振动与波习题练习

合集下载

大学物理振动与波练习题与答案

大学物理振动与波练习题与答案
(3) 波速 c ? (4) t 3 秒时 x 3.5 厘米处的质点的振动速度 v ?
【解】:(1) y 5cos(20 4x) 厘米
(2) y 5cos(3t 11) 厘米
(3) y 5cos3(t 4 x 5) , c 3 (cm/ s)
33
4
(4) y 5cos(3t 9) , yI 15 sin(3t 9) 0
23、一平面简谐波沿 x 轴正方向传播,波速 c=8 m/s, 若 t=0 时的波形曲线如图 2-23 所示 (1)写出波动方程 (2)画出 t=1.25 s 时的波形曲线 【解】:
t=0 时,y=0, v>0 cm T=5s
所以 2 。 波长= 40
y 4.0 cos[0.4t ] (cm) 2
B 点的振动方程
yA
(t)
5 c os [10
(t
20) 300
2
]
5 c os (10t
7 6
)cm
(2)
A,B 相位相同
(3) 或 O 点的振动方程
yo
(t)
5
cos(10t
2
)
(cm)
O 点相位
o
2
OB,OA 间的相位差
oA
oB
2 3
O 比 A 超前
oA
o
A
2 3
A
7 6
同时 B 点
13、已知一个谐振动的振幅 A 0.02 米,园频率 4 弧度/秒,初相 / 2 。 (1)
写出谐振动方程; (2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。
【解】: x 0.02cos(4 t 2) (m) ,
T
2
1 2

大学物理 振动与波练习题

大学物理 振动与波练习题

振动与波练习题2005 一、填空题 1.一物体作简谐振动,振动方程为x = A cos (ωt+π/ 4 )。

在t =T / 4 (T 为周期)时刻,物体的加速度为 .2.一质点沿x 轴作简谐振动,振动方程为x = 4×10-2 cos (2πt + 31) (SI) 。

从t = 0 时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为3.已知两个简谐振动曲线如图1所示。

x 的位相比x 的位相为 .(A) 落后π/2 (B )超前π/2 (C) 落后π (D) 超前π图1 图24.一质点作简谐振动,周期为T 。

质点由平衡位置向X 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为5.一平面简谐波,沿x 轴负方向传播。

圆频率为ω,波速为u 。

设t = T/4时刻的波形如图2所示,则该波的表达式为 。

6.当机械波在媒质中传播时,一媒质质元的最大变形量发生在 位置处。

7.如图3所示两相干波源S 1和S 2相距λ/4,(λ为波长)S 1的位相比S 2的位相超前π/2,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的位相差是 .8.一质点作简谐振动。

其振动曲线如图4所示。

根据此图,它的周期T = ,用余弦函数描述时初位相φ= 。

图3 图49.一物体同时参与同一直线上的两个简谐振动:x 1 = 0.05 cos (4πt +π/3 ) (SI)x 1 = 0.03 cos (4πt -2π/3 ) (SI)合振动的振幅为 m.10一平面简谐波沿X 轴正方向传播,波速u = 100 m/s ,t = 0时刻的波形曲线如图所示。

波长λ= ,振幅 A = ,频率ν= 。

11.一平面简谐波(机械波)沿x轴正方向传播,波动方程为y = 0.2 cos (πt –πx/2 )(SI),则x = -3 m 处媒质质点的振动加速度a的表达式为。

高中物理二轮总复习课后习题 专题分层突破练12 振动与波

高中物理二轮总复习课后习题 专题分层突破练12 振动与波

专题分层突破练12 振动与波A组1.(多选)下列说法正确的是( )A.在同一地点,单摆做简谐运动的周期的二次方与其摆长成正比B.弹簧振子做简谐运动时,振动系统的势能与动能之和保持不变C.在同一地点,当摆长不变时,摆球质量越大,单摆做简谐运动的周期越小D.系统做稳定的受迫振动时,系统振动的频率等于周期性驱动力的频率2.用小球和轻弹簧组成弹簧振子,使其沿水平方向振动,振动图像如图所示,下列描述正确的是( )A.1~2 s内,小球的速度逐渐减小,加速度逐渐增大B.2~3 s内,弹簧的势能逐渐减小,弹簧弹力逐渐增大C.t=4 s时,小球的动能达到最大值,弹簧的势能达到最小值D.t=5 s时,弹簧弹力为正的最大值,小球的加速度为负的最大值3.海洋生态自动监测浮标如图所示,可用于监测水质和气象等参数。

一列水波(视为横波)沿海面传播,在波的传播方向上相距4.5 m的两处分别有甲、乙两浮标,两浮标随波上下运动。

当甲运动到波峰时,乙恰好运动到波谷,此时甲、乙之间只有一个波峰。

观察到甲从第1次到达波峰与第11次到达波峰的时间间隔为20 s,则该水波( )A.振幅为4.5 mB.波长为3 mC.频率为2 HzD.波速为2.25 m/s4.在某科幻电影中有一种地心车,无需额外动力就可以让人在几十分钟内到达地球的另一端。

不考虑地球自转的影响、车与轨道及空气之间的摩擦,乘客和车的运动为简谐运动,则( )A.乘客做简谐运动的回复力是由车对人的支持力提供的B.乘客达到地心时的速度最大,加速度最大C.乘客只有在地心处才处于完全失重状态D.乘客所受地球的万有引力大小与到地心的距离成正比5.一列简谐横波某时刻的图像如图所示,此时质点P的速度方向沿y轴正方向,则( )A.这列波沿x轴负方向传播B.质点a此时动能最大,加速度最小C.再经过一个周期,质点P运动到x=6 m处D.当质点P运动到最低点时,质点b恰好运动到平衡位置6.p、q两列简谐横波在同一均匀连续介质中沿+,波速为v=10 m/s。

