ,求证:AB AC BD CD ->-.10.如图所示,在ABC ∆中,AD 是它的角平分线.求证:::ABD ACD S S AB AC ∆∆=【参考答案】***试卷处理标记,请不要删除一、全等三角形角平分线辅助1.(1)证明见解析;(2)证明见解析;(3)证明见解析.【分析】(1)过D 点分别作三边的垂线,垂足分别为G 、H 、K ,根据角平分线的定义可证得DG=DH=DK ,从而根据角平分线的判定定理可证得结论;(2)作DS AC ⊥,DT BC ⊥,在AC 上取一点Q ,使QDP FDP ∠=∠,通过证明SQD TFD △≌△和QDP FDP △≌△得到22.5PDC PCD ∠=∠=︒,从而根据等角对等边判断即可;(3)延长AB 至M ,使BM BF =,连接FM ,通过证明AFC AFM △≌△得到AC AM =,再结合CE EB =即可得出结论.【详解】(1)证明:如图所示,过D 点分别作三边的垂线,垂足分别为G 、H 、K ,∵AF ,BE 分别是BAC ∠和ABC ∠的角平分线,∴DG DH DK ==,∴CD 平分ACB ∠;(2)证明:如图,作DS AC ⊥,DT BC ⊥,在AC 上取一点Q ,使QDP FDP ∠=∠.∵CD 平分ACB ∠,∴DS DT =,∵67.5QDP FDP ∠=∠=︒,45ACB ∠=︒,∴13545180QDF ACB ∠+∠=︒+︒=︒,在四边形QDFC 中,180CQD DFC ∠+∠=︒,又∵180DFT DFC ∠+∠=︒,∴CQD DFT ∠=∠,在SQD 和TFD △中,90CQD DFT DS DTDSQ DTF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴SQD TFD △≌△,∴QD FD =,在QDP △和FDP 中QD FD QDP FDP DP DP =⎧⎪∠=∠⎨⎪=⎩∴QDP FDP △≌△,∴45QPD FPD ∠=∠=︒又∵QPD PCD PDC ∠=∠+∠,22.5PCD ∠=︒,∴22.5PDC PCD ∠=∠=︒,∴CP PD =;(3)证明:延长AB 至M ,使BMBF =,连接FM . ∵AF ,BE 分别是BAC ∠和ABC ∠的角平分线, ∴22180BAF ABE C ∠+∠+∠=︒,又∵23180BAF ABE ∠+∠=︒,∴C ABE CBE ∠=∠=∠,∴CE EB =,∵BM BF =,∴BFM BMF ABE CBE C ∠=∠=∠=∠=∠,在AFC △和AFM △中,C BMF CAF BAF AF AF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴AFC AFM △≌△,∴AC AM =,∴AE CE AB BM +=+,∴AE BE AB BF +=+,∴BE BF AB AE -=-.【点睛】本题考查角平分线的性质与判断,以及全等三角形的判定与性质,灵活结合角平分线的性质构造辅助线是解题关键.2.(1)①证明见解析②4211(2)证明见解析 【解析】【分析】(1)①如图过点C 作AB 的平行线交AD 的延长线于点E ,然后说明ADB EDC △∽△,利用相似三角形的性质即可完成证明;②设BD x =,然后利用(1)的结论和已知条件即可完成解答; (2)过点D 作AB ,AC 的垂线,垂足为M 、N ,过点A 作BC 的垂线,垂足为H ;先利用角平分线定理说明DM DN =,然后再利用等面积法得到11:::22ABD ADC S S AB MD AC DN AB AC =⋅⨯=△△和11:::22ABD ADC S S BD AH OC AH BD DC =⋅⋅=△△,从而得到::AB AC BD DC =,即AB BD AC DC=. 【详解】(1)①证明:过点C 作AB 的平行线交AD 的延长线于点E ,∴1E ∠=∠,又∵AD 平分BAC ∠,∵12∠=∠,∴2E ∠=∠,∴AC CE =,又∵34∠=∠,∴ADB EDC △∽△, ∴AB BD CE DC =, ∴AB BD AC DC=. ②设BD x =,∴6DC x =-,又∵AB BD AC DC =, ∴746x x=-, ∴4427x x =-,∴1142x =,42x 11=.(2)过点D 作AB ,AC 的垂线,垂足为M 、N ,过点A 作BC 的垂线,垂足为H ,∵AD 为BAC ∠的角分线,∴DM DN =, 11:::22ABD ADC S S AB MD AC DN AB AC =⋅⨯=△△, 又∵11:::22ABD ADC S S BD AH OC AH BD DC =⋅⋅=△△, ∴::AB AC BD DC =,∴AB BD AC DC=. 【点睛】 本题主要考查了相似三角形的知识,其中运用等面积法、相似三角形的性质和证明、做辅助线均是解答本题的关键.3.28°【分析】过点E 作EF ⊥AB 于F ,根据角平分线上的点到角的两边距离相等可得DE=EF ,根据线段中点的定义可得DE=CE ,然后求出CE=EF ,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE 平分∠ABC ,即可求得∠ABE 的度数.【详解】如图,过点E 作EF ⊥AB 于F ,∵∠D=∠C=90°,AE 平分∠DAB ,DE=EF ,∵E 是DC 的中点,∴DE=CE ,∴CE=EF ,又∵∠C=90°,∴点E 在∠ABC 的平分线上,∴BE 平分∠ABC ,又∵AD ∥BC ,∴∠ABC+∠BAD=180°,∴∠AEB=90°,∴∠BEC=90°-∠AED=62°,∴Rt △BCE 中,∠CBE=28°,∴∠ABE=28°.考查了平行线的性质与判定、角平分线上的点到角的两边距离相等的性质、到角的两边距离相等的点在角的平分线上的性质,解题关键是熟记各性质并作出辅助线.4.见解析【分析】在线段BC 上截取BE =BA ,连接DE .则只需证明CD =CE 即可.结合角度证明∠CDE =∠CED .【详解】证明:在线段BC 上截取BE =BA ,连接DE .∵BD 平分∠ABC ,∴∠ABD =∠EBD 12=∠ABC . 在△ABD 和△EBD 中,BE BA ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△EBD .(SAS )∴∠BED =∠A =108°,∠ADB =∠EDB .又∵AB =AC ,∠A =108°,∠ACB =∠ABC 12=⨯(180°﹣108°)=36°, ∴∠ABD =∠EBD =18°.∴∠ADB =∠EDB =180°﹣18°﹣108°=54°.∴∠CDE =180°﹣∠ADB ﹣∠EDB=180°﹣54°﹣54°=72°.∴∠DEC =180°﹣∠DEB=180°﹣108°=72°.∴∠CDE =∠DEC .∴CD =CE .∴BC =BE +EC =AB +CD .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定,添加恰当辅助线是本题的关键. 5.见解析作BF 的中点E ,连接AE 、AD ,根据直角三角形得到性质就可以得出AE =BE =EF ,由BD 平分∠ABC 就可以得出∠ABE =∠DBC =22.5°,从而可以得出∠BAE =∠BAE =∠ACD =22.5°,∠AEF =45°,由∠BAC =90°,∠BDC =90°就可以得出A 、B 、C 、D 四点共圆,求出AD =DC ,证△ADC ≌△AEB 推出BE =CD ,从而得到结论.【详解】解:取BF 的中点E ,连接AE ,AD ,∵∠BAC =90°,∴AE =BE =EF ,∴∠ABD =∠BAE ,∵CD ⊥BD ,∴A ,B ,C ,D 四点共圆,∴∠DAC =∠DBC ,∵BF 平分∠ABC ,∴∠ABD =∠DBC ,∴∠DAC =∠BAE ,∴∠EAD =90°,∵AB =AC ,∴∠ABC =45°,∴∠ABD =∠DBC =22.5°,∴∠AED =45°,∴AE =AD ,在△ABE 与△ADC 中,ABE DAC BAE ACD AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC ,∴BE =CD ,∴BF =2CD .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,四点共圆,直角三角形的性质,角平分线的性质,正确的作出辅助线是解题的关键.6.详见解析【解析】【分析】过点C 分别作CE AB ⊥于E ,CF AD ⊥于F ,由条件可得出△CDF ≌△CEB ,可得∠B=∠FDC ,进而可证明∠B+∠ADC=180°.【详解】证明:过点C 分别作CE AB ⊥于E ,CF AD ⊥于F ,∵AC 平分∠BAD ,CE ⊥AB 于E ,CF AD ⊥于F ,∴CF=CE ,在Rt △CDF 与Rt △CEB 中,CF=CE CD=CB ⎧⎨⎩∴CBE CDF ∆∆≌,CBE CDF ∴∠=∠,180ADC CDF ∠+∠=︒,A C 180B D ∴∠+∠=︒ .【点睛】本题考查全等三角形的判定和性质,关键是根据HL 证明△CDF ≌△CEB 进而得出∠B=∠FDC .7.见解析.【解析】【分析】延长CD 交AB 于点F ,然后利用“角边角”证明△ADC 和△ADF 全等,根据全等三角形对应边相等可得CD=DF ,AC=AF ,再根据三角形的中位线定理进行证明即可.【详解】如图,延长CD 交AB 于点F ,∵AD 平分∠BAC ,∴∠CAD=∠FAD ,∵CD ⊥AD ,∴∠ADC=∠ADF=90°,又AD =AD∴△ADC ≌△ADF(ASA),∴CD=DF ,AC=AF ,∵点E 是BC 的中点,∴DE 是△BCF 的中位线,∴DE=12BF ,∵BF=AB-AF=AB-AC ,∴DE=12(AB-AC).【点睛】本题考查了三角形的中位线定理,全等三角形的判定与性质,作辅助线并证明DE 是三角形的中位线是解题的关键.8.50°【解析】【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP ,即可得出答案.【详解】延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD=x°,∵CP 平分∠ACD ,∴∠ACP=∠PCD=x°,PM=PN ,∵BP 平分∠ABC ,∴∠ABP=∠PBC ,PF=PN ,∴PF=PM ,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD-∠BPC=(x-40)°,∴∠BAC=∠ACD-∠ABC=2x°-(x°-40°)-(x°-40°)=80°,∴∠CAF=100°,在Rt △PFA 和Rt △PMA 中,PA PA PM PF =⎧⎨=⎩, ∴Rt △PFA ≌Rt △PMA(HL),∴∠CAP=∠FAP ,又∵∠CAP+∠PAF=∠CAF ,∴∠CAP =50°.【点睛】本题主要考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF 是解决问题的关键.9.详见解析【解析】【分析】可以在AB 上截取AE=AC ,构造三角形全等,再结合三角形三边关系可证得结论.【详解】在AB 上截取AE=AC ,则BE=AB-AC ,在△AED 和△ACD 中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△AED ≌△ACD(SAS),∴DE=DC ,在△BDE 中,BD-DE <BE(三角形两边之差小于第三边),∴BE>BD-CD ,即AB-AC>BD-CD.【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,构造三角形全等是解题的关键. 10.证明见解析.【分析】根据AD 平分∠BAC ,作DE ⊥AB ,DF ⊥AC ,由角平分线性质可知DE=DF ,△ABD 与△ACD 等高,面积比即为底边的比.【详解】证明:作DE ⊥AB ,DF ⊥AC ,垂足为E 、F ,∵AD 平分∠BAC ,∴DE=DF ,∴S△ABD:S△ACD=(12×AB×DE):(12×AC×DF)=AB:AC.考点:1.角平分线的性质;2.三角形的面积.。