振动与波习题及解答

振动与波习题及解答

一 选择题 (共60分)1. (本题 3分)(0327) 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是:(A) 2max 2max/x m k v =. (B) x mg k /=. (C) 22/4T m k π=. (D) x ma k /=. [ ]2. (本题 3分)(3255) 如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为4m 的物体,最后将此弹簧截断为两个等长的弹簧并联后悬挂质量为m 的物体,则这三个系统的周期值之比为(A) 1∶2∶2/1. (B) 1∶21∶2 . (C) 1∶2∶21. (D) 1∶2∶1/4 . [ ]3. (本题 3分)(3256) 图(a)、(b)、(c)为三个不同的简谐振动系统.组成各系统的各弹簧的原长、各弹簧的劲度系数及重物质量均相同.(a)、(b)、(c)三个振动系统的ω2(ω为固有角频率)值之比为(A) 2∶1∶21. (B) 1∶2∶4 .(C) 2∶2∶1 . (D) 1∶1∶2 .[ ](a)(b)4. (本题 3分)(5507) 图中三条曲线分别表示简谐振动中的位移x ,速度v ,和加速度a .下列说法中哪一个是正确的?(A) 曲线3,1,2分别表示x ,v ,a 曲线;(B) 曲线2,1,3分别表示x ,v ,a 曲线; (C) 曲线1,3,2分别表示x ,v ,a 曲线; (D) 曲线2,3,1分别表示x ,v ,a 曲线;(E) 曲线1,2,3分别表示x ,v ,a 曲线. [ ]x, v , at O123已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A) )3232cos(2π+π=t x .(B) )3232cos(2π−π=t x .(C) )3234cos(2π+π=t x .(D) )3234cos(2π−π=t x .(E) )4134cos(2π−π=t x . [ ]6. (本题 3分)(3028) 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为 (A) E 1/4. (B) E 1/2.(C) 2E 1. (D) 4 E 1 . [ ]7. (本题 3分)(3023) 一弹簧振子,当把它水平放置时,它可以作简谐振动.若把它竖直放置或放在固定的光滑斜面上,试判断下面哪种情况是正确的:(A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动. (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动.(C) 两种情况都可作简谐振动.(D) 两种情况都不能作简谐振动. [ ]放在光滑斜面上8. (本题 3分)(5181) 一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是 (A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ ]9. (本题 3分)(3560) 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A) kA 2. (B) 221kA .(C) (1/4)kA 2. (D) 0. [ ]10. (本题 3分)(3066) 机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]一平面余弦波在t = 0时刻的波形曲线如图所示,则O 点的振动初相φ 为:(A) 0. (B) π21(C) π (D) π23(或π−21) [ ]xyOu12. (本题 3分)(3151) 图中画出一向右传播的简谐波在t 时刻的波形图,BC 为波密介质的反射面,波由P 点反射,则反射波在t 时刻的波形图为 [ ]13. (本题 3分)(3072) 如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则波的表达式为 (A) }]/)([cos{0φω+−−=u l x t A y . (B) })]/([cos{0φω+−=u x t A y .(C) )/(cos u x t A y −=ω.(D) }]/)([cos{0φω+−+=u l x t A y . [ ]14. (本题 3分)(3071) 一平面简谐波以速度u 沿x 轴正方向传播,在t = t '时波形曲线如图所示.则坐标原点O 的振动方程为 (A) 2)(cos[π+′−=t t b u a y . (B) ]2)(2cos[π−′−π=t t b u a y . (C) ]2)(cos[π+′+π=t t bu a y .(D) 2)(cos[π−′−π=t t b u a y . [ ]15. (本题 3分)(3286) 在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ ]一列机械横波在t 时刻的波形曲线如图所示,则该时刻能量为最大值的媒质质元的位置是:(A) o ',b ,d ,f . (B) a ,c ,e ,g .(C) o ',d . (D) b ,f .[ ]17. (本题 3分)(3289) 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则(A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播.(C) B 点处质元的振动动能在减小.(D)各点的波的能量密度都不随时间变化. [ ]18. (本题 3分)(3090) 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能. (B) 它的势能转换成动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. [ ]19. (本题 3分)(5321) S 1和S 2是波长均为λ 的两个相干波的波源,相距3λ /4,S 1的相位比S 2超前π21.若两波单独传播时,在过S 1和S 2的直线上各点的强度相同,不随距离变化,且两波的强度都是I 0,则在S 1、S 2连线上S 1外侧和S 2外侧各点,合成波的强度分别是(A) 4I 0,4I 0. (B) 0,0.(C) 0,4I 0 . (D) 4I 0,0. [ ]20. (本题 3分)(3101) 在驻波中,两个相邻波节间各质点的振动(A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. [ ]二 填空题 (共81分)21. (本题 4分)(3010) 有两相同的弹簧,其劲度系数均为k .(1) 把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________;(2) 把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________________________.22. (本题 3分)(3041) 一简谐振动曲线如图所示,则由图可确定在t = 2s时刻质点的位移为 ____________________,速度为__________________.23. (本题 5分)(3398) 一质点作简谐振动.其振动曲线如图所示.根据此图,它的周期T =___________,用余弦函数描述时初相φ =_________________.24. (本题 5分)(3400) 试在下图中画出简谐振子的动能,振动势能和机械能随时间t 而变的三条曲线(设t = 0时物体经过平衡位置).EtTT/2T 为简谐振动的周期25. (本题 3分)(3569) 如图所示的是两个简谐振动的振动曲线,它们合成的余弦振动的初相为__________________.21−一质点同时参与了三个简谐振动,它们的振动方程分别为)31cos(1π+=t A x ω, )35cos(2π+=t A x ω, )cos(3π+=t A x ω其合成运动的运动方程为x = ______________.27. (本题 4分)(5315) 两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅为___________________ cm ,第一、二两个简谐振动的相位差φ1 − φ2为____________.28. (本题 5分)(3075) 一平面简谐波的表达式为 )37.0125cos(025.0x t y −= (SI),其角频率ω =__________________________,波速u =______________________,波长λ = _________________.29. (本题 4分)(3862) 一横波的表达式是 )30/01.0/(2sin 2x t y −π=其中x 和y 的单位是厘米、t 的单位是秒,此波的波长是_________cm ,波速是_____________m/s .30. (本题 5分)(3074) 一平面简谐波的表达式为 )/(cos u x t A y −=ω)/cos(u x t A ωω−= 其中x / u 表示_____________________________;ωx / u 表示________________________;y 表示______________________________.31. (本题 5分)(3863) 已知平面简谐波的表达式为 )cos(Cx Bt A y −=式中A 、B 、C 为正值常量,此波的波长是_________,波速是_____________.在波传播方向上相距为d 的两点的振动相位差是____________________.一简谐波沿BP 方向传播,它在B 点引起的振动方程为t A y π=2cos 11.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为)2cos(22π+π=t A y .P 点与B 点相距0.40 m ,与C 点相距0.5 m (如图).波速均为u = 0.20 m/s .则两波在P 点的相位差为______________________.33. (本题 5分)(3063) 一平面简谐波沿x 轴正方向传播,波速 u = 100 m/s ,t = 0时刻的波形曲线如图所示.可知波长λ = ____________; 振幅A = __________;频率ν = ____________.34. (本题 5分)(3133) 一平面简谐波沿Ox 轴正方向传播,波长为λ.若如图P 1点处质点的振动方程为)2cos(1φν+π=t A y ,则P 2点处质点的振动方程为_________________________________;与P 1点处质点振动状态相同的那些点的位置是___________________________.OP 1P 235. (本题 3分)(3301) 如图所示,S 1和S 2为同相位的两相干波源,相距为L ,P 点距S 1为r ;波源S 1在P 点引起的振动振幅为A 1,波源S 2在P 点引起的振动振幅为A 2,两波波长都是λ ,则P 点的振幅A = _________________________________________________________.1236. (本题 4分)(5517) S 1,S 2为振动频率、振动方向均相同的两个点波源,振动方向垂直纸面,两者相距λ23(λ为波长)如图.已知S 1的初相为π21.(1) 若使射线S 2C 上各点由两列波引起的振动均干涉相消,则S 2的初相应为________________________.(2) 若使S 1 S 2连线的中垂线MN 上各点由两列波引起的振动均干涉相消,则S 2的初位相应为_______________________.37. (本题 3分)(3595) 一驻波的表达式为 )2cos()/2cos(2t x A y νλππ=.两个相邻波腹之间的距离是___________________.一驻波表达式为t x A y ωλcos )/2cos(2π=,则λ21−=x 处质点的振动方程是___________________________________________;该质点的振动速度表达式是______________________________________.39. (本题 5分)(3107) 如果入射波的表达式是)(2cos 1λxT t A y +π=,在x = 0处发生反射后形成驻波,反射点为波腹.设反射后波的强度不变,则反射波的表达式y 2 =___________________________________________; 在x = 2λ /3处质点合振动的振幅等于______________________.40. (本题 3分)(3462) 在真空中一平面电磁波的电场强度波的表达式为:103(102cos[100.6882×−×π×=−xt E y (SI)则该平面电磁波的波长是____________________.三 计算题 (共74分)41. (本题10分)(3022) 一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.42. (本题 5分)(3045) 一质点作简谐振动,其振动方程为x = 0.24)3121cos(π+πt (SI),试用旋转矢量法求出质点由初始状态(t = 0的状态)运动到x = -0.12 m ,v < 0的状态所需最短时间∆t .43. (本题 5分)(3085) 在弹性媒质中有一沿x 轴正向传播的平面波,其表达式为)214cos(01.0π−π−=x t y (SI).若在x = 5.00 m 处有一媒质分界面,且在分界面处反射波相位突变π,设反射波的强度不变,试写出反射波的表达式.如图,一平面简谐波沿Ox 轴传播,波动表达式为])/(2cos[φλν+−π=x t A y (SI),求(1) P 处质点的振动方程;(2) 该质点的速度表达式与加速度表达式.OP45. (本题 5分)(3332) 如图所示,一简谐波向x 轴正向传播,波速u = 500 m/s ,x 0 = 1 m, P 点的振动方程为 )21500cos(03.0π−π=t y (SI).(1) 按图所示坐标系,写出相应的波的表达式;(2) 在图上画出t = 0时刻的波形曲线.46. (本题 8分)(5516) 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200m/s .在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度.47. (本题 8分)(3078) 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求 (1) x = 0处质点振动方程;(2) 该波的表达式.xu O t =t ′y48. (本题 8分)(3138) 某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求(1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.49. (本题10分)(3146) 如图为一平面简谐波在t = 0 时刻的波形图,已知波速u = 20 m/s .试画出P 处质点与Q 处质点的振动曲线,然后写出相应的振动方程.如图所示,两列相干波在P 点相遇.一列波在B 点引起的振动是 t y π×=−2cos 103310 (SI);另一列波在C 点引起的振动是)212cos(103320π+π×=−t y (SI); 令=BP 0.45 m ,=CP 0.30m ,两波的传播速度u = 0.20 m/s ,不考虑传播途中振幅的减小,求P 点的合振动的振动方程.51. (本题 5分)(3336) 如图所示,两列波长均为λ 的相干简谐波分别通过图中的O 1和O 2点,通过O 1点的简谐波在M 1 M 2平面反射后,与通过O 2点的简谐波在P 点相遇.假定波在M 1 M 2平面反射时有相位突变π.O 1和O 2两点的振动方程为 y 10 =A cos(πt ) 和y 20 = A cos(πt ),且 λ81=+mP m O , λ32=P O (λ 为波长),求:(1) 两列波分别在P 点引起的振动的方程;(2) P 点的合振动方程.(假定两列波在传播或反射过程中均不衰减)2一 选择题 (共60分)1. (本题 3分)(0327) (B)2. (本题 3分)(3255) (C)3. (本题 3分)(3256) (B)4. (本题 3分)(5507) (E)5. (本题 3分)(5186) (C)6. (本题 3分)(3028) (D)7. (本题 3分)(3023) (C)8. (本题 3分)(5181) (B)9. (本题 3分)(3560) (D)10. (本题 3分)(3066) (B)11. (本题 3分)(5204) (D)12. (本题 3分)(3151) (B)13. (本题 3分)(3072) (A)14. (本题 3分)(3071) (D)参考解:由图 b 2=λ, buu2==λν令波的表达式为 ])(2cos[φλν+−π=xt a y 在 t = t ′, ](2cos[φλν+−′π=xt a y 由图,这时x = 0处 初相 22π−=+′πφνt 可得 t ′π−π−=νφ22故x = 0处 ]2cos[φν+π=t a y ]2)(cos[π−′−π=t t bu a(C)16. (本题 3分)(5320) (B)17. (本题 3分)(3289) (B)18. (本题 3分)(3090) (D)19. (本题 3分)(5321) (D)20. (本题 3分)(3101) (B)二 填空题 (共81分)2分 k m 2/2π 2分22. (本题 3分)(3041) 0 1分 3π cm/s 2分23. (本题 5分)(3398) 3.43 s 3分 -2π/3 2分24. (本题 5分)(3400) 动能曲线见图 2分 势能曲线见图 2分 机械能曲线见图 1分Et 0TT/2动能势能机械能25. (本题 3分)(3569) π−21或π23 3分26. (本题 3分)(5190) 0 3分27. (本题 4分)(5315) 10 2分 π−212分125 rad/s 1分338 m/s 2分17.0 m 2分29. (本题 4分)(3862) 30 2分 30 2分30. (本题 5分)(3074) 波从坐标原点传至x 处所需时间 2分x 处质点比原点处质点滞后的振动相位 2分t 时刻x 处质点的振动位移 1分31. (本题 5分)(3863) 2π /C 1分 B /C 2分 Cd 2分32. (本题 3分)(3420) 0 3分33. (本题 5分)(3063) 0.8 m 2分 0.2 m 1分 125 Hz 2分34. (本题 5分)(3133) ])(2cos[212φλν++−π=L L t A y 3分λk L x +−=1 (k = ± 1,± 2,…) 2分35. (本题 3分)(3301) )22cos(2212221λπrL A A A A −++ 3分36. (本题 4分)(5517) 2k π + π /2, k = 0,±1,±2,… 2分2k π +3 π /2,k = 0,±1,±2,… 2分37. (本题 3分)(3595) λ213分38. (本题 4分)(3154) t A y ωcos 21−= 或 )cos(21π±=t A y ω 2分 t A ωsin 2=v 2分)(2cos λxT t A −π 3分 A 2分40. (本题 3分)(3462) 3 m 3分三 计算题 (共74分)41. (本题10分)(3022) 解:由旋转矢量图和 |v A | = |v B | 可知 T /2 = 4秒,∴ T = 8 s , ν = (1/8) s -1,ω = 2πν = (π /4) s -13分(1) 以AB 的中点为坐标原点,x 轴指向右方. t = 0时, 5−=x cm φcos A = t = 2 s 时, 5=x cm φφωsin )2cos(A A −=+=由上二式解得 tg φ = 1因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分 25cos /==φx A cm 1分∴ 振动方程 434cos(10252π−π×=−t x (SI) 1分(2) 速率 )434sin(41025d d 2π−π×π−==−t t x v (SI) 2分当t = 0 时,质点在A 点221093.3)43sin(10425d d −−×=π−×π−==t x v m/s 1分42. (本题 5分)(3045) 解:旋转矢量如图所示. 图3分由振动方程可得π21=ω,π=∆31φ 1分 667.0/=∆=∆ωφt s 1分-43. (本题 5分)(3085) 解:反射波在x 点引起的振动相位为π+π−−+π−=+21)55(4x t t φω π−π+π+=10214x t 3分反射波表达式为)10214cos(01.0π−π+π+=x t y (SI) 2分或)214cos(01.0π+π+=x t y (SI)解:(1) 振动方程 }]/)([2cos{φλν+−−π=L t A y P ])/(2cos[φλν++π=L t A 2分 (2) 速度表达式 ])/(2sin[2φλνπν++π−=L t A P v 2分加速度表达式 ])/(2cos[422φλνν++ππ−=L t A a P 1分45. (本题 5分)(3332) 解:(1) 2m )250/500(/===νλu m 波的表达式]/2)1(21500cos[03.0),(λπ−−π−π=x t t x y ]2/2)1(21500cos[03.0π−−π−π=x t )21500cos(03.0x t π−π+π= (SI) 3分(2) t = 0时刻的波形曲线x x x y π=π−π=sin 03.0)21cos(03.0)0,( (SI) 2分46. (本题 8分)(5516) 解:设x = 0处质点振动的表达式为 )cos(0φω+=t A y ,已知 t = 0 时,y 0 = 0,且 v 0 > 0 ∴π−=21φ∴ )2cos(0φν+π=t A y )21100cos(1022π−π×=−t (SI) 2分由波的传播概念,可得该平面简谐波的表达式为)/22cos(0u x t A y νφνπ−+π=)2121100cos(1022x t π−π−π×=− (SI) 2分x = 4 m 处的质点在t 时刻的位移)21100cos(1022π−π×=−t y (SI) 1分该质点在t = 2 s 时的振动速度为 )21200sin(1001022π−π××−=−πv 2分= 6.28 m/s 1分47. (本题 8分)(3078) 解:(1) 设x = 0 处质点的振动方程为 )2cos(φν+π=t A y 由图可知,t = t '时 0)2cos(=+′π=φνt A y 1分 0)2sin(2d /d <+′ππ−=φννt A t y 1分所以 2/2π=+′πφνt , t ′π−π=νφ2212分x = 0处的振动方程为 ]21)(2cos[π+′−π=t t A y ν 1分(2) 该波的表达式为 ]21)/(2cos[π+−′−π=u x t t A y ν 3分解:(1) 振动方程 )22cos(06.00π+π=ty )cos(06.0π+π=t (SI) 3分 (2) 波动表达式 ])/(cos[06.0π+−π=u x t y 3分])21(cos[06.0π+−π=x t (SI)(3) 波长 4==uT λ m 2分49. (本题10分)(3146) 解:(1)波的周期T = λ / u =( 40/20) s= 2 s . 2分P 处Q 处质点振动周期与波的周期相等,故P 处质点的振动曲线如图(a) 振动方程为: 2分 )21cos(20.0π−π=t y P (SI) 2分(2) Q 处质点的振动曲线如图(b),振动 2分方程为 )cos(20.0π+π=t y Q (SI)或 )cos(20.0π−π=t y Q (SI) 2分-50. (本题 5分)(3437) 解:第一列波在P 点引起的振动的振动方程是:)212cos(10331π−π×=−t y , (SI) 2分第二列波在P 点引起的振动的振动方程是:)212cos(10332π−π×=−t y , (SI) 2分P 点的合振动的振动方程是:)212cos(106321π−π×=+=−t y y y , (SI) 1分51. (本题 5分)(3336) 解:(1) )]8(2cos[1λλπ−π−π=t A y )cos(π−π=t A 2分)]3(2cos[2λλπ−π=t A y )cos(t A π= 2分(2) )cos()cos(21t A t A y y y π+π−π=+= 0)cos(cos =π+π−=t A t A 1分。