人教版全等三角形角平分线辅助测试提优卷试题

人教版全等三角形角平分线辅助测试提优卷试题

人教版全等三角形角平分线辅助测试提优卷试题一、全等三角形角平分线辅助1.在平面直角坐标系中,点()5,0A -,()0,5B ,点C 为x 轴正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若点C 的坐标为(3,0),试求点E 的坐标;(2)如图②,若点C 在x 轴正半轴上运动,且5OC <,其它条件不变,连接DO ,求证:OD 平分ADC ∠(3)若点C 在x 轴正半轴上运动,当2OCB DAO ∠=∠时,试探索线段AD 、OC 、DC 的数量关系,并证明.2.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为t 秒.(1)直接写出AQH 的面积(用含t 的代数式表示).(2)当点M 落在BC 边上时,求t 的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t 的值;若不存在请说明理由(不能添加辅助线). 3.如图1,已知正方形ABCD 的边长为1,点E 在边BC 上,若∠AEF=900,且EF 交正方形外角的平分线CF 于点F(1)图1中若点E 是边BC 的中点,我们可以构造两个三角形全等来证明AE=EF ,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E 在线段BC 上滑动(不与点B ,C 重合).①AE=EF 是否总成立?请给出证明;②在如图2的直角坐标系中,当点E 滑动到某处时,点F 恰好落在抛物线2y x x 1=-++上,求此时点F 的坐标.4.阅读理解如图1,ABC 中,沿BAC ∠的平分线1AB 折叠,剪掉重叠部分;将余下部分沿11B AC ∠的平分线12A B 折叠,剪掉重叠部分;……;将余下部分沿∠n n B A C 的平分线1n n A B +折叠,点n B 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称BAC ∠是ABC 的好角.情形一:如图2,沿等腰三角形ABC 顶角BAC ∠的平分线1AB 折叠,点B 与点C 重合;情形二:如图3,沿ABC 的BAC ∠的平分线1AB 折叠,剪掉重叠部分;将余下的部分沿11B AC ∠的平分线12A B 折叠,此时点1B 与点C 重合.探究发现(1)ABC 中,2B C ∠=∠,经过两次折叠,问BAC ∠ ABC 的好角(填写“是”或“不是”);(2)若经过三次折叠发现BAC ∠是ABC 的好角,请探究B 与C ∠(假设B C ∠>∠)之间的等量关系 ;根据以上内容猜想:若经过n 次折叠BAC ∠是ABC 的好角,则B 与C ∠(假设B C ∠>∠)之间的等量关系为 ;应用提升:(3)小丽找到一个三角形,三个角分别为15︒,60︒,105︒,发现 是此三角形的好角;(4)如果一个三角形的最小角是10︒,且满足该三角形的三个角均是此三角形的好角; 则此三角形另外两个角的度数 .5.直线MN 与直线PQ 垂直相交于点O ,点A 在射线OP 上运动(点A 不与点O 重合),点B 在射线OM 上运动(点B 不与点O 重合).(1)如图1,已知AE 、BE 分别是∠BAO 和∠ABO 的角平分线,①当∠ABO =60°时,求∠AEB 的度数;②点A 、B 在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请说明变化的情况:若不发生变化,试求出∠AEB 的大小;(2)如图2,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线所在的直线分别相交于E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,请直接写出∠ABO 的度数.6.已知△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC ,求证:BC =AC +CD .7.如图所示,90B C ∠=∠=,E 是BC 的中点,DE 平分ADC ∠.(1)求证:AE 是DAB ∠的平分线;(2)若2cm,BAD=60CD =∠,求AD 的长.8.如图,在ABO ∆中,OA OB =,90AOB ∠=︒,AD 平分OAB ∠,OE AD ⊥于E ,交AB 于F .求证:(1)OD BF =;(2)2AD OF DE -=.9.已知:如图,在ABC ∆中,AB AC >,AD 平分BAC ∠,CD AD ⊥于D ,E 是BC 的中点,求证:()12DE AB AC =-.10.如图,ABC ∆的外角ACD ∠的平分线CP 与内角ABC ∠的平分线BP 交于点P ,若40BPC ∠=︒,求CAP ∠的度数.【参考答案】***试卷处理标记,请不要删除一、全等三角形角平分线辅助1.(1)(0,3);(2)详见解析;(3)AD=OC+CD【分析】(1)先根据AAS 判定△AOE ≌△BOC ,得出OE=OC ,再根据点C 的坐标为(3,0),得到OC=2=OE ,进而得到点E 的坐标;(2)先过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,根据△AOE ≌△BOC ,得到S △AOE =S △BOC ,且AE=BC ,再根据OM ⊥AE ,ON ⊥BC ,得出OM=ON ,进而得到OD 平分∠ADC ;(3)在DA 上截取DP=DC ,连接OP ,根据三角形内角和定理,求得∠PAO=30°,进而得到∠OCB=60°,根据SAS 判定△OPD ≌△OCD ,得OC=OP ,∠OPD=∠OCD=60°,再根据三角形外角性质得PA=PO=OC ,故AD=PA+PD=OC+CD .【详解】(1)如图①,∵AD ⊥BC ,BO ⊥AO ,∴∠AOE=∠BDE ,又∵∠AEO=∠BED ,∴∠OAE=∠OBC ,∵A (-5,0),B (0,5),∴OA=OB=5,∴△AOE ≌△BOC ,∴OE=OC ,又∵点C 的坐标为(3,0),∴OC=3=OE ,∴点E 的坐标为(0,3);(2)如图②,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE=BC ,∵OM ⊥AE ,ON ⊥BC ,∴OM=ON ,∴OD 平分∠ADC ;(3)如所示,在DA 上截取DP=DC ,连接OP ,∵2OCB DAO ∠=∠,∠ADC=90°∴∠PAO+∠OCD=90°,∴∠DAC=903︒=30°,∠DCA=2903⨯︒=60° ∵∠PDO=∠CDO ,OD=OD ,∴△OPD ≌△OCD ,∴OC=OP ,∠OPD=∠OCD=60°,∴∠POA=∠PAO=30°∴PA=PO=OC∴AD=PA+PD=OC+CD即:AD=OC+CD .【点睛】 本题属于三角形综合题,主要考查了全等三角形的判定与性质,角平分线的判定定理以及等腰直角三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行求解.2.(1)214t ;(2)t =3)存在,如图2(见解析),当AHQ HBM ≅时,t =3(见解析),当ADE AHE ≅时,t =4(见解析),当EGQ HBF ≅时,t =【分析】(1)先根据线段中点的定义可得12AQ AP =,再根据矩形的性质、角平分线的定义可得45HAQ ∠=︒,从而可得AQH 是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得;(2)先根据平行四边形的性质可得//HQ MP ,从而可得//HQ BP ,再根据三角形中位线定理可得HQ 是ABP △的中位线,从而可得122AH AB ==,然后与(1)所求的AH =建立等式求解即可得; (3)分①当点H 是AB 的中点时,AHQ HBM ≅;②当点Q 与点E 重合时,ADE AHE ≅;③当EG HB =时,EGQ HBF ≅三种情况,分别求解即可得.【详解】(1)由题意得:2AP t =,点Q 为AP 的中点,12AQ AP t ∴==, 四边形ABCD 是矩形,90B D BAD ∴∠=∠=∠=︒,AE ∵是BAD ∠的角平分线,1452HAQ DAE BAD ∴∠=∠=∠=︒, QH AB ⊥,AQH ∴是等腰直角三角形,2222AH HQ AQ t ∴===, 则AQH 的面积为21124AH HQ t ⋅=; (2)如图1,四边形PQHM 是平行四边形,//HQ MP ∴,点M 在BC 边上,//HQ BP ∴,点Q 为AP 的中点,HQ ∴是ABP △的中位线,122AH BH AB ∴===, 由(1)知,22AH t =, 则222t =, 解得22t =;(3)由题意,有以下三种情况:①如图2,当点H 是AB 的中点时,则AHHB =,四边形PQHM 是平行四边形, //HM PQ ∴,HAQ BHM ∴∠=∠,在AHQ 和HBM △中,90HAQ BHM AH HB AHQ HBM ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()AHQ HBM ASA ∴≅,由(2)可知,此时22t =;②如图3,当点Q 与点E 重合时,在ADE 和AHE 中,9045D AHE DAE HAE AE AE ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩,()ADE AHE AAS ∴≅,3AD AH ∴==,则232t =, 解得32t =;③如图4,当EG HB =时,四边形ABCD 是矩形,四边形PQHM 是平行四边形,//,//CD AB HM PQ ∴,,90GEQ HAQ BHF EGQ AHQ B ∴∠=∠=∠∠=∠=︒=∠,在EGQ 和HBF 中,GEQ BHF EG HB EGQ B ∠=∠⎧⎪=⎨⎪∠=∠⎩,()EGQ HBF ASA ∴≅, 2,42AH t AB ==, 242HB AB AH t ∴=-=-, 在Rt ADE △中,45,3DAE AD ∠=︒=,Rt ADE ∴是等腰直角三角形,232AE AD ==,32EQ AQ AE t ∴=-=-,在Rt GEQ 中,45GEQ HAQ ∠=∠=︒,Rt GEQ ∴是等腰直角三角形,22622t EG EQ -==, 则由EG HB =得:262422t t -=-, 解得722t =;综上,如图2,当AHQ HBM ≅时,22t =;如图3,当ADE AHE ≅时,32t =4,当EGQ HBF ≅时,722t =【点睛】 本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.3.(1)△AGE 与△ECF (2)①成立②()2?21-, 【分析】(1)取AB 的中点G ,连接EG ,利用ASA 能得到△AGE 与△ECF 全等.(2)①在AB 上截取AG=EC ,由ASA 证得△AGE ≌△ECF 即可证得AE=EF .②过点F 作FH ⊥x 轴于H ,根据FH=BE=CH 设BH=a ,则FH=a -1,然后表示出点F 的坐标,根据点F 恰好落在抛物线2y x x 1=-++上得到有关a 的方程求得a 值即可求得点F 的坐标.【详解】解:(1)如图,取AB 的中点G ,连接EG ,则△AGE 与△ECF 全等.(2)①若点E 在线段BC 上滑动时AE=EF 总成立.证明如下:如图,在AB 上截取AG=EC ,∵AB=BC ,∴BG=BE .∴△GBE 是等腰直角三角形.∴∠AGE=180°-45°=135°.又∵CF 平分正方形的外角,∴∠ECF=135°.∴∠AGE=∠ECF .又∵∠BAE+∠AEB=∠CEF+∠AEB=90°,∴∠BAE=∠CEF .∴△AGE ≌△ECF (ASA ).∴AE=EF .②过点F 作FH ⊥x 轴于H ,由①知,FH=BE=CH ,设BH=a ,则FH=a -1.∴点F 的坐标为F (a ,a -1).∵点F 恰好落在抛物线2y x x 1=-++上,∴2a 1a a 1-=-++.∴a2=2.∴a =(负值不合题意,舍去). ∴a 11-=.∴点F 的坐标为1).4.(1)是;(2)3∠=∠B C ;∠=∠B n C ;(3)60︒和105︒;(4)另外两个角的度数分别为160︒和10︒【分析】(1)由沿BAC ∠的平分线1AB 折叠,得11B AA B ∠=∠,且1111AA B C A B C ∠=∠+∠,沿11B AC ∠的平分线12A B 折叠,此时点1B 与C 重合,可得11AB C C ∠=∠,即可证2B C ∠=∠.(2)由沿BAC ∠的平分线1AB 折叠,得11B AA B ∠=∠,由将余下部分沿11B AC ∠的平分线12A B 折叠,得11122A B C A A B ∠=∠,最后沿22B A C ∠的平分线23A B 折叠,点2B 与点C 重合,得22C A B C ∠=∠,由11B A B C C ∠=∠+∠,可证3∠=∠B C ;由小丽展示的情形一当B C ∠=∠时;由探究(1)当2B C ∠=∠时;由探究(2)当3∠=∠B C 时,它们的BAC ∠均是ABC 的好角;可推经过n 次折叠,BAC ∠是ABC 的好角,则B 与C ∠的等量关系为∠=∠B n C .(3)由(2)得∠=∠B n C ,可计算60,105︒︒是ABC 的好角.(4)由(2)知∠=∠B n C ,BAC ∠是ABC 的好角,已知中一个三角形的最小角是10︒,且这个三角形三个角均是ABC 的好角,可设另外两个角为10m ︒、10mn ︒,(其中,m n 都是正整数),依题意列式101010180m mn ++=,可求解得.【详解】(1)ABC 中,2B C ∠=∠,经过两次折叠,BAC ∠是ABC 的好角; 理由如下:沿BAC ∠的平分线1AB 折叠,11B AA B ∴∠=∠;将余下部分沿11B AC ∠的平分线12A B 折叠,此时点1B 与C 重合,11A B C C ∴∠=∠;1111AA B C A B C ∠=∠+∠;2B C ∴∠=∠,故答案是:是;(2)在ABC 中,沿BAC ∠的平分线1AB 折叠,剪掉重复部分;将余下部分沿11B AC ∠的平分线12A B 折叠,剪掉重复部分,将余下部分沿22B A C ∠的平分线23A B 折叠,点2B 与点C 重合,则BAC ∠是ABC 的好角.证明:11B AA B ∠=∠,22,C A B C ∠=∠,122222A A B C A B C C ∴∠=∠+∠=∠,11B A B C C ∠=∠+∠11122A B C A A B ∠=∠,2C B C ∠∴=+∠∠,3B C ∴∠=∠,由小丽展示的情形一知,当B C ∠=∠时,BAC ∠是ABC 的好角;由探究(1)知,当2B C ∠=∠时,BAC ∠是ABC 的好角;由探究(2)知,当3∠=∠B C 时,BAC ∠是ABC 的好角;故若经过n 次折叠,BAC ∠是ABC 的好角,则B 与C ∠的等量关系为∠=∠B n C . 故答案为:3;B C B n C ∠=∠∠=∠.(3)由(2)知,∠=∠B n C ,60415︒=⨯︒,105715︒=⨯︒,60,105∴︒︒是ABC 的好角.故答案为:60,105︒︒.(4)由(2)知∠=∠B n C ,BAC ∠是ABC 的好角,一个三角形的最小角是10︒,且这个三角形三个角均是ABC 的好角,可设另外两个角为10m ︒、10mn ︒,(其中,m n 都是正整数).依题意得101010180m mn ++=,化简得(1)17m n +=,,m n 都是正整数,∴,1m n +都是17的整数因子,∴1m =,117n +=,∴1m =,16n =,∴1010m ︒=︒,10160mn ︒=︒,即该三角形的另外两个角是:10︒和160︒.故答案为:10,160︒︒.【点睛】本题考查的是折叠的性质应用、三角形的外角等不相邻的两个内角之和,并涉及一些数学归纳法思想来推导结论,一道比较综合知识点的新颖考题,在第(4)小题中不需要去解出根,而是根据这种限定条件来确定解,这是一种不同于以往的解题思路.5.(1)①135°②∠AEB 的大小不会发生变化,∠AEB =135°,详见解析(2)∠ABO =60°或45°【分析】(1)①根据三角形内角和定理、角分线定义,即可求解;②方法同①,只是把度数转化为角表示出来,即可解答;(2)根据三角形内角和定理及一个外角等于与它不相邻的两个内角和,利用角的和差计算即可求得结果,要对谁是谁的3倍分类讨论..【详解】(1)如图1,①∵MN⊥PQ,∴∠AOB=90°,∵∠ABO=60°,∴∠BAO=30°,∵AE、BE分别是∠BAO和∠ABO的角平分线,∴∠ABE=12∠ABO=30°,∠BAE=12∠BAO=15°,∴∠AEB=180°﹣∠ABE﹣∠BAE=135°.②∠AEB的大小不会发生变化.理由如下:同①,得∠AEB=180°﹣∠ABE﹣∠BAE=180°﹣12∠ABO﹣12∠BAO=180°﹣12(∠ABO+∠BAO)=180°﹣12×90°=135°.(2)∠ABO的度数为60°.理由如下:如图2,∵∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,∴∠OAE+∠OAF=12(∠BAO+∠GAO)=90°,即∠EAF=90°,又∵∠BOA=90°,∴∠GAO>90°,①∵∠E=13∠EAF=30°,∠EOQ=45°,∠OAE+∠E=∠EOQ=45°,∴∠OAE=15°,∠OAE=12∠BAO=12(90﹣∠ABO)∴∠ABO=60°.②∵∠F=3∠E,∠EAF=90°∴∠E+∠F=90°∴∠E=22.5°∴∠EFA=90-22.5°=67.5°∵∠EOQ =∠EOM= ∠AOE= 45°,∴∠BAO =180°-(180°-45°-67.5°)×2=45°∴∠ABO=90°-45°=45°【点睛】本题考查了三角形内角和定理及外角的性质、角分线定义,解决本题的关键是灵活运用三角形内角和外角的关系.6.见解析【分析】在线段BC 上截取BE =BA ,连接DE .则只需证明CD =CE 即可.结合角度证明∠CDE =∠CED .【详解】证明:在线段BC 上截取BE =BA ,连接DE .∵BD 平分∠ABC ,∴∠ABD =∠EBD 12=∠ABC . 在△ABD 和△EBD 中,BE BA ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△EBD .(SAS )∴∠BED =∠A =108°,∠ADB =∠EDB .又∵AB =AC ,∠A =108°,∠ACB =∠ABC 12=⨯(180°﹣108°)=36°, ∴∠ABD =∠EBD =18°.∴∠ADB =∠EDB =180°﹣18°﹣108°=54°.∴∠CDE =180°﹣∠ADB ﹣∠EDB=180°﹣54°﹣54°=72°.∴∠DEC =180°﹣∠DEB=180°﹣108°=72°.∴∠CDE =∠DEC .∴CD =CE .∴BC =BE +EC =AB +CD .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定,添加恰当辅助线是本题的关键. 7.(1)详见解析;(2)8cm.【解析】【分析】(1)过点E 分别作EF AD ⊥于F ,由角平分线的性质就可以得出EF=EC ,根据HL 得AEB AEF ∆∆≌,即可得出结论;(2)根据角平分线和平行线的性质求出30CED DAE ∠=∠=︒ ,根据含30°角的直角三角形的性质即可求解.【详解】(1)证明:过点E 分别作EF AD ⊥于F ,∴∠DFE=∠AFE=90°.∵∠B=∠C=90°,∴∠B=∠AFE=∠DFE=∠C=90°.∴CB ⊥AB ,CB ⊥CD .∵DE 平分∠ADC .∴∠EDC=∠EDF ,CE=EF .∵E 是BC 的中点,∴CE=BE ,∴BE=EF .在Rt △AEB 和Rt △AEF 中,EB=EF AE=AE⎧⎨⎩ , ∴Rt △AEB ≌Rt △AEF (HL ),∴∠EAB=∠EAF ,∴AE 是∠DAB 的平分线;(2)解:∵∠B=∠C=90°,∴AB ∥CD ,∴∠BAD+∠ADC=180°,∵∠BAD=60°,DE 平分ADC ∠,AE 是∠DAB 的平分线,60ADE CDE ∠=∠=︒∴ ,30DAE ∠=︒ ,A 90DE =︒∠,∵∠C=90°∴ A 30D E =︒∠,C 30DE =︒∠ ,248AD DE CD cm ∴===.故答案为(1)详见解析;(2)8cm.【点睛】本题考查角平分线的性质,线段中点的定义,全等三角形的判定与性质的运用,含30°角的直角三角形,证明三角形全等是解(1)题的关键,掌握含30°角的直角三角形的性质是解(2)题的关键.8.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连接DF,证△FAE≌△OAE,推出AF=AO,∠AFO=∠AOF,求出OD=DF,求出BF=DF,即可得出答案;(2)在AD上截AG=OF,连接OG,证△AGO≌△OFB,推出GO=BF=OD,求出DE=GE,AD-OF=DG=2DE即可.【详解】(1)连接DF,∵OE⊥AD,∴∠AEF=∠AEO=90°,∵AD平分∠FAO,∴∠EAF=∠OAE,又∵AF=AF,∴△EAF≌△OAF(ASA),∴AF=AO,∠AFO=∠AOF,∵AD⊥OF,∴EF=EO,∴DF=DO,∴∠DFO=∠DOF,∵∠AFO=∠AOF,∴∠AFD=∠AOB=90°,∵∠AOB=90°,AO=BO,∴∠B=45°,∴∠FDB=∠AFO-∠B=45°=∠B,∴BF=DF,∴OD=BF;(2)在AD上截AG=OF,连接OG,∵∠OAB=∠B=45°,AD平分∠OAB,∴∠OAG=22.5°,∵OD=DF,∴∠DFO=∠DOF,∵∠FDB=45°=∠DFO+∠DOF,∴∠FOB=22.5°=∠OAG,∴△AGO≌△OFB(SAS),∴GO=BF=OD,∵OE⊥AD,∴DE=GE,∴AD-OF=DG=2DE.【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形性质,线段垂直平分线性质的应用,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.9.见解析.【解析】【分析】延长CD交AB于点F,然后利用“角边角”证明△ADC和△ADF全等,根据全等三角形对应边相等可得CD=DF,AC=AF,再根据三角形的中位线定理进行证明即可.【详解】如图,延长CD交AB于点F,∵AD平分∠BAC,∴∠CAD=∠FAD,∵CD⊥AD,∴∠ADC=∠ADF=90°,又AD=AD∴△ADC≌△ADF(ASA),∴CD=DF,AC=AF,∵点E是BC的中点,∴DE是△BCF的中位线,∴DE=1BF,2∵BF=AB-AF=AB-AC,∴DE=1(AB-AC).2【点睛】本题考查了三角形的中位线定理,全等三角形的判定与性质,作辅助线并证明DE 是三角形的中位线是解题的关键.10.50°【解析】【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP ,即可得出答案.【详解】延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD=x°,∵CP 平分∠ACD ,∴∠ACP=∠PCD=x°,PM=PN ,∵BP 平分∠ABC ,∴∠ABP=∠PBC ,PF=PN ,∴PF=PM ,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD-∠BPC=(x-40)°,∴∠BAC=∠ACD-∠ABC=2x°-(x°-40°)-(x°-40°)=80°,∴∠CAF=100°,在Rt △PFA 和Rt △PMA 中,PA PA PM PF=⎧⎨=⎩, ∴Rt △PFA ≌Rt △PMA(HL),∴∠CAP=∠FAP ,又∵∠CAP+∠PAF=∠CAF ,∴∠CAP =50°.【点睛】本题主要考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解决问题的关键.。