大学物理振动波动例题习题

大学物理振动波动例题习题

振动波动一、例题(一)振动1。

证明单摆是简谐振动,给出振动周期及圆频率.2. 一质点沿x 轴作简谐运动,振幅为12cm,周期为2s 。

当t = 0时, 位移为6cm ,且向x 轴正方向运动。

求: (1) 振动表达式;(2) t = 0.5s 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x =—0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。

3。

已知两同方向,同频率的简谐振动的方程分别为:x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+求:(1)合振动的初相及振幅.(2)若有另一同方向、同频率的简谐振动x 3 = 0。

07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时 x 1 + x 3 的振幅最大?又ϕ 3为多少时 x 2 + x 3的振幅最小?(二)波动1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s.在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求:(1)波动方程(2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。

2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播.已知原点的振动曲线如图所示.求:(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距m 1的两点之间的位相差.3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+.S 1距P 点3个波长,S 2距P 点21/4个波长。

求:两波在P 点引起的合振动振幅。

4。

沿X 轴传播的平面简谐波方程为:310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2。

25m ,反射波振幅无变化,反射处为固定端,求反射波的方程.二、习题课(一)振动1. 一质点在x 轴上作简谐振动,振辐A = 4 cm,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则O 2.25m Ax t O A/2 -A x 1 x 2 质点第二次通过x = -2 cm 处的时刻为[ ](A) 1 s (B) (2/3) s (C ) (4/3) s (D ) 2 s2.已知某简谐振动的振动曲线如图所示,则此简谐振动的振动方程为(A ) ⎪⎭⎫ ⎝⎛+=3232cos 2ππt x ;(B ) ⎪⎭⎫ ⎝⎛-=332cos 2ππt x ;(C) ⎪⎭⎫ ⎝⎛+=3234cos 2ππt x ;(D ) ⎪⎭⎫ ⎝⎛-=334cos 2ππt x 。