人教版全等三角形角平分线辅助达标测试提优卷试题

人教版全等三角形角平分线辅助达标测试提优卷试题

人教版全等三角形角平分线辅助达标测试提优卷试题一、全等三角形角平分线辅助1.已知点C 是∠MAN 平分线上一点,∠BCD 的两边CB 、CD 分别与射线AM 、AN 相交于B ,D 两点,且∠ABC +∠ADC =180°.过点C 作CE ⊥AB ,垂足为E .(1)如图1,当点E 在线段AB 上时,求证:BC =DC ;(2)如图2,当点E 在线段AB 的延长线上时,探究线段AB 、AD 与BE 之间的等量关系; (3)如图3,在(2)的条件下,若∠MAN =60°,连接BD ,作∠ABD 的平分线BF 交AD 于点F ,交AC 于点O ,连接DO 并延长交AB 于点G .若BG =1,DF =2,求线段DB 的长.2.阅读资料,解决问题.人教版《数学九年级(下册)》的30页有这样一个思考问题:问题:如图,在ABC △中,DE BC ∥交AB ,AC 于点D ,E ,如果通过“相似的定义”证明ADE ABC △△∽?分析:根据“两直线平行,同位角相等”容易得出三对对应角分别相等,再根据“平行线分线段成比例”的基本事实,容易得出AD AE AB AC =,所以这个问题的核心时如何证明“DE AE BC AC =”. 证明思路:过点E 作EF AB ∥交BC 于点F ,构造平行四边形BDEF ,得到DE BF =,从而将比例式中的DE ,BC 转化为共线的两条线段BF ,BC ,同时也构造了基本图形“”,得到BF AE BC AC=,从而得证.解决问题:(1)①类比资料中的证明思路,请你证明“三角形内角平分线定理”.三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.已知:如图1,ABC △中,AD 是角平分线. 求证:AB BD AC DC=.②运用“三角形内角平分线定理”填空:已知:如图2,ABC △中,AD 是角平分线,7AB =,4AC =,6BC =,则BD =__________.(2)我们知道,如果两个三角形有相同的高或者相等的高,那么它们面积的比就等于底的比.请你通过研究ABD △和ACD 面积的比来证明三角形内角平分线定理.已知:如图3,ABC △中,AD 是角平分线.求证:AB BD AC DC=.3.如图,已知等腰直角三角形ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于点D ,试说明:BF =2CD .4.在平面直角坐标中,等腰Rt △ABC 中,AB=AC ,∠CAB=90°,A (0,a ),B (b ,0).(1)如图1,若2a b -+(a-2)2=0,求△ABO 的面积;(2)如图2,AC 与x 轴交于D 点,BC 与y 轴交于E 点,连接DE ,AD=CD ,求证:∠ADB=∠CDE ;(3)如图3,在(1)的条件下,若以P (0,-6)为直角顶点,PC 为腰作等腰Rt △PQC ,连接BQ ,求证:AP ∥BQ .5.如图,已知 B (-1, 0) , C (1, 0) , A 为 y 轴正半轴上一点, AB = AC ,点 D 为第二象限一动点,E 在 BD 的延长线上, CD 交 AB 于 F ,且∠BDC = ∠BAC .(1)求证: ∠ABD = ∠ACD ;(2)求证: AD 平分∠CDE ;(3)若在 D 点运动的过程中,始终有 DC = DA + DB ,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC 的度数?6.如图,在ABO ∆中,OA OB =,90AOB ∠=︒,AD 平分OAB ∠,OE AD ⊥于E ,交AB 于F .求证:(1)OD BF =;(2)2AD OF DE -=.7.如图,OA=OB ,∠AOB=90°,BD 平分∠ABO 交OA 于点D ,AE ⊥BD 于E ,求证:BD=2AE.8.如图,在Rt △ABC 中,∠BAC=90°,AB=3,M 为边BC 上的点,连结AM.如果将△ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,求点M 到AC 的距离.9.如图,在ABC ∆中,60B ∠=︒,AD 、CE 分别是BAC ∠、ACB ∠的平分线,AD 、CE 相交于点F ,试判断FE 和FD 之间的数量关系.10.如图,在四边形OACB 中,CE OA ⊥于E ,12∠=∠,CA CB =.求证:34180∠+∠=︒;2OA OB OE +=.【参考答案】***试卷处理标记,请不要删除一、全等三角形角平分线辅助1.(1)见解析;(2)AD ﹣AB =2BE ,理由见解析;(3)3.【分析】(1)过点C 作CF ⊥AD ,根据角平分线的性质得到CE =CF ,证明△BCE ≌△DCF ,根据全等三角形的性质证明结论;(2)过点C 作CF ⊥AD ,根据角平分线的性质得到CE =CF ,AE =AF ,证明△BCE ≌△DCF ,得到DF =BE ,结合图形解答即可;(3)在BD 上截取BH =BG ,连接OH ,证明△OBH ≌△OBG ,根据全等三角形的性质得到∠OHB =∠OGB ,根据角平分线的判定定理得到∠ODH =∠ODF ,证明△ODH ≌△ODF ,得到DH =DF ,计算即可.【详解】(1)证明:如图1,过点C 作CF ⊥AD ,垂足为F ,∵AC 平分∠MAN ,CE ⊥AB ,CF ⊥AD ,∴CE =CF ,∵∠CBE +∠ADC =180°,∠CDF +∠ADC =180°,∴∠CBE =∠CDF ,在△BCE 和△DCF 中,90CBE CDF CEB CFD CE CF ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△BCE ≌△DCF (AAS )∴BC =DC ;(2)解:AD ﹣AB =2BE ,理由如下:如图2,过点C 作CF ⊥AD ,垂足为F ,∵AC 平分∠MAN ,CE ⊥AB ,CF ⊥AD ,∴CE =CF ,AE =AF ,∵∠ABC +∠ADC =180°,∠ABC +∠CBE =180°,∴∠CDF =∠CBE ,在△BCE 和△DCF 中,90CBE CDF CEB CFD CE CF ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△BCE ≌△DCF (AAS ),∴DF =BE ,∴AD =AF +DF =AE +DF =AB +BE +DF =AB +2BE ,∴AD ﹣AB =2BE ;(3)解:如图3,在BD 上截取BH =BG ,连接OH ,∵BH =BG ,∠OBH =∠OBG ,OB =OB在△OBH 和△OBG 中,BH BG OBH OBG OB OB =⎧⎪∠=∠⎨⎪=⎩,∴△OBH ≌△OBG (SAS )∴∠OHB =∠OGB ,∵AO 是∠MAN 的平分线,BO 是∠ABD 的平分线,∴点O 到AD ,AB ,BD 的距离相等,∴∠ODH =∠ODF ,∵∠OHB =∠ODH +∠DOH ,∠OGB =∠ODF +∠DAB ,∴∠DOH =∠DAB =60°,∴∠GOH =120°,∴∠BOG =∠BOH =60°,∴∠DOF =∠BOG =60°,∴∠DOH =∠DOF ,在△ODH 和△ODF 中,DOH DOF OD OD ODH ODF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ODH ≌△ODF (ASA ),∴DH =DF ,∴DB =DH +BH =DF +BG =2+1=3.【点睛】本题考查了角平分线的性质,三角形全等的判定和性质,关键是依照基础示例引出正确辅助线.2.(1)①证明见解析②4211 (2)证明见解析 【解析】【分析】(1)①如图过点C 作AB 的平行线交AD 的延长线于点E ,然后说明ADB EDC △∽△,利用相似三角形的性质即可完成证明;②设BD x =,然后利用(1)的结论和已知条件即可完成解答; (2)过点D 作AB ,AC 的垂线,垂足为M 、N ,过点A 作BC 的垂线,垂足为H ;先利用角平分线定理说明DM DN =,然后再利用等面积法得到11:::22ABD ADC S S AB MD AC DN AB AC =⋅⨯=△△和11:::22ABD ADC S S BD AH OC AH BD DC =⋅⋅=△△,从而得到::AB AC BD DC =,即AB BD AC DC=. 【详解】(1)①证明:过点C 作AB 的平行线交AD 的延长线于点E ,∴1E ∠=∠,又∵AD 平分BAC ∠,∵12∠=∠,∴2E ∠=∠,∴AC CE =,又∵34∠=∠,∴ADB EDC △∽△,∴AB BD CE DC =, ∴AB BD AC DC=. ②设BD x =,∴6DC x =-,又∵AB BD AC DC =, ∴746x x=-, ∴4427x x =-,∴1142x =,42x 11=.(2)过点D 作AB ,AC 的垂线,垂足为M 、N ,过点A 作BC 的垂线,垂足为H ,∵AD 为BAC ∠的角分线,∴DM DN =,11:::22ABD ADC S S AB MD AC DN AB AC =⋅⨯=△△, 又∵11:::22ABD ADC S S BD AH OC AH BD DC =⋅⋅=△△, ∴::AB AC BD DC =,∴AB BD AC DC=. 【点睛】 本题主要考查了相似三角形的知识,其中运用等面积法、相似三角形的性质和证明、做辅助线均是解答本题的关键.3.见解析【分析】作BF 的中点E ,连接AE 、AD ,根据直角三角形得到性质就可以得出AE =BE =EF ,由BD 平分∠ABC 就可以得出∠ABE =∠DBC =22.5°,从而可以得出∠BAE =∠BAE =∠ACD =22.5°,∠AEF =45°,由∠BAC =90°,∠BDC =90°就可以得出A 、B 、C 、D 四点共圆,求出AD =DC ,证△ADC ≌△AEB 推出BE =CD ,从而得到结论.【详解】解:取BF 的中点E ,连接AE ,AD ,∵∠BAC =90°,∴AE =BE =EF ,∴∠ABD =∠BAE ,∵CD ⊥BD ,∴A ,B ,C ,D 四点共圆,∴∠DAC =∠DBC ,∵BF 平分∠ABC ,∴∠ABD =∠DBC ,∴∠DAC =∠BAE ,∴∠EAD =90°,∵AB =AC ,∴∠ABC =45°,∴∠ABD =∠DBC =22.5°,∴∠AED =45°,∴AE =AD ,在△ABE 与△ADC 中,ABE DAC BAE ACD AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC ,∴BE =CD ,∴BF =2CD .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,四点共圆,直角三角形的性质,角平分线的性质,正确的作出辅助线是解题的关键.4.(1)△ABO 的面积=4;(2)证明见解析;(3)证明见解析.【分析】(1)根据绝对值和偶次方的非负性求出a ,b ,根据三角形的面积公式计算;(2)作AF 平分∠BAC 交BD 于F 点,分别证明△ACE ≌△BAF ,△CED ≌△AFD ,根据全等三角形的性质证明;(3)过C 点作CM ⊥y 轴于M 点,过D 点作DN ⊥y 轴于N 点,证明△ACM ≌△BAO ,根据全等三角形的性质得到CM=AO=2,AM=BO=4,证明四边形ONQB 为平行四边形,得到答案.【详解】解:(1)∵2a b -+(a-2)2=0,∴2a-b=0,a-2=0,解得,a=2,b=4,∴A (0,2),B (4,0),∴OA=2,OB=4,∴△ABO 的面积=12×2×4=4;(2)作AF 平分∠BAC 交BD 于F 点,∵AB=AC ,∠CAB=90°,∴∠C=∠ABC=∠DAF=∠BAF=45°,∵∠CAE+∠BAO=∠ABF+∠BAO=90°,∴∠CAE=∠ABF ,在△ACE 和△BAF 中,CAE ABF AC AB ACE BAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACE ≌△BAF (ASA ),∴CE=AF ,在△CED 和△AFD 中,CD AD C DAF CE AF =⎧⎪∠=∠⎨⎪=⎩,∴△CED ≌△AFD (SAS )∴∠CDE=∠ADB ;(3)过C 点作CM ⊥y 轴于M 点,过D 点作DN ⊥y 轴于N 点, 则∠AMC=∠BOA=90°,∵∠CAM+∠BAO=∠ABO+∠BAO=90°,∴∠CAM=∠ABO ,在△ACM 和△BAO 中,CAM ABO CMA AOB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACM ≌△BAO (AAS ),∴CM=AO=2,AM=BO=4,∵A (0,2),P (0,-6),∴AP=8,∴PM=AP-AM=4,在△PCM 和△QPN 中,CPM PQN PMC QNP PC PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,△PCM ≌△QPN (AAS ),∴NQ=PM=4,∴四边形ONQB 为平行四边形,∴AP ∥BQ .【点睛】本题考查的是全等三角形的判定和性质,非负数的性质,掌握全等三角形的判定定理和性质定理是解题的关键.5.(1)见解析;(2)见解析;(3)∠BAC 的度数不变化.∠BAC=60°.【解析】【分析】(1)根据三角形内角和定理等量代换可得结论;(2)作AM ⊥CD 于点M ,作AN ⊥BE 于点N ,证明△ACM ≌△ABN 即可;(3)用截长补短法在CD 上截取CP=BD ,连接AP ,证明△ABD ≌△ACP ,由全等性质可知△ADP 是等边三角形,易知∠BAC 的度数.【详解】(1)∵∠BDC=∠BAC ,∠DFB=∠AFC ,又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,∴∠ABD=∠ACD ;(2)过点A作AM⊥CD于点M,作AN⊥BE于点N.则∠AMC=∠ANB=90°.∵OB=OC,OA⊥BC,∴AB=AC,∵∠ABD=∠ACD,∴△ACM≌△ABN (AAS)∴AM=AN.∴AD平分∠CDE.(到角的两边距离相等的点在角的平分线上);(3)∠BAC的度数不变化.在CD上截取CP=BD,连接AP.∵CD=AD+BD,AD=PD.∵AB=AC,∠ABD=∠ACD,BD=CP,∴△ABD≌△ACP.∴AD=AP;∠BAD=∠CAP.∴AD=AP=PD,即△ADP是等边三角形,∴∠DAP=60°.∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.【点睛】本题考查了三角形的综合,主要考查了三角形内角和定理、全等三角形的证明和性质,等腰等边三角形的性质和判定,采用合适的方法添加辅助线构造全等三角形是解题的关键. 6.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连接DF,证△FAE≌△OAE,推出AF=AO,∠AFO=∠AOF,求出OD=DF,求出BF=DF,即可得出答案;(2)在AD上截AG=OF,连接OG,证△AGO≌△OFB,推出GO=BF=OD,求出DE=GE,AD-OF=DG=2DE即可.【详解】(1)连接DF,∵OE⊥AD,∴∠AEF=∠AEO=90°,∵AD平分∠FAO,∴∠EAF=∠OAE,又∵AF=AF,∴△EAF≌△OAF(ASA),∴AF=AO,∠AFO=∠AOF,∵AD⊥OF,∴EF=EO,∴DF=DO,∴∠DFO=∠DOF,∵∠AFO=∠AOF,∴∠AFD=∠AOB=90°,∵∠AOB=90°,AO=BO,∴∠B=45°,∴∠FDB=∠AFO-∠B=45°=∠B,∴BF=DF,∴OD=BF;(2)在AD上截AG=OF,连接OG,∵∠OAB=∠B=45°,AD平分∠OAB,∴∠OAG=22.5°,∵OD=DF,∴∠DFO=∠DOF,∵∠FDB=45°=∠DFO+∠DOF,∴∠FOB=22.5°=∠OAG,∴△AGO≌△OFB(SAS),∴GO=BF=OD,∵OE⊥AD,∴DE=GE,∴AD-OF=DG=2DE.【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形性质,线段垂直平分线性质的应用,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.详见解析【分析】延长BO ,AE 并交于F ,证△ABE ≌△FBE ,推出AE=EF ,证△BOD ≌△AOF 推出BD=AF 即可.【详解】延长BO ,AE 并交于F ,∵BD 平分∠ABO ,AF ⊥BD ,∴∠1=∠2,∠AEB=∠FEB=90°,在△ABE 和△FBE 中1=2BE BEAEB FEB ∠∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△FBE ,∴AE=EF ,∵∠AOB=90゜,∠AED=90°,∠ADE=∠BDO ,∴∠2=∠OAF ,∵∠AOB=90°,∴∠DOB=∠FOA=90°,∴在△OBD 和△OAF 中2=FAO BO AOBOD AOF ∠∠⎧⎪=⎨⎪∠=∠⎩, ∴△OBD ≌△OAF ,∴BD=AF ,∵AE=EF ,∴BD=2AE .【点睛】本题考查了全等三角形的性质和判定的应用,正确添加辅助线构建全等三角形是解题的关键.8.点M 到AC 的距离为2【解析】【分析】利用图形翻折前后图形不发生变化,从而得出AB=AB′=3,DM=MN ,再利用三角形面积分割前后不发生变化,求出点M 到AC 的距离即可.【详解】∵△ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,假设这个点是B′, 作MN ⊥AC ,MD ⊥AB ,垂足分别为N ,D ,又∵Rt △ABC 中,∠BAC=90°,AB=3,∴AB=AB′=3,DM=MN ,AB′=B′C=3,S △BAC =S △BAM +S △MAC , 即12×3×6=12×MD×3+12×6×MN , ∴MD=2,所以点M 到AC 的距离是2.【点睛】本题考查了翻折变换(折叠问题),发现DM=MN ,以及AB=AB′=B′C=3,结合面积不变得出等式是解决问题的关键.9.详见解析【解析】【分析】如图,过点F 作FH BC ⊥,FG AB ⊥,垂足分别为H 、G ,根据角平分线,可得点F 是ABC ∆的内心,则有FG FH =,继而根据三角形内心的性质可得FDH FEG ∠=∠,从而可得FDH FEG ∆∆≌,继而可得FE=FD.【详解】FE=FD ,理由如下:如图,过点F 作FH BC ⊥,FG AB ⊥,垂足分别为H 、G.F 是BAC ∠,ACB ∠的平分线AD 、CE 的交点,F ∴为ABC ∆的内心,FG FH ∴=.60B ∠=︒, ()1602FAC FCA BAC BCA ∴∠+∠=∠+∠=︒, 又60FDH B BAD BAD ∠=∠+∠=︒+∠;60FEG BAD FAC FCA BAD ∠=∠+∠+∠=︒+∠,FDH FEG ∴∠=∠,又GH FH =,FDH FEG ∴∆∆≌,FD FE ∴=.【点睛】本题考查了三角形的内心的性质,全等三角形的判定与性质解题的关键是注意数形结合思想的应用,注意辅助线的作法.10.详见解析【分析】过点C 向OA 、OB 作垂线,构建全等三角形,继而根据平角定义以及线段的和差即可证得结论.【详解】如图,过点C 作CF OB ⊥与点F ,则∠F=∠CEO=90°,12∠=∠,OC=OC ,FOC EOC ∴∆≅∆,CE CF ∴=,OE OF =,CA CB =,90CEA CFB ∠=∠=︒,()R t t CAE R CBF HL ∴∆≅,4CBF ∴∠=∠,AE BF =,∵3180CBF ∠+∠=︒,34180∴∠+∠=︒,()()2OA OB OE AE OF BF OE OF OE ∴+=++-=+=.【点睛】本题考查了全等三角形的判定与性质,正确添加辅助线构建全等三角形是解题的关键.。

人教版全等三角形角平分线辅助 易错题难题提优专项训练

人教版全等三角形角平分线辅助 易错题难题提优专项训练

人教版全等三角形角平分线辅助 易错题难题提优专项训练一、全等三角形角平分线辅助1.(特例感知)(1)如图(1),ABC ∠是O 的圆周角,BC 为直径,BD 平分ABC ∠交O 于点D ,3CD =,4BD =,求点D 到直线AB 的距离.(类比迁移)(2)如图(2),ABC ∠是O 的圆周角,BC 为O 的弦,BD 平分ABC ∠交O 于点D ,过点D 作DE BC ⊥,垂足为点E ,探索线段AB ,BE ,BC 之间的数量关系,并说明理由.(问题解决)(3)如图(3),四边形ABCD 为O 的内接四边形,90ABC ∠=︒,BD 平分ABC ∠,72BD =,6AB =,求ABC 的内心与外心之间的距离.2.问题呈现:下图是小明复习全等三角形时遇到的一个问题并引发的思考,请帮助小明完成以下学习任务.请根据小明的思路,结合图①,写出完整的证明过程.结论应用:(1)如图②,在四边形ABCD 中,AB AD BC =+,DAB ∠的平分线和ABC ∠的平分线交于CD 边上点P .求证:PC PD =;(2)在(1)的条件下,如图③,若10AB =,1tan 2PAB ∠=.当PBC 有一个内角是45︒时,PAD △的面积是 .3.直线MN 与直线PQ 垂直相交于点O ,点A 在直线PQ 上运动,点B 在直线MN 上运动.(1)如图1,已知AE BE 、分别是BAO ∠和ABO ∠角的平分线,点A B 、在运动的过程中,AEB ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出AEB ∠的大小.(2)如图2,已知AB 不平行CD AD BC ,、分别是BAP ∠和ABM ∠的角平分线,又DE CE 、分别是ADC ∠和BCD ∠的角平分线,点A B 、在运动的过程中,CED ∠的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出CED ∠的度数. (3)如图3,延长BA 至G ,已知BAO OAG ∠∠、的角平分线与BOQ ∠的角平分线及反向延长线相交于E F 、,在AEF 中,如果有一个角是另一个角的3倍,则ABO ∠的度数为____(直接写答案)4.∠MON=90°,点A ,B 分别在OM 、ON 上运动(不与点O 重合).(1)如图①,AE 、BE 分别是∠BAO 和∠ABO 的平分线,随着点A 、点B 的运动,∠AEB= °(2)如图②,若BC 是∠ABN 的平分线,BC 的反向延长线与∠OAB 的平分线交于点D ①若∠BAO=60°,则∠D= °.②随着点A ,B 的运动,∠D 的大小会变吗?如果不会,求∠D 的度数;如果会,请说明理由.(3)如图③,延长MO 至Q ,延长BA 至G ,已知∠BAO ,∠OAG 的平分线与∠BOQ 的平分线及其延长线相交于点E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,求∠ABO 的度数.5.如图,已知BC 是⊙O 的弦,A 是⊙O 外一点,△ABC 为正三角形,D 为BC 的中点,M 为⊙O 上一点.(1)若AB 是⊙O 的切线,求∠BMC ;(2)在(1)的条件下,若E ,F 分别是AB ,AC 上的两个动点,且∠EDF =120︒,⊙O 的半径为2,试问BE +CF 的值是否为定值?若是,求出这个定值;若不是,请说明理由. 6.如图所示,90B C ∠=∠=,E 是BC 的中点,DE 平分ADC ∠.(1)求证:AE 是DAB ∠的平分线;(2)若2cm,BAD=60CD =∠,求AD 的长.7.如图所示,在四边形ABCD 中,AC 平分,DAB CD CB ∠=,求证:180B D ∠+∠=.8.如图,在Rt △ABC 中,∠BAC=90°,AB=3,M 为边BC 上的点,连结AM.如果将△ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,求点M 到AC 的距离.9.如图,在四边形OACB 中,CE OA ⊥于E ,12∠=∠,CA CB =.求证:34180∠+∠=︒;2OA OB OE +=.10.如图所示,在ABC ∆中,AD 是它的角平分线.求证:::ABD ACD S S AB AC ∆∆=【参考答案】***试卷处理标记,请不要删除一、全等三角形角平分线辅助1.(1)125;(2)2AB BC BE +=,理由见解析;(35 【分析】 (1)如图①中,作DF AB ⊥于F ,DE BC ⊥于E .理由面积法求出DE ,再利用角平分线的性质定理可得DF DE =解决问题;(2)如图②中,结论:2AB BC BE +=.只要证明()DFA DEC ASA ∆≅∆,推出AF CE =,Rt BDF Rt BDE(HL)∆≅∆,推出AF BE =即可解决问题;(3)如图③,过点D 作DF ⊥BA ,交BA 的延长线于点F ,DE ⊥BC ,交BC 于点E ,连接AC ,作△ABC △ABC 的内切圆,圆心为M ,N 为切点,连接MN ,OM .由(1)(2)可知,四边形BEDF 是正方形,BD 是对角线.由切线长定理可知:610842AN +-==,推出541ON =-=,由面积法可知内切圆半径为2,在Rt OMN ∆中,理由勾股定理即可解决问题;【详解】解:(1)如图①中,作DF AB ⊥于F ,DE BC ⊥于E .图①BD 平分ABC ∠,DF AB ⊥,DE BC ⊥,DF DE ∴=,BC 是直径,90BDC ∴∠=︒,2222435BC BD CD ∴=+=+=,1122BC DE BD DC =, 125DE ∴=, 125DF DE =∴=. 故答案为125 (2)如图②中,结论:2AB BC BE +=.图②理由:作DF BA ⊥于F ,连接AD ,DC .BD 平分ABC ∠,DE BC ⊥,DF BA ⊥,DF DE ∴=,90DFB DEB ∠=∠=︒,180ABC ADC ∠+∠=︒,180ABC EDF ∠+∠=︒,ADC EDF ∴∠=∠,FDA CDE ∴∠=∠,90DFA DEC ∠=∠=︒,()DFA DEC ASA ∴∆≅∆,AF CE ∴=,BD BD =,DF DE =,Rt BDF Rt BDE(HL)∴∆≅∆,BF BE ∴=,2AB BC BF AF BE CE BE ∴+=-++=.(3)如图③,过点D 作DF ⊥BA ,交BA 的延长线于点F ,DE ⊥BC ,交BC 于点E ,连接AC ,作△ABC △ABC 的内切圆,圆心为M ,N 为切点,连接MN ,OM .由(1)(2)可知,四边形BEDF 是正方形,BD 是对角线.图③ 72BD =,∴正方形BEDF 的边长为7,由(2)可知:28BC BE AB =-=,226810AC ∴=+=,由切线长定理可知:610842AN +-==, 541ON ∴=-=,设内切圆的半径为r , 则11111068682222r r r ⨯+⨯⨯+⨯⨯=⨯⨯⨯ 解得2r , 即2MN =,在Rt OMN ∆中,2222215OM MN ON =+=+=. 5【点睛】本题属于圆综合题,考查了角平分线的性质定理,全等三角形的判定和性质,勾股定理,解直角三角形,正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.2.问题呈现:见解析;结论应用:(1)见解析;(2)403或8 【分析】 问题呈现:由“SAS ”可证△MOP ≌△NOP ,可得PM =PN ;结论应用:(1)在AB 上截取AE =AD ,连接PE ,由“SAS ”可证△ADP ≌△AEP ,△BPC ≌△BPE ,可得PD =PE =PC ;(2)延长AP ,BC 交于点H ,由“ASA ”可证△ADP ≌△HCP ,可得CP =DP ,AD =CH ,S △ADP =S △CPH ,分三种情况讨论,由角平分线的性质和锐角三角函数可求解.【详解】问题呈现:证明:∵OC 平分AOB ∠,∴AOC BOC ∠=∠.在POM 和PON △中,OP OP POM PON OM ON =⎧⎪∠=∠⎨⎪=⎩.∴POM PON △≌△.结论应用:在AB 上截取AE AD =,∵AP 平分DAB ∠,∴DAP BAP ∠=∠,∵AP AP =,∴ADP AEP △≌△.∴PE PD =.∵AB AD BC =+,∴BE BC =,∵BP 平分ABC ∠,∴ABP CBP ∠=∠.∵BP BP =.∴PBE PBC △≌△.∴PE PC =.∴PC PD =.(2)由(1)可证∠D =∠AEP ,∠PCB =∠PEB ,∵∠AEP +∠PEB =180°,∴∠PCB+∠D=180°,∴AD∥BC,∵AB=10,tan∠PAB=PBPA=12,∴PA=2PB,∵PA2+PB2=AB2,∴PB=25,PA=45,如图③,延长AP,BC交于点H,∵AD∥BC,∴∠DAP=∠H,∴∠H=∠BAP,∴AB=BH=10,又∵PB平分∠ABC,∴BP⊥AP,AP=PH=45,∵∠DAP=∠H,AP=PH,∠DPA=∠CPH,∴△ADP≌△HCP(ASA),∴CP=DP,AD=CH,S△ADP=S△CPH,若∠PBC=45°时,则∠PBC=∠H=45°,∴PB=PH(不合题意舍去),若∠BPC=45°时,则∠HPC=∠BPC=45°,如图④,过点C作CN⊥BP于N,CM⊥PH于M,∴CM=CN,∵S△PBH=12×BP×PH=12×BP×CN+12×PH×CM,∴CM=CN 453,∴S △PCH =12×45×453=403=S △ADP ; 若∠PCB =45°时,如图⑤,过点P 作PF ⊥BC 于F ,∵∠PAB =∠H ,∴tan H =tan ∠PAB =12, ∴12PF FH , ∴FH =2PF , ∵PF 2+FH 2=PH 2=80,∴PF =4,FH =8,∵PF ⊥BC ,∠BCP =45°,∴∠PCB =∠FPC =45°,∴CF =PF =4,∴CH =4,∴S △ADP =S △CPH =12×4×4=8, 故答案为:8或403. 【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,角平分线的性质,勾股定理,锐角三角函数等知识,添加恰当辅助线构造全等三角形是本题的关键. 3.(1)不发生变化,∠AEB =135°;(2)不发生变化,∠CED =67.5°;(3)60°或45°【分析】(1)根据直线MN 与直线PQ 垂直相交于O 可知∠AOB =90°,再由AE 、BE 分别是∠BAO 和∠ABO 的角平分线得出∠BAE =12∠OAB ,∠ABE =12∠ABO ,由三角形内角和定理即可得出结论;(2)延长A D 、BC 交于点F ,根据直线MN 与直线PQ 垂直相交于O 可得出∠AOB =90°,进而得出∠OAB +∠OBA =90°,故∠PAB +∠MBA =270°,再由A D 、BC 分别是∠BAP 和∠ABM 的角平分线,可知∠BAD =12∠BAP ,∠ABC =12∠ABM ,由三角形内角和定理可知∠F =45°,再根据DE、CE分别是∠ADC和∠BCD的角平分线可知∠CDE+∠DCE=112.5°,进而得出结论;(3)由∠BAO与∠BOQ的角平分线相交于E可知∠EAO=12∠BAO,∠EOQ=12∠BOQ,进而得出∠E的度数,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=12∠OAB,∠ABE=12∠ABO,∴∠BAE+∠ABE=12(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长A D、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵A D、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=12∠BAP,∠ABC=12∠ABM,∴∠BAD+∠ABC=12(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠CED =67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍弃);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍弃).∴∠ABO为60°或45°.故答案为:60°或45°.【点睛】本题考查的是平行线的判定和性质,三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.4.(1)135°;(2)①45°,②不发生变化,45°;(3)60°或45°【分析】(1)利用三角形内角和定理、两角互余、角平分线性质即可求解;(2)①利用对顶角相等、两角互余、两角互补、角平分线性质即可求解;②证明和推理过程同①的求解过程;(3)由(2)的证明求解思路,不难得出EAF∠=90°,如果有一个角是另一个角的3倍,所以不确定是哪个角是哪个角的三倍,所以需要分情况讨论;值得注意的是,∠MON=90°,所以求解出的∠ABO一定要小于90°,注意解得取舍.【详解】(1)()11801802118090180451352AEB EBA BAE OBA BAO ∠=︒-∠-∠=︒-∠+∠=︒-⨯︒=︒-︒=︒(2)①如图所示AD 与BO 交于点E ,()9060301180307521909030602180180756045OBA DBO NBC DEB OEA OAB D DBE DEB ∠=︒-︒=︒∠=∠=︒-︒=︒∠=∠=︒-∠=︒-︒=︒∠=︒-∠-∠=︒-︒-︒=︒②∠D 的度数不随A 、B 的移动而发生变化设BAD α∠=,因为AD 平分∠BAO ,所以2BAO α∠=,因为∠AOB=90°,所以180902ABN ABO AOB BAO α∠=︒-∠=∠+∠=+。