振动与波习题

振动与波习题
23
出质点由初始状态运动到 x=-0.12m, v<0的状
态所经过的最短时间。 t
t=0
解:
3
t
t 2 (s) 3
a
1 3
-0.12 O 0.24
18
8. 一质点同时参与两个同方向的简谐振动,其 振动方程分别为:
1
x51 0 2co4s t ( )(SI)
1
3
x310 2sin 4t (1)(SI)
答案: y2A co s t2 (l x 4 l L )
10、S 1 和 S 2 是波长均为l的两个相干波源,相距 3l / 4
,S 1 的位相比S 2 超前 / 2。若两波单独传播时,强度
均为 I 0 ,则在 S 1、S 2连线上 S 1 外侧和 S 2外侧各点
,合成波的强度分别是
(A)4 I 0 ,4 I 0 ; (C)0,4 I 0 ;
四、谐振动的合成 同方向、同频率的谐振动的合成:
A A12 A22 2A1A2cos(2 1
tg A1sin1 A2 sin2
A1cos1 A2ca os2
8
例1:一质点作简谐振动,=4 rad/s ,振幅A=2cm. 当t=0时,质点位于x=1cm处,并且向x轴正方向运动,求振
动表达式.
解:用矢量图法求解
1、周期和频率(由波源决定,与介质无关)
2、波长
3、波速 4、波速u与l、T的关系:u
l T
二、平面简谐波波动方程
坐标原点振动方程:yAcots()
a
28
波沿x轴正向传播:
y A co (t su x ) [ ] A co 2 (T s t [ l x ) ]
波沿x轴负向传播:

振动和波动要点习题

振动和波动要点习题

振动和波一、选择题1.(3分,答D )已知一平面简谐波的表达式为cos()y A at bx =-(,a b 为正值常量),则 (A )波的频率为a (B )波的传播速度为/b a (C )波长为/b π (D )波的周期为2/a π2.(本题3分,答B )一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[]3. (3分,答B )一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点,若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为(A) 1s (B) (2/3)s (C)(4/3)s (D) 2s4. (3分,答D )一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1(C)T 12/ (D) T 1 /2 (E) T 1 /45.(本题3分,答A )轴一简谐波沿Ox 轴正方向传播,t = 0 时刻的波形曲线如图所示,已知周期为 2 s ,则 P 点处质点的振动速度v 与时间t 的关系曲线为:6.(3分,答B )一平面简谐波在弹性媒质时,某一时刻媒质中某质元在负最大位移处,则它的能量是(A ) 动能为零 势能最大 (B )动能为零 势能为零 (C ) 动能最大 势能最大 (D )动能最大 势能为零v (m/s)O 1 t (s)ωA(C)· v (m/s)O1 t (s)ω A(A)·1 v (m/s)t (s)(D)O-ω A1 v (m/s) t (s)-ωA(B) O ··x o A x A 21 ω(A)A 21ω(B) A 21-(C) (D)o oo A 21-xxxAxAxAxω ω2O 1 y (m)x (m)t =0 A u图17.(3分,答D )沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ)y 2=A cos2π (νt + x /λ) 叠加后形成的驻波中,波节的位置坐标为(A)x =±k λ.(B)x =±k λ/2 .(C)x =±(2k +1)λ/2 .(D)x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….8.(3分,答D )如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为y =A cos(ω t+φ0),则B 点的振动方程为 (A )y =A cos[ω t-(x/u )+φ0] (B )y =A cos ω[ t+(x/u )] (C )y =A cos{ω [t-(x/u ) ]+φ0} (D )y =A cos{ω[ t+(x/u ) ]+φ0}9.(3分,答D )一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A )它的动能转换成势能. (B )它的势能转换成动能. (C )它从相邻的一段质元获得能量,其能量逐渐增大. (D )它把自己的能量传给相邻的一段质元,其能量逐渐减小. 10.(3分,答B )在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4 (B )λ/2 (C )3λ/4 (D )λ11.(3分,答C )某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是 (A )0 (B )/2π (C )π (D )5/4π12.(本题3分,答B)在驻波中,两个相邻波节间各质点的振动(A )振幅相同,相位相同 (B )振幅不同,相位相同 (C )振幅相同,相位不同 (D )振幅不同,相位不同 二、填空题1. (3分)已知一个简谐振动的振幅A=2cm, 角频率14s ωπ-=,以余弦函数表达式运动规律时的A -Ayxλ λ/2O ··a b · · · · · · · · ··x 2A A/2x 1初相12φπ=,试画出位移和时间的关系曲线(振动图线) 2.(4分)两个简谐振动方程分别为x 1=Acos(ω t ) ;x 2=Acos(ω t +π/3) 在同一坐标上画出两者的x-t 曲线.3. (3分)有两相同的弹簧,其劲度系数均为k .(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为;(2)把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为.[答案:(1)22m k π,(2)22mkπ] 4.(4分)一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的劲度系数,振子的振动频率.[答案:2210N/m,1.6Hz ⨯]5.(3分)一平面机械波沿x =-1m 轴负方向传播,已知处质点的振动方程cos()y A t ωϕ=+,若波速为u ,求此波的波函数.[答案:cos{[(1)/]}y A t x u ωϕ=+++]6.(3分)一作简谐振动的振动系统,振子质量为2kg ,系统振动频率为1000Hz ,振幅为0.5cm ,则其振动能量为.(答案:29.9010J ⨯ )7.(3分)两个同方向同频率的简谐振动211310cos(),3x t ωπ-=⨯+221410cos()(SI)6x t ωπ-=⨯-,它们的合振幅是. (答案:2510m -⨯ )8.(3分)一平面简谐波沿Ox 轴正方向传播,波动表达式为cos[(/)/4]y A t x u ωπ=-+,则1x L =处质点的振动方程是;2x L =-处质点的振动和1x L =处质点的振动相位差为21φφ-=. (答案:1cos[(/)/4]y A t L u ωπ=-+,12()/L L u ω+)9.(5分)一余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A 向下 ,B 向上 ,C 向上.10. (本题4分)一平面简谐波的表达式cos (/)cos(/)y A t x u A t x u ωωω=-=-其中/x u 表示,/x u ω表示,y 表示.[答案:波从坐标原点传至x 处所需时间(2分),x 处质点此原点处质点滞后的相位(1分),t 时刻x 处质点的振动位移(1分)]11. (本题3分)如图所示,两相干波源S 1和S 2相距为3λ/4,λ为波长,设两波在S 1 S 2连O Cyxu · · · A B线上传播,它们的振幅都是A ,并且不随距离变化,已知在该直线上S 1左侧各点的合成波强度为其中一个波强度的4倍,则两波源应满足的相位条件是__π/2_ 12. (3分)一驻波的表达式为y =2A cos(2πx/λ) cos(2πνt ),两个相邻波 腹之间的距离是.(答案:λ/2) 三、计算题1. (5分)一质点作简谐运动,其振动方程为110.24cos()()23x t SI ππ=+,试用旋转矢量法求出质点由初始状态运动到x =-0.12 m ,v <0的状态所经过的最短时间. 解:旋转矢量如图所示.图3分 由振动方程可得π21=ω,π=∆31φ1分667.0/=∆=∆ωφt s 1分2(本题10分)一质量m =0.25kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点,弹簧的劲度系数k =25N/m.(1)求振动的周期T 和频率ω. (2)如果振幅A =15cm ,t =0时物体位于x =7.5cm 处,且物体沿x 轴反方向运动,求初速度v 0及初相φ.(3)写出振动的数值表达式. 解:(1)12/10k m s ωπ-== (2分)2/0.63T s πω== (1分)(2) A=15cm , 在t =0时,07.5cm x =,00v < 由2200(/)A x v ω=+得2200 1.3m/s v A x ω=--=- (2分)100(/)/3/3tg v x φωππ-=-=或400,/3x φπ>∴=(3分)(3)21510cos(10/3)(SI)x t π-=⨯+(2分)3.(10分)在一轻弹簧下端悬挂0100g m =砝码时,弹簧伸长8cm. 现在这根弹簧下端悬挂0250g m =物体,构成弹簧振子,将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程的数值式.解:k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/mx (m) ωωπ/3π/3t = 0t0.12 0.24 -0.12 -0.24 OAAO xS 1S 211s 7s 25.025.12/--===m k ω(2分) 5cm )721(4/2222020=+=+=ωv x A cm (2分) 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad (3分))64.07cos(05.0+=t x (SI) (1分)4.(8分)在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长0 1.2cm l =而平衡.再经拉动后,该小球在竖直方向作振幅为2cm A =的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数(图参考上题)0/k mg l = 选平衡位置为原点,向下为正方向. 小球在x 处时,根据牛顿第二定律得202()d x mg k l x m dt -+=将k 代入整理后得 220d x g x dt l =-所以振动为简谐振动,其角频率为0/28.589.1(rad/s)g l ωπ===(5分)设振动表达式为 c o s ()x A t ωφ=+ 由题意:t=0时,200210m0x A v -==⨯=解得:0φ=2210cos(9.1)x t π-∴=⨯m (3分)5.(10分)在一轻弹簧下端悬挂m 0=100g 的砝码时,弹簧伸长8cm,现在这根弹簧下端悬挂m =250g 的物体, 构成弹簧振子. 将物体从平衡位置向下拉动4cm,并给以向上的21cm/s 的初速度(这时t =0) ,选x 轴向下,求振动方程的数值式. 解:物体受向下的重力和向上的弹性力.k=m 0g/∆l , x 0=4×10-2m, v 0=-21×10-2m/sω=()m l g m m k Δ0==7s -1A=22020ω/v x +=5×10-2m因A cos ϕ=4×10-2m, A sin ϕ=-v 0/ω=3×10-2m,有 ϕ=0.64rad 所以x=5×10-2cos(7t +0.64) (SI)6.(本题5分)一质量为0.2kg 的质点作简谐振动,其振动方程为10.6cos(5)(SI)2x t π=-求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力.解:(1)003.0sin(5)()0, 3.0m/s 2dx v t SI t v dt π==--==(2分) (2)2F ma m x ==-ω12x A =时, 1.5N F =-(无负号扣1分) (3分) 7.(5分)一平面简谐波沿x 轴正方向传播,波速为1m/s ,在x 轴上某质点的振动频率为1Hz ,振幅为0.01m. t = 0时该质点恰好在正最大位移处,若以该质点的平衡位置为x 轴的原点. 求此一维简谐波的表达式.解. 0.01cos[2()](m)y t x =-π8.(本题10分)某质点作简谐振动,周期为2s ,振幅为0.06m ,t =0时刻,质点恰好处在负最大位移处,求(1)该质点的振动方程.(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长. 解:(1)振动方程 00.06cos(2/2)0.06cos()(SI)y t t ππππ=+=+3分 (2)0.06cos[((/))0.06cos[(/2))(SI)y t x u t x ππππ=-+=-+ 4分(3)波长4m uT λ==9.(10分)一列平面简谐波在以波速5m/s u =,沿x 轴正向传播,原点O 处质点的振动曲线如图所示.1)求解并画出25cm x =处质元的振动曲线 2)求解并画出3s t =时的波形曲线 解:1)原点O 处质元的振动方程为211210cos(),(SI)22y t ππ-=⨯-(2分)波的表达式 (2分)211210cos((/5)),(SI)22y t x ππ-=⨯--x =25m 处质元的振动方程21210cos(3),(SI)2y t ππ-=⨯-振动曲线如右y-t 图 (2分)2)t=3s 时的波形曲线方程2210cos(/10),(SI)y x ππ-=⨯-(2分)波形曲线见右y-x 图 (2分)10.(10分)某质点作简谐振动,周期为2s ,振幅为0.6m ,t =0时刻,质点恰好处在负最大4O2 y(cm)t (s)2位移处,求(1)该质点的振动方程;(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长.解:(1) 振动方程)22cos(06.00π+π=ty )cos(06.0π+π=t (SI) (3分) (2) 波动表达式])/(cos[06.0π+-π=u x t y (4分)])21(cos[06.0π+-π=x t (SI)(3) 波长4==uT λm (3分)11.(5分)如图所示,一简谐波向x 轴正向传播,波速0500/,1,u m s x m P ==点的振动方程为10.03cos(500)(SI)2y t ππ=-. (1) 按图所示坐标系,写出相应的波的表达式; (2) 在图上画出t=0时刻的波形曲线.解:(1) 2m )250/500(/===νλu m 波的表达式 ]/2)1(21500cos[03.0),(λπ--π-π=x t t x y110.03cos[500(1)2/2]0.03cos(500)(SI)22t x t x =π-π--π=π+π-π(3分)(2) t = 0时刻的波形曲线x x x y π=π-π=sin 03.0)21cos(03.0)0,( (SI) (2分)12.(10分)图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图(波向左传播).已知波速为u ,波的周期大于2 s ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =,φωsin 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为)24cos(2/ππ-=νA A 所以244πππ-=-ν,ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI)(2) 波速u = 20 /2 m/s = 10 m/s,波长λ = u /ν = 160 m 波动表达式]21)16016(2cos[π-+π=x t A y (SI) x (m)uP y (m)O-2-112-0.030.03x (m)O160A y (m)8020t =0t =2 s2A。