初二数学全等三角形角平分线辅助测试提优卷试题

初二数学全等三角形角平分线辅助测试提优卷试题

初二数学全等三角形角平分线辅助测试提优卷试题一、全等三角形角平分线辅助1.问题呈现:下图是小明复习全等三角形时遇到的一个问题并引发的思考,请帮助小明完成以下学习任务.请根据小明的思路,结合图①,写出完整的证明过程.结论应用:(1)如图②,在四边形ABCD 中,AB AD BC =+,DAB ∠的平分线和ABC ∠的平分线交于CD 边上点P .求证:PC PD =;(2)在(1)的条件下,如图③,若10AB =,1tan 2PAB ∠=.当PBC 有一个内角是45︒时,PAD △的面积是 .2.阅读理解如图1,ABC 中,沿BAC ∠的平分线1AB 折叠,剪掉重叠部分;将余下部分沿11B AC ∠的平分线12A B 折叠,剪掉重叠部分;……;将余下部分沿∠n n B A C 的平分线1n n A B +折叠,点n B 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称BAC ∠是ABC 的好角.情形一:如图2,沿等腰三角形ABC 顶角BAC ∠的平分线1AB 折叠,点B 与点C 重合;情形二:如图3,沿ABC 的BAC ∠的平分线1AB 折叠,剪掉重叠部分;将余下的部分沿11B AC ∠的平分线12A B 折叠,此时点1B 与点C 重合.探究发现(1)ABC 中,2B C ∠=∠,经过两次折叠,问BAC ∠ ABC 的好角(填写“是”或“不是”);(2)若经过三次折叠发现BAC ∠是ABC 的好角,请探究B 与C ∠(假设B C ∠>∠)之间的等量关系 ;根据以上内容猜想:若经过n 次折叠BAC ∠是ABC 的好角,则B 与C ∠(假设B C ∠>∠)之间的等量关系为 ;应用提升:(3)小丽找到一个三角形,三个角分别为15︒,60︒,105︒,发现 是此三角形的好角;(4)如果一个三角形的最小角是10︒,且满足该三角形的三个角均是此三角形的好角; 则此三角形另外两个角的度数 .3.阅读资料,解决问题.人教版《数学九年级(下册)》的30页有这样一个思考问题:问题:如图,在ABC △中,DE BC ∥交AB ,AC 于点D ,E ,如果通过“相似的定义”证明ADE ABC △△∽?分析:根据“两直线平行,同位角相等”容易得出三对对应角分别相等,再根据“平行线分线段成比例”的基本事实,容易得出AD AE AB AC=,所以这个问题的核心时如何证明“DE AE BC AC =”. 证明思路:过点E 作EF AB ∥交BC 于点F ,构造平行四边形BDEF ,得到DE BF =,从而将比例式中的DE ,BC 转化为共线的两条线段BF ,BC ,同时也构造了基本图形“”,得到BF AE BC AC=,从而得证.解决问题:(1)①类比资料中的证明思路,请你证明“三角形内角平分线定理”.三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.已知:如图1,ABC △中,AD 是角平分线. 求证:AB BD AC DC=.②运用“三角形内角平分线定理”填空:已知:如图2,ABC △中,AD 是角平分线,7AB =,4AC =,6BC =,则BD =__________.(2)我们知道,如果两个三角形有相同的高或者相等的高,那么它们面积的比就等于底的比.请你通过研究ABD △和ACD 面积的比来证明三角形内角平分线定理.已知:如图3,ABC △中,AD 是角平分线.求证:AB BD AC DC=.4.直线MN 与直线PQ 垂直相交于点O ,点A 在直线PQ 上运动,点B 在直线MN 上运动.(1)如图1,已知AE BE 、分别是BAO ∠和ABO ∠角的平分线,点A B 、在运动的过程中,AEB ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出AEB ∠的大小.(2)如图2,已知AB 不平行CD AD BC ,、分别是BAP ∠和ABM ∠的角平分线,又DE CE 、分别是ADC ∠和BCD ∠的角平分线,点A B 、在运动的过程中,CED ∠的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出CED ∠的度数. (3)如图3,延长BA 至G ,已知BAO OAG ∠∠、的角平分线与BOQ ∠的角平分线及反向延长线相交于E F 、,在AEF 中,如果有一个角是另一个角的3倍,则ABO ∠的度数为____(直接写答案)5.如图1,已知正方形ABCD 的边长为1,点E 在边BC 上,若∠AEF=90°,且EF 交正方形的外角∠DCM 的平分线CF 于点F .(1)图1中若点E 是边BC 的中点,我们可以构造两个三角形全等来证明AE=EF ,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E 在线段BC 上滑动(不与点B ,C 重合).①AE=EF 是否一定成立?说出你的理由;②在如图2所示的直角坐标系中抛物线y=ax 2+x+c 经过A 、D 两点,当点E 滑动到某处时,点F 恰好落在此抛物线上,求此时点F 的坐标.6.阅读下面材料:小明遇到这样一个问题:如图一,△ABC 中,∠A=90°,AB=AC ,BD 平分∠ABC ,猜想线段AD 与DC 数量关系.小明发现可以用下面方法解决问题:作DE ⊥BC 交BC 于点E :(1)根据阅读材料可得AD 与DC 的数量关系为__________.(2)如图二,△ABC 中,∠A=120°,AB=AC ,BD 平分∠ABC ,猜想线段AD 与DC 的数量关系,并证明你的猜想.(3)如图三,△ABC 中,∠A=100°,AB=AC ,BD 平分∠ABC ,猜想线段AD 与BD 、BC 的数量关系,并证明你的猜想.7.如图所示,在四边形ABCD 中,AC 平分,DAB CD CB ∠=,求证:180B D ∠+∠=.8.如图,在ABC ∆中,2ABC C ∠=∠,BE 平分ABC ∠,交AC 于E ,AD BE ⊥于D ,求证:2AC BD =.9.如图,ABC ∆的外角ACD ∠的平分线CP 与内角ABC ∠的平分线BP 交于点P ,若40BPC ∠=︒,求CAP ∠的度数.10.如图,在ABC ∆中,AB AC >,AD 平分BAC ∠交BC 于D ,求证:AB AC BD CD ->-.【参考答案】***试卷处理标记,请不要删除一、全等三角形角平分线辅助1.问题呈现:见解析;结论应用:(1)见解析;(2)403或8 【分析】问题呈现:由“SAS ”可证△MOP ≌△NOP ,可得PM =PN ;结论应用:(1)在AB 上截取AE =AD ,连接PE ,由“SAS ”可证△ADP ≌△AEP ,△BPC ≌△BPE ,可得PD =PE =PC ;(2)延长AP ,BC 交于点H ,由“ASA ”可证△ADP ≌△HCP ,可得CP =DP ,AD =CH ,S △ADP =S △CPH ,分三种情况讨论,由角平分线的性质和锐角三角函数可求解.【详解】问题呈现:证明:∵OC 平分AOB ∠,∴AOC BOC ∠=∠.在POM 和PON △中, OP OP POM PON OM ON =⎧⎪∠=∠⎨⎪=⎩.∴POM PON △≌△.结论应用:在AB 上截取AE AD =,∵AP 平分DAB ∠,∴DAP BAP ∠=∠,∵AP AP =,∴ADP AEP △≌△.∴PE PD =.∵AB AD BC=+,∴BE BC=,∵BP平分ABC∠,∴ABP CBP∠=∠.∵BP BP=.∴PBE PBC△≌△.∴PE PC=.∴PC PD=.(2)由(1)可证∠D=∠AEP,∠PCB=∠PEB,∵∠AEP+∠PEB=180°,∴∠PCB+∠D=180°,∴AD∥BC,∵AB=10,tan∠PAB=PBPA=12,∴PA=2PB,∵PA2+PB2=AB2,∴PB=25,PA=45,如图③,延长AP,BC交于点H,∵AD∥BC,∴∠DAP=∠H,∴∠H=∠BAP,∴AB=BH=10,又∵PB平分∠ABC,∴BP⊥AP,AP=PH=5∵∠DAP=∠H,AP=PH,∠DPA=∠CPH,∴△ADP≌△HCP(ASA),∴CP=DP,AD=CH,S△ADP=S△CPH,若∠PBC=45°时,则∠PBC=∠H=45°,∴PB=PH(不合题意舍去),若∠BPC=45°时,则∠HPC=∠BPC=45°,如图④,过点C作CN⊥BP于N,CM⊥PH于M,∴CM =CN ,∵S △PBH =12×BP ×PH =12×BP ×CN +12×PH ×CM , ∴CM =CN =453, ∴S △PCH =12×45×453=403=S △ADP ; 若∠PCB =45°时,如图⑤,过点P 作PF ⊥BC 于F ,∵∠PAB =∠H ,∴tan H =tan ∠PAB =12, ∴12PF FH , ∴FH =2PF , ∵PF 2+FH 2=PH 2=80,∴PF =4,FH =8,∵PF ⊥BC ,∠BCP =45°,∴∠PCB =∠FPC =45°,∴CF =PF =4,∴CH =4,∴S △ADP =S △CPH =12×4×4=8, 故答案为:8或403. 【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,角平分线的性质,勾股定理,锐角三角函数等知识,添加恰当辅助线构造全等三角形是本题的关键.2.(1)是;(2)3∠=∠B C ;∠=∠B n C ;(3)60︒和105︒;(4)另外两个角的度数分别为160︒和10︒【分析】(1)由沿BAC ∠的平分线1AB 折叠,得11B AA B ∠=∠,且1111AA B C A B C ∠=∠+∠,沿11B AC ∠的平分线12A B 折叠,此时点1B 与C 重合,可得11AB C C ∠=∠,即可证2B C ∠=∠.(2)由沿BAC ∠的平分线1AB 折叠,得11B AA B ∠=∠,由将余下部分沿11B AC ∠的平分线12A B 折叠,得11122A B C A A B ∠=∠,最后沿22B A C ∠的平分线23A B 折叠,点2B 与点C 重合,得22C A B C ∠=∠,由11B A B C C ∠=∠+∠,可证3∠=∠B C ;由小丽展示的情形一当B C ∠=∠时;由探究(1)当2B C ∠=∠时;由探究(2)当3∠=∠B C 时,它们的BAC ∠均是ABC 的好角;可推经过n 次折叠,BAC ∠是ABC 的好角,则B 与C ∠的等量关系为∠=∠B n C .(3)由(2)得∠=∠B n C ,可计算60,105︒︒是ABC 的好角.(4)由(2)知∠=∠B n C ,BAC ∠是ABC 的好角,已知中一个三角形的最小角是10︒,且这个三角形三个角均是ABC 的好角,可设另外两个角为10m ︒、10mn ︒,(其中,m n 都是正整数),依题意列式101010180m mn ++=,可求解得.【详解】(1)ABC 中,2B C ∠=∠,经过两次折叠,BAC ∠是ABC 的好角; 理由如下:沿BAC ∠的平分线1AB 折叠,11B AA B ∴∠=∠;将余下部分沿11B AC ∠的平分线12A B 折叠,此时点1B 与C 重合,11A B C C ∴∠=∠;1111AA B C A B C ∠=∠+∠;2B C ∴∠=∠,故答案是:是;(2)在ABC 中,沿BAC ∠的平分线1AB 折叠,剪掉重复部分;将余下部分沿11B AC ∠的平分线12A B 折叠,剪掉重复部分,将余下部分沿22B A C ∠的平分线23A B 折叠,点2B 与点C 重合,则BAC ∠是ABC 的好角.证明:11B AA B ∠=∠,22,C A B C ∠=∠,122222A A B C A B C C ∴∠=∠+∠=∠,11B A B C C ∠=∠+∠11122A B C A A B ∠=∠,2C B C ∠∴=+∠∠,3B C ∴∠=∠,由小丽展示的情形一知,当B C ∠=∠时,BAC ∠是ABC 的好角;由探究(1)知,当2B C ∠=∠时,BAC ∠是ABC 的好角;由探究(2)知,当3∠=∠B C 时,BAC ∠是ABC 的好角;故若经过n 次折叠,BAC ∠是ABC 的好角,则B 与C ∠的等量关系为∠=∠B n C . 故答案为:3;B C B n C ∠=∠∠=∠.(3)由(2)知,∠=∠B n C ,60415︒=⨯︒,105715︒=⨯︒,60,105∴︒︒是ABC 的好角.故答案为:60,105︒︒.(4)由(2)知∠=∠B n C ,BAC ∠是ABC 的好角,一个三角形的最小角是10︒,且这个三角形三个角均是ABC 的好角,可设另外两个角为10m ︒、10mn ︒,(其中,m n 都是正整数).依题意得101010180m mn ++=,化简得(1)17m n +=,,m n 都是正整数,∴,1m n +都是17的整数因子,∴1m =,117n +=,∴1m =,16n =,∴1010m ︒=︒,10160mn ︒=︒,即该三角形的另外两个角是:10︒和160︒.故答案为:10,160︒︒.【点睛】本题考查的是折叠的性质应用、三角形的外角等不相邻的两个内角之和,并涉及一些数学归纳法思想来推导结论,一道比较综合知识点的新颖考题,在第(4)小题中不需要去解出根,而是根据这种限定条件来确定解,这是一种不同于以往的解题思路.3.(1)①证明见解析②4211(2)证明见解析 【解析】【分析】(1)①如图过点C 作AB 的平行线交AD 的延长线于点E ,然后说明ADB EDC △∽△,利用相似三角形的性质即可完成证明;②设BD x =,然后利用(1)的结论和已知条件即可完成解答; (2)过点D 作AB ,AC 的垂线,垂足为M 、N ,过点A 作BC 的垂线,垂足为H ;先利用角平分线定理说明DM DN =,然后再利用等面积法得到11:::22ABD ADC S S AB MD AC DN AB AC =⋅⨯=△△和11:::22ABD ADC S S BD AH OC AH BD DC =⋅⋅=△△,从而得到::AB AC BD DC =,即AB BD AC DC=. 【详解】(1)①证明:过点C 作AB 的平行线交AD 的延长线于点E ,∴1E ∠=∠,又∵AD 平分BAC ∠,∵12∠=∠,∴2E ∠=∠, ∴AC CE =,又∵34∠=∠,∴ADB EDC △∽△,∴AB BD CE DC =, ∴AB BD AC DC=. ②设BD x =,∴6DC x =-,又∵AB BD AC DC =, ∴746x x=-, ∴4427x x =-,∴1142x =,42x 11=.(2)过点D 作AB ,AC 的垂线,垂足为M 、N ,过点A 作BC 的垂线,垂足为H ,∵AD 为BAC ∠的角分线,∴DM DN =,11:::22ABD ADC S S AB MD AC DN AB AC =⋅⨯=△△, 又∵11:::22ABD ADC S S BD AH OC AH BD DC =⋅⋅=△△, ∴::AB AC BD DC =, ∴AB BD AC DC=. 【点睛】 本题主要考查了相似三角形的知识,其中运用等面积法、相似三角形的性质和证明、做辅助线均是解答本题的关键.4.(1)不发生变化,∠AEB =135°;(2)不发生变化,∠CED =67.5°;(3)60°或45°【分析】(1)根据直线MN 与直线PQ 垂直相交于O 可知∠AOB =90°,再由AE 、BE 分别是∠BAO 和∠ABO 的角平分线得出∠BAE =12∠OAB ,∠ABE =12∠ABO ,由三角形内角和定理即可得出结论;(2)延长A D 、BC 交于点F ,根据直线MN 与直线PQ 垂直相交于O 可得出∠AOB =90°,进而得出∠OAB +∠OBA =90°,故∠PAB +∠MBA =270°,再由A D 、BC 分别是∠BAP 和∠ABM 的角平分线,可知∠BAD =12∠BAP ,∠ABC =12∠ABM ,由三角形内角和定理可知∠F =45°,再根据DE 、CE 分别是∠ADC 和∠BCD 的角平分线可知∠CDE +∠DCE =112.5°,进而得出结论;(3)由∠BAO 与∠BOQ 的角平分线相交于E 可知∠EAO =12∠BAO ,∠EOQ =12∠BOQ ,进而得出∠E 的度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF =90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】解:(1)∠AEB 的大小不变,∵直线MN 与直线PQ 垂直相交于O ,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=12∠OAB,∠ABE=12∠ABO,∴∠BAE+∠ABE=12(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长A D、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵A D、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=12∠BAP,∠ABC=12∠ABM,∴∠BAD+∠ABC=12(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠CED =67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=12∠BAO,∠EOQ=12∠BOQ,∴∠E=∠EOQ-∠EAO=12(∠BOQ-∠BAO)=12∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍弃);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍弃).∴∠ABO为60°或45°.故答案为:60°或45°.【点睛】本题考查的是平行线的判定和性质,三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.5.(1)见解析;(2)①见解析;②点F的坐标为F(,)【解析】试题分析:(1)由于∠AEF=90°,故∠FEC=∠EAB,而E是BC中点,从而只需取AB点G,连接EG,则有AG=CE,BG=BE,∠AGE=∠ECF,易得△AGE≌△ECF;(2)①由于AB=BC,所以只要AG=EC就有BG=BE,就同样可得△AGE≌△ECF,于是截取AG=EC,证全等即可;②根据A、D两点的坐标求出抛物线解析式,设出F点的横坐标,纵坐标用横坐标表示,将F点的坐标代入抛物线解析式即可求出坐标.解:(1)如图1,取AB的中点G,连接EG.△AGE≌△ECF.(2)①若点E在线段BC上滑动时AE=EF总成立.证明:如图2,在AB上截取AG=EC.∵AB=BC,∴BG=BE,∴△GBE是等腰直角三角形,∴∠AGE=180°﹣45°=135°,∵CF平分正方形的外角,∴∠ECF=135°,∴∠AGE=∠ECF,而∠BAE+∠AEB=∠CEF+∠AEB=90°,∴∠BAE=∠CEF,∴△AGE≌△ECF,∴AE=EF.②由题意可知抛物线经过A(0,1),D(1,1)两点,∴,解得,∴抛物线解析式为y=﹣x2+x+1,过点F作FH⊥x轴于H,由①知,FH=BE=CH,设BH=a,则FH=a﹣1,∴点F的坐标为F(a,a﹣1),∵点F恰好落在抛物线y=﹣x2+x+1上,∴a﹣1=﹣a2+a+1,∴a=(负值不合题意,舍去),点F的坐标为F(,).考点:二次函数综合题.6.(1)CD=AD;(2)CD=AD;(3)BC=AD+BD.【解析】【分析】(1)由角平分线的性质可得AD=DE,根据∠A=90°,AB=AC,可得∠C=45°,由DE⊥BC可得△DEC是等腰直角三角形,可得CD=DE,进而可得答案;(2)在BC上截取BE=AB,连接DE,利用SAS可证明△ABD≌△EBD,可得AD=DE,∠BED=∠A=120°,由等腰三角形的性质可得∠C=30°,利用三角形外角性质可得∠CDE=90°,利用含30°角的直角三角形的性质即可得答案;(3)在BC上取一点E,使BE=BD,作DF⊥BA于F,DG⊥BC于G,由角平分线的性质就可以得出DF=DG,利用AAS可证明△DAF≌△DEG,可得 DA=DE,利用外角性质可求出∠EDC=40°,进而可得DE=CE,即可得出结论.【详解】(1)∵∠A=90°,BD平分∠ABC,DE⊥BC,∴DE=AD,∵∠A=90°,AB=AC,∴∠C=45°,∴△CDE是等腰直角三角形,∴CD=DE=AD,故答案为:CD=AD(2)如图,在BC上截取BE=AB,连接DE,∵BD平分∠ABC,∴∠ABD=∠DBE,在△ABD和△EBD中,,∴△ABD≌△EBD,∴DE=AD,∠BED=∠A=120°,∵AB=AC,∴∠C=∠ABC=30°,∴∠CDE=∠BED-∠C=90°,∴CD=DE=AD.(3)如图,在BC上取一点E,是BE=BD,作DF⊥BA于F,DG⊥BC于G,∴∠DFA=∠DGE=90°.∵BD平分∠ABC,DF⊥BA,DG⊥BC,∴DF=DG.∵∠BAC=100°,AB=AC,∴∠FAD=80°,∠ABC=∠C=40°,∴∠DBC=20°,∵BE=BD,∴∠BED=∠BDE=80°,∴∠FAD=∠BED.在△DAF和△DEG中,,∴△DAF≌△DEG(AAS),∴AD=ED.∵∠BED=∠C+∠EDC,∴80°=40+∠EDC,∴∠EDC=40°,∴∠EDC=∠C,∴DE=CE,∴AD=CE.∵BC=BE+CE,∴BC=BD+AD.【点睛】本题考查了等腰三角形的性质的运用,角平分线的性质的运用,全等三角形的判定及性质的运用,解答时合理添加辅助线是解答本题的关键.7.详见解析【解析】【分析】过点C 分别作CE AB ⊥于E ,CF AD ⊥于F ,由条件可得出△CDF ≌△CEB ,可得∠B=∠FDC ,进而可证明∠B+∠ADC=180°.【详解】证明:过点C 分别作CE AB ⊥于E ,CF AD ⊥于F ,∵AC 平分∠BAD ,CE ⊥AB 于E ,CF AD ⊥于F ,∴CF=CE ,在Rt △CDF 与Rt △CEB 中,CF=CE CD=CB⎧⎨⎩ ∴CBE CDF ∆∆≌, CBE CDF ∴∠=∠,180ADC CDF ∠+∠=︒,A C 180B D ∴∠+∠=︒ .【点睛】本题考查全等三角形的判定和性质,关键是根据HL 证明△CDF ≌△CEB 进而得出∠B=∠FDC .8.详见解析【解析】【分析】延长BD 至N ,使DN=BD ,易得AD 垂直平分BN ,继而证得AE=EN ,则可证得结论.【详解】延长BD 至N ,使DN=BD ,连接AN .∵AD ⊥BE ,∴AD 垂直平分BN ,∴AB=AN ,∴∠N=∠ABN ,又∵BE 平分∠ABC ,∠ABC=2∠C ,∴∠ABN=∠NBC=∠C ,∴∠NBC=∠C ,∴AN ∥BC ,∴∠C=∠NAC ,∴∠NAC=∠N ,∴AE=EN ,∵BE=EC ,∴AC=BN=2BD .【点睛】本题考查了等腰三角形的性质与判定、线段垂直平分线的性质以及平行线的判定与性质.注意掌握辅助线的作法,注意数形结合思想的应用.9.50°【解析】【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP ,即可得出答案.【详解】延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD=x°,∵CP 平分∠ACD ,∴∠ACP=∠PCD=x°,PM=PN ,∵BP 平分∠ABC ,∴∠ABP=∠PBC ,PF=PN ,∴PF=PM ,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD-∠BPC=(x-40)°,∴∠BAC=∠ACD-∠ABC=2x°-(x°-40°)-(x°-40°)=80°,∴∠CAF=100°,在Rt △PFA 和Rt △PMA 中,PA PA PM PF =⎧⎨=⎩, ∴Rt △PFA ≌Rt △PMA(HL),∴∠CAP=∠FAP ,又∵∠CAP+∠PAF=∠CAF ,∴∠CAP =50°.【点睛】本题主要考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF 是解决问题的关键.10.详见解析【解析】【分析】可以在AB 上截取AE=AC ,构造三角形全等,再结合三角形三边关系可证得结论.【详解】在AB 上截取AE=AC ,则BE=AB-AC ,在△AED 和△ACD 中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△AED ≌△ACD(SAS),∴DE=DC ,在△BDE 中,BD-DE <BE(三角形两边之差小于第三边),∴BE>BD-CD ,即AB-AC>BD-CD.【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,构造三角形全等是解题的关键.。