振动与波习题

振动与波习题

λ = 5500 A
0
有一光栅,每厘米有500条刻痕,缝宽a=4×10-4cm, 光栅距屏幕1m,用波长为6300A的平行单色光垂直照射 在光栅上,试问 (1)哪些主极大缺级? (2)在单缝中央明纹宽度内可以看见多少条干涉条纹 (3)第一、二级干涉主极大之间的距离为多少?
一衍射双缝,缝距d=0.1mm,缝宽a=0.02mm,用波长 为4000A的平行单色光垂直入射双缝,双缝后置一焦距 为50cm的透镜,试问 (1)透镜焦平面上单缝衍射中央明纹的半角宽度和线 宽度。 (2)透镜焦平面上单缝衍射中央明纹包迹内有多少条 干涉条纹。
π ,若A,B相隔30m,波速为400
ms -1 ,求AB连线上二者之间因干涉而静止的各点位 置。
设平面横波1沿BP方向传播,它在B点的振动方程为:
y1 = 0.2 cos 2πt
平面横波2沿CP方向传播,它在C点的振动方程 为
y2 = 0.2 cos(2πt + π )
,如图BP= P
0.4m,CP=0.5m, 波速为0.2 ms -1 , 求 (1)两列波在P点的相位差; (2)在P点的合振动。 C
0
A
做杨氏双缝干涉实验,在
光屏P处产生第五级亮纹,今若用折射率n1=1.50的 玻璃片覆盖双缝之一,此时P处变成中央亮纹的位置, 则此玻璃片的厚度是多少? 在杨氏双缝干涉实验中,今若用折射率n1=1.50,厚 度为e1的透明薄膜覆盖双缝之一,干涉条纹将发生 移动,今若在另一缝上用折射率为n2=1.30,厚度为 e2的透明薄膜覆盖,恰好可以使干涉条纹移回原位, 求e1 / e2。
S1 S2 R
S1外侧R点,其合成的振幅如何?
如图所示,两列平面简谐波为相干波,在两种不同的 媒质中传播,在两媒质分界面P点相遇,波的频 率ν 相位比S2的相位超前 π / 2 ,波在媒质1中的波速u1= ,振幅A1=A2 =1.00×10-3 m ,S1的 = 100 Hz
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章 振动与波动一、选择题1. 在下列所述的各种物体运动中, 可视为简谐振动的是[ ] (A) 将木块投入水中, 完全浸没并潜入一定深度, 然后释放 (B) 将弹簧振子置于光滑斜面上, 让其振动 (C ) 从光滑的半圆弧槽的边缘释放一个小滑块 (D) 拍皮球时球的运动. 2.一弹簧振子周期为T .现将弹簧截去一半,仍挂上原来的物体, 则新的弹簧振子周期为[ ] (A) T ﻩ ﻩ (B ) 2T (C) 1.4T ﻩ(D) 0。

7T3。

三只相同的弹簧(质量忽略不计)都一端固定, 另一端连接质量为m 的物体, 但放置情况不同.如图4-1-3所示,其中一个平放, 一个斜放, 另一个竖直放.如果让它们振动起来, 则三者的[ ] (A ) 周期和平衡位置都不相同(B) 周期和平衡位置都相同(C) 周期相同, 平衡位置不同(D) 周期不同, 平衡位置相同4。

如图4—1—4所示,升降机中有一个作谐振动的单摆, 当升降机静止时, 其振动周期为2 s , 当升降机以加速度上升时, 升降机中的观察者观察到其单摆的振动周期与原来的振动周期相比,将 [ ] (A) 增大 (B) 不变(C) 减小 (D) 不能确定。

5. 两质点在同一方向上作同振幅、同频率的简谐振动.在振动过程中, 每当它们经过振幅一半的地方时, 其运动方向都相反.则这两个振动的相位差为[ ] (A) π (B)π32 (C) π34 (D) π54 6 在简谐振动的速度和加速度表达式中,都有一个负号, 这是意味着[ ] (A) 速度和加速度总是负值(B ) 速度的相位比位移的相位超前π21, 加速度的相位与位移的相位相差π (C) 速度和加速度的方向总是相同 (D) 速度和加速度的方向总是相反7一质点以周期T 作简谐振动, 则质点由平衡位置正向运动到最大位移一半处的最短时间为 [ ] (A)6T (B) 8T (C) 12T (D) T 127 8 一作简谐运动质点的振动方程为π)21π2cos(5+=t x , 它从计时开始, 在运动一个图4-1-3 图4-1-4周期后[ ] (A ) 相位为零 (B ) 速度为零 (C) 加速度为零 (D ) 振动能量为零9 有一谐振子沿x 轴运动, 平衡位置在x = 0处, 周期为T , 振幅为A ,t = 0时刻振子过2Ax =处向x 轴正方向运动, 则其运动方程可表示为 [ ] (A) )21cos(t A x ω= (B) )cos(2t A x ω=(C ) )3π2sin(--=T t A x π (D ) )3π2cos(-=T t A x π10。

当一质点作简谐振动时, 它的动能和势能随时间作周期变化.如果ν是质点振动的频率, 则其动能变化的频率为[ ] (A) ν4 (B) ν2 (C) ν (D )2ν11。

已知一简谐振动系统的振幅为A, 该简谐振动动能为其最大值一半的位置是 [ ] (A)12A (B) 22A (C) 32A (D ) A12。

一弹簧振子作简谐振动, 当其偏离平衡位置的位移大小为振幅的1/4时, 其动能为振动总能量的 [ ] (A)167 (B) 1615 (C) 169(D) 161313 一轻质弹簧, 上端固定, 下端挂有质量为m 的重物, 其自由端振动的周期为T . 已知振子离开平衡位置为x 时其振动速度为v ,加速度为a ,且其动能与势能相等.试判断下列计算该振子劲度系数的表达式中哪个是错误的?[ ] (A) a mgk = (B) 22xm k v =(C) x mak = (D ) 22π4T m k =14。

设卫星绕地球作匀速圆周运动.若卫星中有一单摆, 下述哪个说法是对的?[ ] (A ) 它仍作简谐振动, 周期比在地面时大 (B) 它仍作简谐振动, 周期比在地面时小 (C) 它不会再作简谐振动(D) 要视卫星运动速度决定其周期的大小15。

弹簧振子在光滑水平面上作谐振动时, 弹性力在半个周期内所做的功为[ ] (A ) 2kA (B)221kA (C) 241kA (D ) 016 如果两个同方向同频率简谐振动的振动方程分别为π)433cos(73.11+=t x (c m)和π)413cos(2+=t x (cm),则它们的合振动方程为 [ ] (A) π)433cos(73.0+=t x (cm ) (B) π)413cos(73.0+=t x (cm)(C) π)1273cos(2+=t x (cm) (D ) π)1253cos(2+=t x (cm)17. 两个同方向、同频率、等振幅的谐振动合成, 如果其合成振动的振幅仍不变, 则此二分振动的相位差为 [ ] (A )2π (B) 3π2 (C) 4π (D ) π 18. 关于振动和波, 下面几句叙述中正确的是[ ] (A ) 有机械振动就一定有机械波(B) 机械波的频率与波源的振动频率相同(C) 机械波的波速与波源的振动速度相同(D) 机械波的波速与波源的振动速度总是不相等的 19. 按照定义,振动状态在一个周期内传播的距离就是波长.下列计算波长的方法中错误的是[ ] (A) 用波速除以波的频率(B ) 用振动状态传播过的距离除以这段距离内的波数 (C) 测量相邻两个波峰的距离(D ) 测量波线上相邻两个静止质点的距离20。