初中数学数学全等三角形角平分线辅助的专项培优练习题(及答案

初中数学数学全等三角形角平分线辅助的专项培优练习题(及答案

初中数学数学全等三角形角平分线辅助的专项培优练习题(及答案一、全等三角形角平分线辅助1.(特例感知)(1)如图(1),ABC ∠是O 的圆周角,BC 为直径,BD 平分ABC ∠交O 于点D ,3CD =,4BD =,求点D 到直线AB 的距离.(类比迁移)(2)如图(2),ABC ∠是O 的圆周角,BC 为O 的弦,BD 平分ABC ∠交O 于点D ,过点D 作DE BC ⊥,垂足为点E ,探索线段AB ,BE ,BC 之间的数量关系,并说明理由.(问题解决)(3)如图(3),四边形ABCD 为O 的内接四边形,90ABC ∠=︒,BD 平分ABC ∠,72BD =,6AB =,求ABC 的内心与外心之间的距离.2.如图,已知等腰直角三角形ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于点D ,试说明:BF =2CD .3.如图1,点A 是直线MN 上一点,点B 是直线PQ 上一点,且MN//PQ .NAB ∠和ABQ ∠的平分线交于点C .(1)求证:BC AC ⊥;(2)过点C 作直线交MN 于点D (不与点A 重合),交PQ 于点E,①若点D 在点A 的右侧,如图2,求证:AD BE AB +=;②若点D 在点A 的左侧,则线段AD 、BE 、AB 有何数量关系?直接写出结论,不说理由.4.在平面直角坐标中,等腰Rt △ABC 中,AB=AC ,∠CAB=90°,A (0,a ),B (b ,0).(1)如图1,若2a b -+(a-2)2=0,求△ABO 的面积;(2)如图2,AC 与x 轴交于D 点,BC 与y 轴交于E 点,连接DE ,AD=CD ,求证:∠ADB=∠CDE ;(3)如图3,在(1)的条件下,若以P (0,-6)为直角顶点,PC 为腰作等腰Rt △PQC ,连接BQ ,求证:AP ∥BQ .5.如图所示,90B C ∠=∠=,E 是BC 的中点,DE 平分ADC ∠.(1)求证:AE 是DAB ∠的平分线;(2)若2cm,BAD=60CD =∠,求AD 的长.6.如图,OA=OB ,∠AOB=90°,BD 平分∠ABO 交OA 于点D ,AE ⊥BD 于E ,求证:BD=2AE.7.如图,ABC ∆的外角ACD ∠的平分线CP 与内角ABC ∠的平分线BP 交于点P ,若40BPC ∠=︒,求CAP ∠的度数.8.如图,在ABC ∆中,60B ∠=︒,AD 、CE 分别是BAC ∠、ACB ∠的平分线,AD 、CE 相交于点F ,试判断FE 和FD 之间的数量关系.9.如图,在四边形OACB 中,CE OA ⊥于E ,12∠=∠,CA CB =.求证:34180∠+∠=︒;2OA OB OE +=.10.如图,在ABC ∆中,AB AC >,AD 平分BAC ∠交BC 于D ,求证:AB AC BD CD ->-.【参考答案】***试卷处理标记,请不要删除一、全等三角形角平分线辅助1.(1)125;(2)2AB BC BE +=,理由见解析;(35 【分析】 (1)如图①中,作DF AB ⊥于F ,DE BC ⊥于E .理由面积法求出DE ,再利用角平分线的性质定理可得DF DE =解决问题;(2)如图②中,结论:2AB BC BE +=.只要证明()DFA DEC ASA ∆≅∆,推出AF CE =,Rt BDF Rt BDE(HL)∆≅∆,推出AF BE =即可解决问题;(3)如图③,过点D 作DF ⊥BA ,交BA 的延长线于点F ,DE ⊥BC ,交BC 于点E ,连接AC ,作△ABC △ABC 的内切圆,圆心为M ,N 为切点,连接MN ,OM .由(1)(2)可知,四边形BEDF 是正方形,BD 是对角线.由切线长定理可知:610842AN +-==,推出541ON =-=,由面积法可知内切圆半径为2,在Rt OMN ∆中,理由勾股定理即可解决问题;【详解】解:(1)如图①中,作DF AB ⊥于F ,DE BC ⊥于E .图① BD 平分ABC ∠,DF AB ⊥,DE BC ⊥,DF DE ∴=, BC 是直径,90BDC ∴∠=︒, 2222435BC BD CD ∴=+=+=,1122BC DE BD DC =, 125DE ∴=, 125DF DE =∴=. 故答案为125 (2)如图②中,结论:2AB BC BE +=.图②理由:作DF BA ⊥于F ,连接AD ,DC .BD 平分ABC ∠,DE BC ⊥,DF BA ⊥,DF DE ∴=,90DFB DEB ∠=∠=︒,180ABC ADC ∠+∠=︒,180ABC EDF ∠+∠=︒,ADC EDF ∴∠=∠,FDA CDE ∴∠=∠,90DFA DEC ∠=∠=︒,()DFA DEC ASA ∴∆≅∆,AF CE ∴=,BD BD =,DF DE =,Rt BDF Rt BDE(HL)∴∆≅∆,BF BE ∴=,2AB BC BF AF BE CE BE ∴+=-++=.(3)如图③,过点D 作DF ⊥BA ,交BA 的延长线于点F ,DE ⊥BC ,交BC 于点E ,连接AC ,作△ABC △ABC 的内切圆,圆心为M ,N 为切点,连接MN ,OM .由(1)(2)可知,四边形BEDF 是正方形,BD 是对角线.图③ 72BD =,∴正方形BEDF 的边长为7,由(2)可知:28BC BE AB =-=,226810AC ∴=+=,由切线长定理可知:610842AN +-==, 541ON ∴=-=,设内切圆的半径为r , 则11111068682222r r r ⨯+⨯⨯+⨯⨯=⨯⨯⨯ 解得2r , 即2MN =,在Rt OMN ∆中,2222215OM MN ON =+=+=. 5【点睛】本题属于圆综合题,考查了角平分线的性质定理,全等三角形的判定和性质,勾股定理,解直角三角形,正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.2.见解析【分析】作BF 的中点E ,连接AE 、AD ,根据直角三角形得到性质就可以得出AE =BE =EF ,由BD 平分∠ABC 就可以得出∠ABE =∠DBC =22.5°,从而可以得出∠BAE =∠BAE =∠ACD =22.5°,∠AEF =45°,由∠BAC =90°,∠BDC =90°就可以得出A 、B 、C 、D 四点共圆,求出AD =DC ,证△ADC ≌△AEB 推出BE =CD ,从而得到结论.【详解】解:取BF 的中点E ,连接AE ,AD ,∵∠BAC =90°,∴AE =BE =EF ,∴∠ABD =∠BAE ,∵CD ⊥BD ,∴A ,B ,C ,D 四点共圆,∴∠DAC =∠DBC ,∵BF 平分∠ABC ,∴∠ABD =∠DBC ,∴∠DAC =∠BAE ,∴∠EAD =90°,∵AB =AC ,∴∠ABC =45°,∴∠ABD =∠DBC =22.5°,∴∠AED =45°,∴AE =AD ,在△ABE 与△ADC 中,ABE DAC BAE ACD AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC ,∴BE =CD ,∴BF =2CD .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,四点共圆,直角三角形的性质,角平分线的性质,正确的作出辅助线是解题的关键.3.(1)见解析;(2)见解析;(3)BE AD AB =+【分析】(1) 由平行线性质可得∠NAB+∠ABQ=180°,再由角平分线定义可得11,22∠=∠∠=∠BAC NAB CBA ABQ ,再利用三角形内角和定理即可得∠C=90°,即可证明BC ⊥AC;(2) ①延长AC 交PQ 点F ,先证明AC=FC,再证明△ACD ≌△FCE,即可得AD+BE=AB; ②方法与①相同.【详解】解:(1)∵MN ∥PQ∴∠NAB+∠ABQ=180°∵AC 平分∠NAB ,BC 平分∠ABQ ∴11,22∠=∠∠=∠BAC NAB CBA ABQ ∴∠BAC+∠ABC=12180⨯︒=90° 在△ABC 中,∵∠BAC+∠ABC+∠C=180°∴∠C=180°- (∠BAC+∠ABC) =180°-90°=90°∴BC ⊥AC;(2)①延长AC 交PQ 于点F∵BC ⊥AC∴∠ACB=∠FCB=90°∵BC 平分∠ABF∴∠ABC=∠FBC∴BC=BC∴△ABC ≌△FBC∴AC=CF ,AB=BF∵MN ∥BQ∴∠DAC=∠EFC∵∠ACD=∠FCE∴△ACD ≌△FCE∴AD=EF∴AB=BF=BE+EF=BE+AD即:AB=AD+BE②线段AD ,BE ,AB 数量关系是:AD+AB=BE如图3,延长AC 交PQ 点F,∵MN//PQ .∴∠AFB=∠FAN ,∠DAC=∠EFC∵AC 平分∠NAB∴∠BAF=∠FAN∴∠BAF=∠AFB∴AB=FB∵BC ⊥AC∴C 是AF 的中点∴AC=FC在△ACD 与△FCE 中DAC EFC AC FCACD FCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ACD FCE ASA ≅∴AD=EF∵AB=FB=BE-EF∴AD+AB=BE【点睛】本题考查了平行线性质,全等三角形性质判定,等腰三角形性质等,解题关键正确添加辅助线构造全等三角形.4.(1)△ABO 的面积=4;(2)证明见解析;(3)证明见解析.【分析】(1)根据绝对值和偶次方的非负性求出a ,b ,根据三角形的面积公式计算;(2)作AF 平分∠BAC 交BD 于F 点,分别证明△ACE ≌△BAF ,△CED ≌△AFD ,根据全等三角形的性质证明;(3)过C 点作CM ⊥y 轴于M 点,过D 点作DN ⊥y 轴于N 点,证明△ACM ≌△BAO ,根据全等三角形的性质得到CM=AO=2,AM=BO=4,证明四边形ONQB 为平行四边形,得到答案.【详解】解:(1)∵2a b -+(a-2)2=0,∴2a-b=0,a-2=0,解得,a=2,b=4,∴A (0,2),B (4,0),∴OA=2,OB=4,∴△ABO 的面积=12×2×4=4;(2)作AF 平分∠BAC 交BD 于F 点,∵AB=AC ,∠CAB=90°,∴∠C=∠ABC=∠DAF=∠BAF=45°,∵∠CAE+∠BAO=∠ABF+∠BAO=90°,∴∠CAE=∠ABF ,在△ACE 和△BAF 中,CAE ABF AC AB ACE BAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACE ≌△BAF (ASA ),∴CE=AF ,在△CED 和△AFD 中,CD AD C DAF CE AF =⎧⎪∠=∠⎨⎪=⎩,∴△CED ≌△AFD (SAS )∴∠CDE=∠ADB ;(3)过C 点作CM ⊥y 轴于M 点,过D 点作DN ⊥y 轴于N 点,则∠AMC=∠BOA=90°,∵∠CAM+∠BAO=∠ABO+∠BAO=90°,∴∠CAM=∠ABO ,在△ACM 和△BAO 中,CAM ABO CMA AOB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACM ≌△BAO (AAS ),∴CM=AO=2,AM=BO=4,∵A (0,2),P (0,-6),∴AP=8,∴PM=AP-AM=4,在△PCM 和△QPN 中,CPM PQN PMC QNP PC PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,△PCM ≌△QPN (AAS ),∴NQ=PM=4,∴四边形ONQB 为平行四边形,∴AP ∥BQ .【点睛】本题考查的是全等三角形的判定和性质,非负数的性质,掌握全等三角形的判定定理和性质定理是解题的关键.5.(1)详见解析;(2)8cm.【解析】【分析】(1)过点E 分别作EF AD ⊥于F ,由角平分线的性质就可以得出EF=EC ,根据HL 得AEB AEF ∆∆≌,即可得出结论;(2)根据角平分线和平行线的性质求出30CED DAE ∠=∠=︒ ,根据含30°角的直角三角形的性质即可求解.【详解】(1)证明:过点E 分别作EF AD ⊥于F ,∴∠DFE=∠AFE=90°.∵∠B=∠C=90°,∴∠B=∠AFE=∠DFE=∠C=90°.∴CB ⊥AB ,CB ⊥CD .∵DE 平分∠ADC .∴∠EDC=∠EDF ,CE=EF .∵E 是BC 的中点,∴CE=BE ,∴BE=EF .在Rt △AEB 和Rt △AEF 中,EB=EF AE=AE ⎧⎨⎩, ∴Rt △AEB ≌Rt △AEF (HL ),∴∠EAB=∠EAF ,∴AE 是∠DAB 的平分线;(2)解:∵∠B=∠C=90°,∴AB ∥CD ,∴∠BAD+∠ADC=180°,∵∠BAD=60°,DE 平分ADC ∠,AE 是∠DAB 的平分线,60ADE CDE ∠=∠=︒∴ ,30DAE ∠=︒ ,A 90DE =︒∠,∵∠C=90°∴ A 30D E =︒∠,C 30DE =︒∠ ,248AD DE CD cm ∴===.故答案为(1)详见解析;(2)8cm.【点睛】本题考查角平分线的性质,线段中点的定义,全等三角形的判定与性质的运用,含30°角的直角三角形,证明三角形全等是解(1)题的关键,掌握含30°角的直角三角形的性质是解(2)题的关键.6.详见解析【分析】延长BO ,AE 并交于F ,证△ABE ≌△FBE ,推出AE=EF ,证△BOD ≌△AOF 推出BD=AF 即可.【详解】延长BO ,AE 并交于F ,∵BD 平分∠ABO ,AF ⊥BD ,∴∠1=∠2,∠AEB=∠FEB=90°,在△ABE 和△FBE 中1=2BE BEAEB FEB ∠∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△FBE ,∴AE=EF ,∵∠AOB=90゜,∠AED=90°,∠ADE=∠BDO ,∴∠2=∠OAF ,∵∠AOB=90°,∴∠DOB=∠FOA=90°,∴在△OBD 和△OAF 中2=FAO BO AOBOD AOF ∠∠⎧⎪=⎨⎪∠=∠⎩, ∴△OBD ≌△OAF ,∴BD=AF ,∵AE=EF ,∴BD=2AE .【点睛】本题考查了全等三角形的性质和判定的应用,正确添加辅助线构建全等三角形是解题的关键.7.50°【解析】【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP ,即可得出答案.【详解】延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD=x°,∵CP 平分∠ACD ,∴∠ACP=∠PCD=x°,PM=PN ,∵BP 平分∠ABC ,∴∠ABP=∠PBC ,PF=PN ,∴PF=PM ,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD-∠BPC=(x-40)°,∴∠BAC=∠ACD-∠ABC=2x°-(x°-40°)-(x°-40°)=80°,∴∠CAF=100°,在Rt △PFA 和Rt △PMA 中,PA PA PM PF=⎧⎨=⎩, ∴Rt △PFA ≌Rt △PMA(HL),∴∠CAP=∠FAP ,又∵∠CAP+∠PAF=∠CAF ,∴∠CAP =50°.【点睛】本题主要考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF 是解决问题的关键.8.详见解析【解析】【分析】如图,过点F 作FH BC ⊥,FG AB ⊥,垂足分别为H 、G ,根据角平分线,可得点F 是ABC ∆的内心,则有FG FH =,继而根据三角形内心的性质可得FDH FEG ∠=∠,从而可得FDH FEG ∆∆≌,继而可得FE=FD.【详解】FE=FD ,理由如下:如图,过点F 作FH BC ⊥,FG AB ⊥,垂足分别为H 、G. F 是BAC ∠,ACB ∠的平分线AD 、CE 的交点,F ∴为ABC ∆的内心,FG FH ∴=.60B ∠=︒,()1602FAC FCA BAC BCA ∴∠+∠=∠+∠=︒,又60FDH B BAD BAD ∠=∠+∠=︒+∠;60FEG BAD FAC FCA BAD ∠=∠+∠+∠=︒+∠,FDH FEG ∴∠=∠,又GH FH =,FDH FEG ∴∆∆≌,FD FE ∴=.【点睛】本题考查了三角形的内心的性质,全等三角形的判定与性质解题的关键是注意数形结合思想的应用,注意辅助线的作法.9.详见解析【分析】过点C 向OA 、OB 作垂线,构建全等三角形,继而根据平角定义以及线段的和差即可证得结论.【详解】如图,过点C 作CF OB ⊥与点F ,则∠F=∠CEO=90°,12∠=∠,OC=OC ,FOC EOC ∴∆≅∆,CE CF ∴=,OE OF =,CA CB =,90CEA CFB ∠=∠=︒,()R t t CAE R CBF HL ∴∆≅,4CBF ∴∠=∠,AE BF =,∵3180CBF ∠+∠=︒,34180∴∠+∠=︒,()()2OA OB OE AE OF BF OE OF OE ∴+=++-=+=.【点睛】本题考查了全等三角形的判定与性质,正确添加辅助线构建全等三角形是解题的关键. 10.详见解析【解析】【分析】可以在AB 上截取AE=AC ,构造三角形全等,再结合三角形三边关系可证得结论.【详解】在AB 上截取AE=AC ,则BE=AB-AC ,在△AED 和△ACD 中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△AED ≌△ACD(SAS),∴DE=DC ,在△BDE 中,BD-DE <BE(三角形两边之差小于第三边), ∴BE>BD-CD ,即AB-AC>BD-CD.【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,构造三角形全等是解题的关键.。

人教版全等三角形角平分线辅助提优专项训练试题

人教版全等三角形角平分线辅助提优专项训练试题

人教版全等三角形角平分线辅助提优专项训练试题一、全等三角形角平分线辅助1.已知点C 是∠MAN 平分线上一点,∠BCD 的两边CB 、CD 分别与射线AM 、AN 相交于B ,D 两点,且∠ABC +∠ADC =180°.过点C 作CE ⊥AB ,垂足为E .(1)如图1,当点E 在线段AB 上时,求证:BC =DC ;(2)如图2,当点E 在线段AB 的延长线上时,探究线段AB 、AD 与BE 之间的等量关系; (3)如图3,在(2)的条件下,若∠MAN =60°,连接BD ,作∠ABD 的平分线BF 交AD 于点F ,交AC 于点O ,连接DO 并延长交AB 于点G .若BG =1,DF =2,求线段DB 的长.2.在平面直角坐标系中,点()5,0A -,()0,5B ,点C 为x 轴正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若点C 的坐标为(3,0),试求点E 的坐标;(2)如图②,若点C 在x 轴正半轴上运动,且5OC <,其它条件不变,连接DO ,求证:OD 平分ADC ∠(3)若点C 在x 轴正半轴上运动,当2OCB DAO ∠=∠时,试探索线段AD 、OC 、DC 的数量关系,并证明.3.问题呈现:下图是小明复习全等三角形时遇到的一个问题并引发的思考,请帮助小明完成以下学习任务.请根据小明的思路,结合图①,写出完整的证明过程.结论应用:(1)如图②,在四边形ABCD 中,AB AD BC =+,DAB ∠的平分线和ABC ∠的平分线交于CD 边上点P .求证:PC PD =;(2)在(1)的条件下,如图③,若10AB =,1tan 2PAB ∠=.当PBC 有一个内角是45︒时,PAD △的面积是 .4.如图1,已知正方形ABCD 的边长为1,点E 在边BC 上,若∠AEF=900,且EF 交正方形外角的平分线CF 于点F(1)图1中若点E 是边BC 的中点,我们可以构造两个三角形全等来证明AE=EF ,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E 在线段BC 上滑动(不与点B ,C 重合).①AE=EF 是否总成立?请给出证明;②在如图2的直角坐标系中,当点E 滑动到某处时,点F 恰好落在抛物线2y x x 1=-++上,求此时点F 的坐标.5.阅读理解如图1,ABC 中,沿BAC ∠的平分线1AB 折叠,剪掉重叠部分;将余下部分沿11B AC ∠的平分线12A B 折叠,剪掉重叠部分;……;将余下部分沿∠n n B A C 的平分线1n n A B +折叠,点n B 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称BAC ∠是ABC 的好角.情形一:如图2,沿等腰三角形ABC 顶角BAC ∠的平分线1AB 折叠,点B 与点C 重合;情形二:如图3,沿ABC 的BAC ∠的平分线1AB 折叠,剪掉重叠部分;将余下的部分沿11B AC ∠的平分线12A B 折叠,此时点1B 与点C 重合.探究发现(1)ABC 中,2B C ∠=∠,经过两次折叠,问BAC ∠ ABC 的好角(填写“是”或“不是”);(2)若经过三次折叠发现BAC ∠是ABC 的好角,请探究B 与C ∠(假设B C ∠>∠)之间的等量关系 ;根据以上内容猜想:若经过n 次折叠BAC ∠是ABC 的好角,则B 与C ∠(假设B C ∠>∠)之间的等量关系为 ;应用提升:(3)小丽找到一个三角形,三个角分别为15︒,60︒,105︒,发现 是此三角形的好角;(4)如果一个三角形的最小角是10︒,且满足该三角形的三个角均是此三角形的好角; 则此三角形另外两个角的度数 .6.已知△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC ,求证:BC =AC +CD .7.已知:ABC ∆中,D 为BC 的中点,AG 平分,BAC CG AG ∠⊥于G ,连结DG ,若6,4AB AC ==,求DG 的长.8.如图,在Rt △ABC 中,∠BAC=90°,AB=3,M 为边BC 上的点,连结AM.如果将△ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,求点M 到AC 的距离.9.如图,在ABC ∆中,60B ∠=︒,AD 、CE 分别是BAC ∠、ACB ∠的平分线,AD 、CE 相交于点F ,试判断FE 和FD 之间的数量关系.10.如图,在ABC ∆中,AB AC >,AD 平分BAC ∠交BC 于D ,求证:AB AC BD CD ->-.【参考答案】***试卷处理标记,请不要删除一、全等三角形角平分线辅助1.(1)见解析;(2)AD ﹣AB =2BE ,理由见解析;(3)3.【分析】(1)过点C 作CF ⊥AD ,根据角平分线的性质得到CE =CF ,证明△BCE ≌△DCF ,根据全等三角形的性质证明结论;(2)过点C 作CF ⊥AD ,根据角平分线的性质得到CE =CF ,AE =AF ,证明△BCE ≌△DCF ,得到DF =BE ,结合图形解答即可;(3)在BD 上截取BH =BG ,连接OH ,证明△OBH ≌△OBG ,根据全等三角形的性质得到∠OHB =∠OGB ,根据角平分线的判定定理得到∠ODH =∠ODF ,证明△ODH ≌△ODF ,得到DH =DF ,计算即可.【详解】(1)证明:如图1,过点C 作CF ⊥AD ,垂足为F ,∵AC 平分∠MAN ,CE ⊥AB ,CF ⊥AD ,∴CE =CF ,∵∠CBE +∠ADC =180°,∠CDF +∠ADC =180°,∴∠CBE =∠CDF ,在△BCE 和△DCF 中,90CBE CDF CEB CFD CE CF ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△BCE ≌△DCF (AAS )∴BC =DC ;(2)解:AD ﹣AB =2BE ,理由如下:如图2,过点C 作CF ⊥AD ,垂足为F ,∵AC 平分∠MAN ,CE ⊥AB ,CF ⊥AD ,∴CE =CF ,AE =AF ,∵∠ABC +∠ADC =180°,∠ABC +∠CBE =180°,∴∠CDF =∠CBE ,在△BCE 和△DCF 中,90CBE CDF CEB CFD CE CF ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△BCE ≌△DCF (AAS ),∴DF =BE ,∴AD =AF +DF =AE +DF =AB +BE +DF =AB +2BE ,∴AD ﹣AB =2BE ;(3)解:如图3,在BD 上截取BH =BG ,连接OH ,∵BH =BG ,∠OBH =∠OBG ,OB =OB在△OBH 和△OBG 中,BH BG OBH OBG OB OB =⎧⎪∠=∠⎨⎪=⎩,∴△OBH ≌△OBG (SAS )∴∠OHB =∠OGB ,∵AO 是∠MAN 的平分线,BO 是∠ABD 的平分线,∴点O 到AD ,AB ,BD 的距离相等,∴∠ODH =∠ODF ,∵∠OHB =∠ODH +∠DOH ,∠OGB =∠ODF +∠DAB ,∴∠DOH =∠DAB =60°,∴∠GOH =120°,∴∠BOG =∠BOH =60°,∴∠DOF =∠BOG =60°,∴∠DOH =∠DOF ,在△ODH 和△ODF 中,DOH DOF OD OD ODH ODF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ODH ≌△ODF (ASA ),∴DH =DF ,∴DB =DH +BH =DF +BG =2+1=3.【点睛】本题考查了角平分线的性质,三角形全等的判定和性质,关键是依照基础示例引出正确辅助线.2.(1)(0,3);(2)详见解析;(3)AD=OC+CD【分析】(1)先根据AAS 判定△AOE ≌△BOC ,得出OE=OC ,再根据点C 的坐标为(3,0),得到OC=2=OE ,进而得到点E 的坐标;(2)先过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,根据△AOE ≌△BOC ,得到S △AOE =S △BOC ,且AE=BC ,再根据OM ⊥AE ,ON ⊥BC ,得出OM=ON ,进而得到OD 平分∠ADC ;(3)在DA 上截取DP=DC ,连接OP ,根据三角形内角和定理,求得∠PAO=30°,进而得到∠OCB=60°,根据SAS 判定△OPD ≌△OCD ,得OC=OP ,∠OPD=∠OCD=60°,再根据三角形外角性质得PA=PO=OC ,故AD=PA+PD=OC+CD .【详解】(1)如图①,∵AD ⊥BC ,BO ⊥AO ,∴∠AOE=∠BDE ,又∵∠AEO=∠BED ,∴∠OAE=∠OBC ,∵A (-5,0),B (0,5),∴OA=OB=5,∴△AOE ≌△BOC ,∴OE=OC ,又∵点C 的坐标为(3,0),∴OC=3=OE ,∴点E 的坐标为(0,3);(2)如图②,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE=BC ,∵OM ⊥AE ,ON ⊥BC ,∴OM=ON ,∴OD 平分∠ADC ;(3)如所示,在DA 上截取DP=DC ,连接OP ,∵2OCB DAO ∠=∠,∠ADC=90°∴∠PAO+∠OCD=90°,∴∠DAC=903︒=30°,∠DCA=2903⨯︒=60° ∵∠PDO=∠CDO ,OD=OD ,∴△OPD ≌△OCD ,∴OC=OP ,∠OPD=∠OCD=60°,∴∠POA=∠PAO=30°∴PA=PO=OC∴AD=PA+PD=OC+CD即:AD=OC+CD .【点睛】 本题属于三角形综合题,主要考查了全等三角形的判定与性质,角平分线的判定定理以及等腰直角三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行求解.3.问题呈现:见解析;结论应用:(1)见解析;(2)403或8 【分析】问题呈现:由“SAS ”可证△MOP ≌△NOP ,可得PM =PN ;结论应用:(1)在AB 上截取AE =AD ,连接PE ,由“SAS ”可证△ADP ≌△AEP ,△BPC ≌△BPE ,可得PD =PE =PC ;(2)延长AP ,BC 交于点H ,由“ASA ”可证△ADP ≌△HCP ,可得CP =DP ,AD =CH ,S △ADP =S △CPH ,分三种情况讨论,由角平分线的性质和锐角三角函数可求解.【详解】问题呈现:证明:∵OC 平分AOB ∠,∴AOC BOC ∠=∠.在POM 和PON △中, OP OP POM PON OM ON =⎧⎪∠=∠⎨⎪=⎩.∴POM PON △≌△.结论应用:在AB 上截取AE AD =,∵AP 平分DAB ∠,∴DAP BAP ∠=∠,∵AP AP =,∴ADP AEP△≌△.∴PE PD=.∵AB AD BC=+,∴BE BC=,∵BP平分ABC∠,∴ABP CBP∠=∠.∵BP BP=.∴PBE PBC△≌△.∴PE PC=.∴PC PD=.(2)由(1)可证∠D=∠AEP,∠PCB=∠PEB,∵∠AEP+∠PEB=180°,∴∠PCB+∠D=180°,∴AD∥BC,∵AB=10,tan∠PAB=PBPA=12,∴PA=2PB,∵PA2+PB2=AB2,∴PB=25,PA=45,如图③,延长AP,BC交于点H,∵AD∥BC,∴∠DAP=∠H,∴∠H=∠BAP,∴AB=BH=10,又∵PB平分∠ABC,∴BP⊥AP,AP=PH=5∵∠DAP=∠H,AP=PH,∠DPA=∠CPH,∴△ADP≌△HCP(ASA),∴CP=DP,AD=CH,S△ADP=S△CPH,若∠PBC=45°时,则∠PBC=∠H=45°,∴PB=PH(不合题意舍去),若∠BPC=45°时,则∠HPC=∠BPC=45°,如图④,过点C 作CN ⊥BP 于N ,CM ⊥PH 于M ,∴CM =CN ,∵S △PBH =12×BP ×PH =12×BP ×CN +12×PH ×CM , ∴CM =CN =453, ∴S △PCH =12×45×453=403=S △ADP ; 若∠PCB =45°时,如图⑤,过点P 作PF ⊥BC 于F ,∵∠PAB =∠H ,∴tan H =tan ∠PAB =12, ∴12PF FH , ∴FH =2PF , ∵PF 2+FH 2=PH 2=80,∴PF =4,FH =8,∵PF ⊥BC ,∠BCP =45°,∴∠PCB =∠FPC =45°,∴CF =PF =4,∴CH =4,∴S △ADP =S △CPH =12×4×4=8, 故答案为:8或403. 【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,角平分线的性质,勾股定理,锐角三角函数等知识,添加恰当辅助线构造全等三角形是本题的关键.4.(1)△AGE 与△ECF (2)①成立②()2?21-, 【分析】(1)取AB 的中点G ,连接EG ,利用ASA 能得到△AGE 与△ECF 全等.(2)①在AB 上截取AG=EC ,由ASA 证得△AGE ≌△ECF 即可证得AE=EF .