当x为某一定值时, 波动方程)π(2cos λxT t A x -=所反映的物理意义是 [ ] (A) 表示出某时刻的波形 (B) 说明能量的传播(C) 表示出x 处质点的振动规律 (D) 表示出各质点振动状态的分布21. 已知一波源位于x = 5 m 处, 其振动方程为: )cos(ϕω+=t A y (m).当这波源产生的平面简谐波以波速u沿x 轴正向传播时, 其波动方程为[ ] (A ) )(cos u x t A y -=ω (B) ])(cos[ϕω+-=u xt A y (C ) ])5(cos[ϕω++-=u x t A y (D ) ])5(cos[ϕω+--=ux t A y22已知一列机械波的波速为u, 频率为ν, 沿着x轴负方向传播.在x轴的正坐标上有两个点x 1和x 2.如果x1<x 2 , 则x 1和x 2的相位差为 [ ] (A) 0 (B ))(π221x x u-ν(C) π (D) )(π212x x u-ν23。

一波源在XOY 坐标系中(3, 0)处, 其振动方程是)π120cos(t y =(cm),其中 t 以s 计, 波速为50 m ⋅s—1 .设介质无吸收, 则此波在x <3 cm 的区域内的波动方程为 [](A))50π(120cos xt y +=(cm) (B)π]2.7)50π(120cos[-+=xt y (cm ) (C ))50π(120cos x t y -=(cm)(D)π]2.1)50π(120cos[-+=xt y (cm) 24。

若一平面简谐波的波动方程为)cos(cx bt A y -=, 式中A、b 、c 为正值恒量.则[ ] (A ) 波速为c (B) 周期为b 1 (C) 波长为cπ2 (4) 角频率为bπ2 25. 一平面简谐横波沿着Ox轴传播.若在Ox轴上的两点相距8λ(其中λ为波长), 则在波的传播过程中, 这两点振动速度的[ ] (A) 方向总是相同 (B) 方向有时相同有时相反 (C) 方向总是相反 (D) 大小总是不相等26。

当波动方程为)01.05.2π(cos 20x t y +=(cm) 的平面波传到x =100 cm 处时, 该处质点的振动速度为[ ] (A ) )π5.2sin(50t )s cm (-1⋅ (B))π5.2sin(50t -)s cm (-1⋅(C) )π5.2sin(π50t )s cm (-1⋅ (D ) )π5.2sin(π50t -)s cm (-1⋅27。

一平面简谐波在弹性介质中传播, 在介质元从最大位移处回到平衡位置的过程中 [ ] (A) 它的势能转换成动能 (B ) 它的动能转换成势能(C) 它从相邻的一段介质元中获得能量, 其能量逐渐增大 (D) 它把自己的能量传给相邻的一介质元, 其能量逐渐减小28. 已知在某一介质中两列相干的平面简谐波的强度之比是421=I I ,则这两列波的振幅之比21A A 是 [ ] (A) 4 (B) 2 (C) 16 (D) 829。

有两列波在空间某点P 相遇, 某时刻观察到P 点的合振幅等于两列波的振幅之和, 由此可以判定这两列波[ ] (A ) 是相干波 (B ) 相干后能形成驻波 (C ) 是非相干波 (D) 以上三种情况都有可能30。

已知两相干波源所发出的波的相位差为π, 到达某相遇点P的波程差为半波长的两倍, 则P点的合成情况是[ ] (A ) 始终加强 (B) 始终减弱(C) 时而加强, 时而减弱, 呈周期性变化(D) 时而加强, 时而减弱, 没有一定的规律 31。

在驻波中, 两个相邻波节间各质点的振动是[ ] (A) 振幅相同, 相位相同 (B ) 振幅不同, 相位相同(C ) 振幅相同, 相位不同 (D) 振幅不同, 相位不同32。

方程为)π100cos(01.01x t y -=m 和)π100cos(01.02x t y +=m 的两列波叠加后, 相邻两波节之间的距离为[ ] (A) 0。

5 m (B) 1 m (C ) π m (D) 2p m33 1S 和2S 是波长均为λ的两个相干波的波源,相距λ43,1S 的相位比2S 超前2π.若两波单独传播时,在过1S 和2S 的直线上各点的强度相同,不随距离变化,且两波的强度都是0I ,则在1S 、2S 连线上1S 外侧和2S 外侧各点,合成波的强度分别是[ ] (A) 04I ,04I ; (B ) 0,0;(C) 0,04I ; (D) 04I ,0..二、填空题1. 一质点沿x 轴作简谐振动,平衡位置为x 轴原点,周期为T,振幅为A.(1) 若t = 0 时质点过x = 0处且向x轴正方向运动,则振动方程为x = .(2) 若t = 0时质点在2Ax =处且向x 轴负方向运动,则质点方程为x = .2. 一个作简谐振动的质点,其谐振动方程为π)23cos(π1052+⨯=-t x (SI).它从计时开始到第一次通过负最大位移所用的时间为 .3. 一谐振动系统周期为0.6 s, 振子质量为200 g.若振子经过平衡位置时速度为-1s cm 12⋅,则再经0。

2 s 后该振子的动能为 .4。

如图4—2-4,将一个质量为20 g 的硬币放在一个劲度系数为-1m N 40⋅的竖直放置的弹簧上, 然后向下压硬币使弹簧压缩1.0cm, 突然释放后, 这个硬币将飞离原来位置的高度为 .5 如果两个同方向同频率简谐振动的振动方程分别为π)3110sin(31+=t x cm 和)π6110sin(42-=t x cm, 则它们的合振动振幅为 .6. 已知由两个同方向同频率的简谐振动合成的振动,其振动的振幅为20 cm , 与图4-2-4第一个简谐振动的相位差为6π.若第一个简谐振动的振幅为cm 3.17cm 310=, 则第二个简谐振动的振幅为 cm ,两个简谐振动的相位差为 .7. 已知一平面简谐波的方程为: )π(2cos λνxt A y -=, 在ν1=t 时刻λ411=x 与 λ432=x 两点处介质质点的速度之比是 . 8. 已知一入射波的波动方程为)4π4πcos(5xt y +=(SI ), 在坐标原点x = 0处发生反射, 反射端为一自由端.则对于x = 0和x = 1 m 的两振动点来说, 它们的相位关系是相位差为 .9。

相关文档
最新文档