②过点F 作FH ⊥x 轴于H ,根据FH=BE=CH 设BH=a ,则FH=a -1,然后表示出点F 的坐标,根据点F 恰好落在抛物线2y x x 1=-++上得到有关a 的方程求得a 值即可求得点F 的坐标.【详解】解:(1)如图,取AB 的中点G ,连接EG ,则△AGE 与△ECF 全等.(2)①若点E 在线段BC 上滑动时AE=EF 总成立.证明如下:如图,在AB 上截取AG=EC ,∵AB=BC ,∴BG=BE .∴△GBE 是等腰直角三角形.∴∠AGE=180°-45°=135°.又∵CF 平分正方形的外角,∴∠ECF=135°.∴∠AGE=∠ECF .又∵∠BAE+∠AEB=∠CEF+∠AEB=90°,∴∠BAE=∠CEF .∴△AGE ≌△ECF (ASA ).∴AE=EF .②过点F 作FH ⊥x 轴于H ,由①知,FH=BE=CH ,设BH=a ,则FH=a -1.∴点F 的坐标为F (a ,a -1).∵点F 恰好落在抛物线2y x x 1=-++上,∴2a 1a a 1-=-++.∴a2=2.∴a =(负值不合题意,舍去).∴a 11-=.∴点F 的坐标为1).5.(1)是;(2)3∠=∠B C ;∠=∠B n C ;(3)60︒和105︒;(4)另外两个角的度数分别为160︒和10︒【分析】(1)由沿BAC ∠的平分线1AB 折叠,得11B AA B ∠=∠,且1111AA B C A B C ∠=∠+∠,沿11B AC ∠的平分线12A B 折叠,此时点1B 与C 重合,可得11AB C C ∠=∠,即可证2B C ∠=∠.(2)由沿BAC ∠的平分线1AB 折叠,得11B AA B ∠=∠,由将余下部分沿11B AC ∠的平分线12A B 折叠,得11122A B C A A B ∠=∠,最后沿22B A C ∠的平分线23A B 折叠,点2B 与点C 重合,得22C A B C ∠=∠,由11B A B C C ∠=∠+∠,可证3∠=∠B C ;由小丽展示的情形一当B C ∠=∠时;由探究(1)当2B C ∠=∠时;由探究(2)当3∠=∠B C 时,它们的BAC ∠均是ABC 的好角;可推经过n 次折叠,BAC ∠是ABC 的好角,则B 与C ∠的等量关系为∠=∠B n C .(3)由(2)得∠=∠B n C ,可计算60,105︒︒是ABC 的好角.(4)由(2)知∠=∠B n C ,BAC ∠是ABC 的好角,已知中一个三角形的最小角是10︒,且这个三角形三个角均是ABC 的好角,可设另外两个角为10m ︒、10mn ︒,(其中,m n 都是正整数),依题意列式101010180m mn ++=,可求解得.【详解】(1)ABC 中,2B C ∠=∠,经过两次折叠,BAC ∠是ABC 的好角; 理由如下:沿BAC ∠的平分线1AB 折叠,11B AA B ∴∠=∠;将余下部分沿11B AC ∠的平分线12A B 折叠,此时点1B 与C 重合,11A B C C ∴∠=∠;1111AA B C A B C ∠=∠+∠;2B C ∴∠=∠,故答案是:是;(2)在ABC 中,沿BAC ∠的平分线1AB 折叠,剪掉重复部分;将余下部分沿11B AC ∠的平分线12A B 折叠,剪掉重复部分,将余下部分沿22B A C ∠的平分线23A B 折叠,点2B 与点C 重合,则BAC ∠是ABC 的好角.证明:11B AA B ∠=∠,22,C A B C ∠=∠,122222A A B C A B C C ∴∠=∠+∠=∠,11B A B C C ∠=∠+∠11122A B C A A B ∠=∠,2C B C ∠∴=+∠∠,3B C ∴∠=∠,由小丽展示的情形一知,当B C ∠=∠时,BAC ∠是ABC 的好角;由探究(1)知,当2B C ∠=∠时,BAC ∠是ABC 的好角;由探究(2)知,当3∠=∠B C 时,BAC ∠是ABC 的好角;故若经过n 次折叠,BAC ∠是ABC 的好角,则B 与C ∠的等量关系为∠=∠B n C . 故答案为:3;B C B n C ∠=∠∠=∠.(3)由(2)知,∠=∠B n C ,60415︒=⨯︒,105715︒=⨯︒,60,105∴︒︒是ABC 的好角.故答案为:60,105︒︒.(4)由(2)知∠=∠B n C ,BAC ∠是ABC 的好角,一个三角形的最小角是10︒,且这个三角形三个角均是ABC 的好角,可设另外两个角为10m ︒、10mn ︒,(其中,m n 都是正整数).依题意得101010180m mn ++=,化简得(1)17m n +=,,m n 都是正整数,∴,1m n +都是17的整数因子,∴1m =,117n +=,∴1m =,16n =,∴1010m ︒=︒,10160mn ︒=︒,即该三角形的另外两个角是:10︒和160︒.故答案为:10,160︒︒.【点睛】本题考查的是折叠的性质应用、三角形的外角等不相邻的两个内角之和,并涉及一些数学归纳法思想来推导结论,一道比较综合知识点的新颖考题,在第(4)小题中不需要去解出根,而是根据这种限定条件来确定解,这是一种不同于以往的解题思路.6.见解析【分析】在线段BC 上截取BE =BA ,连接DE .则只需证明CD =CE 即可.结合角度证明∠CDE =∠CED .【详解】证明:在线段BC 上截取BE =BA ,连接DE .∵BD 平分∠ABC ,∴∠ABD =∠EBD 12=∠ABC . 在△ABD 和△EBD 中,BE BA ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△EBD .(SAS )∴∠BED =∠A =108°,∠ADB =∠EDB .又∵AB =AC ,∠A =108°,∠ACB =∠ABC 12=⨯(180°﹣108°)=36°, ∴∠ABD =∠EBD =18°.∴∠ADB =∠EDB =180°﹣18°﹣108°=54°.∴∠CDE =180°﹣∠ADB ﹣∠EDB=180°﹣54°﹣54°=72°.∴∠DEC =180°﹣∠DEB=180°﹣108°=72°.∴∠CDE =∠DEC .∴CD =CE .∴BC =BE +EC =AB +CD .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定,添加恰当辅助线是本题的关键. 7.1DG =【分析】延长CG 交AB 于点E. 根据等腰三角形的判定与性质得CG=EG ,AE=AC,再根据三角形中位线的性质得出DG=12BE=12(AB-AC ),从而得出DG 的长. 【详解】解:延长CG 交AB 于点E .AG 平分BAC ∠,CG AG ⊥于G ,CG EG ∴=,4AE AC ==,2BE AB AC ∴=-=,∵CG EG ,D 为BC 的中点, 112DG BE ∴==. 故答案为1DG =.【点睛】本题考查 等腰三角形的判定与性质,三角形中位线定理,根据题意作出辅助线,利用三角形中位线定理求解是解题的关键.8.点M 到AC 的距离为2【解析】【分析】利用图形翻折前后图形不发生变化,从而得出AB=AB′=3,DM=MN ,再利用三角形面积分割前后不发生变化,求出点M 到AC 的距离即可.【详解】∵△ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,假设这个点是B′, 作MN ⊥AC ,MD ⊥AB ,垂足分别为N ,D ,又∵Rt △ABC 中,∠BAC=90°,AB=3,∴AB=AB′=3,DM=MN ,AB′=B′C=3,S △BAC =S △BAM +S △MAC ,即12×3×6=12×MD×3+12×6×MN , ∴MD=2,所以点M 到AC 的距离是2.【点睛】本题考查了翻折变换(折叠问题),发现DM=MN ,以及AB=AB′=B′C=3,结合面积不变得出等式是解决问题的关键.9.详见解析【解析】【分析】如图,过点F 作FH BC ⊥,FG AB ⊥,垂足分别为H 、G ,根据角平分线,可得点F 是ABC ∆的内心,则有FG FH =,继而根据三角形内心的性质可得FDH FEG ∠=∠,从而可得FDH FEG ∆∆≌,继而可得FE=FD.【详解】FE=FD ,理由如下:如图,过点F 作FH BC ⊥,FG AB ⊥,垂足分别为H 、G. F 是BAC ∠,ACB ∠的平分线AD 、CE 的交点,F ∴为ABC ∆的内心,FG FH ∴=.60B ∠=︒, ()1602FAC FCA BAC BCA ∴∠+∠=∠+∠=︒, 又60FDH B BAD BAD ∠=∠+∠=︒+∠;60FEG BAD FAC FCA BAD ∠=∠+∠+∠=︒+∠,FDH FEG ∴∠=∠,又GH FH =,FDH FEG ∴∆∆≌,FD FE ∴=.【点睛】本题考查了三角形的内心的性质,全等三角形的判定与性质解题的关键是注意数形结合思想的应用,注意辅助线的作法.10.详见解析【解析】【分析】可以在AB 上截取AE=AC ,构造三角形全等,再结合三角形三边关系可证得结论.【详解】在AB 上截取AE=AC ,则BE=AB-AC ,在△AED 和△ACD 中,AE AC EAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△AED ≌△ACD(SAS),∴DE=DC ,在△BDE 中,BD-DE <BE(三角形两边之差小于第三边),∴BE>BD-CD ,即AB-AC>BD-CD.【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,构造三角形全等是解题的关键.。

角平分线提高讲义Microsoft Word 文档

角平分线提高讲义Microsoft Word 文档

如图1,在平面直角坐标系中,A、B两点同时从原点O出发,点A以每秒m个单位长度沿x轴的正方向运动,点B以每秒n个单位长度沿y轴正方向运动.(1)已知运动1秒时,B点比A点多运动1个单位;运动2秒时,B点与A点运动的路程和为6个单位,求m、n;(2)如图2,设∠OBA的邻补角的平分线、∠OAB的邻补角的平分线相交于点P,∠P的大小是否发生改变?若不变,求其值;若变化,说明理由.(3)若∠OBA的平分线与∠OAB的邻补角的平分线的反向延长线相交于点Q,∠Q 的大小是否发生改变?如不发生改变,求其值;若发生改变,请说明理由.考点:三角形内角和定理;坐标与图形性质;三角形的外角性质.分析:(1)已知运动1秒时,B点比A点多运动1个单位得n-m=1;运动2秒时,B点与A点运动的路程和为6个单位,得2n+2m=6可解的n=2,m-1(2)先求出∠OBA 的邻补角与∠OAB 的邻补角的和,求出∠PBA+∠PAB的和,∠P=180°-(∠PBA+∠PAB)3)若∠OBA的平分线与∠OAB的邻补角的平分线的反向延长线相交于点Q∠Q的值不变∠OBA+∠O=∠3+∠4;∠1=∠2,∠3=∠4;∠3+∠4=90°+∠1+∠2;∠3=45°+∠2;∠Q=∠3-∠2=45°+∠2-∠2=45°解答:解:(1)∵已知运动1秒时,B点比A点多运动1个单位得n-m=1;运动2秒时,B点与A点运动的路程和为6个单位∴n−m=12n+2m=6解得:n=2m=1;(2)∠P的大小不变,∠P=45°∵∠OBA+∠OAB=180°-∠O=90°;∠OBA 的邻补角与∠OAB 的邻补角的和为180°-∠OBA+(180°-∠OAB)=360°-90°=270°;又∵BP平分∠OBA 的邻补角,PA平分∠OAB 的邻补角∴∠PBA+∠PAB=135°∵∠PBA+∠PAB+∠P=180°∴∠P=180°-(∠PBA+∠PAB)=180°-135°=45°;(3)∠Q的大小不变,∠Q=45°∵∠BAX是△AOB的外角∴∠BAX=∠O+∠OBA∵BQ平分∠BAO,AQ平分∠BAX∴∠1=∠2,∠3=∠4∴∠3=12(∠O+∠OBA)=45°+∠2∵∠3是△ABQ的外角∴∠3=∠Q+∠2∴∠Q=∠3-∠2=45°+∠2-∠2=45°.点评:本题考察了三角形内角和定理,三角形外角的性质角平分线的性质.如图,y轴的负半轴平分∠AOB, P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB于点M、N。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 如图1,OC 平分
,P 是OC 上一点,D 是OA 上一点,E 是OB 上一点,且PD=PE ,求证:。

分析:要证,、在图形的不同位置,又无平行线使它们联系起来,但若考虑设法把其中的一个角转化为另一个角的邻补角,问题便可以解决。

由于OC 是角平分线,故可过P 点作两边的垂线,构造出两个直角三角形,再证明这两个三角形全等即可。

2、如图,△ABC 的∠B 和∠C 的角平分线BE 、CD 相交于点I.
(1)求证:∠BIC=90°+½∠A ;
(2)若∠A=60°,试猜想BC 、CE 、BD 三条线段之间有何联系?并加以证明.
3、如图,在∠AOB 的两边O A ,OB 上分别取OM =ON ,OD =OE ,DN 和EM 相交于点C . 求证:点C 在∠AOB 的平分线上.
A B
D C
E O M
N
4.如图,等边△ABC和等边△ADE如图放置,且B、C、E三点在一条直线上,连接CD,求证:∠ACD=60°.
A
B
C D E
第1题。

相关文档
最新文档