高等计算流体力学讲义(8)

合集下载

高等计算流体力学-08

高等计算流体力学-08

• real :: basel,basev,baser,baset,basem !无量刚基准, 长度-速度-密度-温度-马赫数 • Real:: ro(iq,jq),p(iq,jq),roe(iq,jq),tp(iq,jq), • rovx(iq,jq),rovy(iq,jq),vx(iq,jq),vy(iq,jq),ho(iq,jq), & • ! ρ,p, ρE(单位体积总能),T(温度), ρu, ρv,u, v,总焓 • &, hro(iq,jq),hre(iq,jq),hrx(iq,jq),hry(iq,jq)& • ! 通量代数和(方程右端项)连续-能量-动量 • &,rom1(iq,jq),roem1(iq,jq),rovxm1(iq,jq),rovym1(iq,jq) ! N时刻守恒变量
• real :: vib(iq,jq),vjb(iq,jq) !控制体界面中点运动的法向速度(动网格 计算中有用) • real :: & • &uil (iq,jq),uir(iq,jq),& 控制体i-界面左右两侧 • &vil (iq,jq),vir(iq,jq),& 的速度、压力和密度 • &pil (iq,jq),pir(iq,jq),& • &ril (iq,jq),rir(iq,jq),&
integer ::nmax,n,irest, ioup,iinp, icgl, iimplicit, idgstart,nts1p, nunsloop,ninnerloop, ip,iprint,istart,nb ! nmax: maximum advancing steps; ! irest: start from very beginning(0) or start from a previous computation(1); ! iprint: output every iprint steps ! icgl=1: gloal time step; =0 local time step !ip=1输出计算结果; n:current time-step(累积); istart: current time-step(当前计算)

高等计算流体力学讲义(3)

高等计算流体力学讲义(3)

高等计算流体力学讲义(3)§2 Riemann 问题1.预备知识:Euler 方程解的结构我们讨论Euler 方程解的结构。

在上一节,我们已经得到,在均熵流动条件下,有const R =±,沿au dt dx±= (1) 其中 a u R 12-±=±γ。

且全场 S const =。

(2)在这种情况下,Euler 方程的光滑解有如下几种可能。

1)在求解域中,Riemann 不变量a u R 12-±=±γ均不为常数。

这是最一般的情况,Euler 方程的解比较复杂,通常无解析解。

2)均匀流:Riemann 不变量a u R 12-±=±γ均为常数。

此时,令R R ±±=, 有:0000()/21()4u R R a R R γ+-+-=+-=-,可见,此时流动是均匀的。

3)简单波:有一个Riemann 不变量在某区域内为常数(00R R or R R ++--==)。

以0R R ++=的情况为例。

此时021R u a R γ++=+=-。

(3) 且沿dxu a dt=-,有 21u a const γ-=-。

这个常数具体的数值与特征线的起点有关。

由此我们知道,沿dxu a dt=-,有00()/21()4u R const a R const γ++=+-=-。

这说明,沿dxu a dt=-,u 和a 均为常数,即特征线是直线。

由均熵条件,密度ρ和压力p 沿特征线dx u a dt =-也为常数。

参见上图,由于u a u -<,所以流线dx u dt=(或流体质点)从左侧穿过特征线dxu a dt=-,这种简单波称为左简单波或向后简单波。

简单波可以分为压缩波和稀疏波(膨胀波)两类。

设流线与dxu a dt=-交点处,流线的切线方向为ξ 。

把(3)式沿ξ求方向导数,得:201u a ξγξ∂∂+=∂-∂ 当0uξ∂>∂,有()0,0,0,0a p u c ρξξξξ∂∂∂∂-<<<>∂∂∂∂。

高等流体力学课件 高等流体力学(8)

高等流体力学课件 高等流体力学(8)

通过 dl 的流体流量
Q vdx + udy
B
Q vdx + udy
A
B ψ dx + ψ dy
A x
y
B
dψ ψB ψA
A
=B B
dl
u dy
v dx A
A
21
流函数性质
(3) 流线和等势线相互正交
= const 的线称等势线。
= x,y
d = dx + dy = udx + vdy = 0
F(z) = c z ( c为实数 ) W (z) dF c u iv dz u = c v = 0
如沿 x 轴方向速度为 U, 则
F Uz
U
37
均匀流
F(z)=- icz ( c为实数 )
W (z) dF ic u iv dz
V
u = 0 v = c
如沿 y 轴方向速度为V 则
流函数
平面势流
解法
拉普拉斯方程 复势理论
基本解
速度场
伯努利积分 压强场
理论
绕圆柱流动 绕机翼流动
应用
机翼升力、诱导阻力
实际
水波运动
叶栅理论
14
平面流动举例
桥墩,电线杆,烟囱,机翼等。
设横截面为x0y 平面,流场中各
U
点的流体速度都平行于 xoy 平
面, z 方向的速度分量为零,
各物理量在 z 方向没有变化。
i
sinθ
)
i

(cos
θ
+
1 i
sin
θ
)
= uR (cosθ i sinθ) i uθ (cosθ i sin θ)

流体力学课件(全)

流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。

高等流体力学讲义

高等流体力学讲义

高等流体力学授课提纲第一章概论§1.1 流体力学的研究对象§1.2 流体力学发展简史§1.3 流体力学的研究方法§1.3.1 一般处理途径§1.3.2 应用数学过程§1.3.3 流体力学方法论:一般方法§1.3.4 流体力学方法论:特殊方法●Lagrange描述和Euler描述●无量纲化●线性化●分离变量法●积分变换法●保角映射法●奇点法(孤立奇点法、分布奇点法、Green函数法)●控制体积法●微元法第一章概论§1.1 流体力学的研究对象(1)物质四态:●四态:固态—液态—气态—等离子态;等离子体=电离气体●界限:彼此无明确界限(高温下的沥青;冰川),取决于时间尺度;●流体力学的具体研究对象:液体、气体、等离子体(电磁流体力学、等离子体物理学);●液体与气体的差别:液体—有固定容积、有自由面、不易压缩、有表面张力;气体—无固定容积、无自由面、易压缩、无表面张力。

(2)流体的基本性质:易流动性:静止流体无剪切抗力;压缩性(膨胀性):压差、温差引起的体积改变,判据:马赫数;粘性:运动流体对剪切的抗力,判据:雷诺数;热传导性:温差引起的热量传递,普朗特数。

(3)流体的分类:i)按有无粘性、热传导性分:真实流体(有粘性、有热传导、与固体有粘附性无温差);理想流体(无粘性、无热传导、与固体无粘附性有温差);ii)按压缩性分:不可压缩流体,可压缩流体;iii)按本构关系分:牛顿流体(牛顿粘性定律成立),非牛顿流体(牛顿粘性定律不成立),下分纯粘性流体(拟塑性流体,涨塑性流体);粘塑性流体(非宾汉流体、宾汉流体);时间依存性流体(触变流体、振凝流体);粘弹性流体拟塑性流体(剪切流动化流体):剪切应力随剪切速度增加而减小,如淀粉浆糊、玻璃溶液、高分子流体、纤维树脂;涨塑性流体(剪切粘稠化流体):剪切应力随剪切速度增加而减小,如淀粉中加水、某些水-砂混合物;粘塑性(非宾汉和宾汉流体):存在屈服应力,小于该应力无流动,如粘土泥浆、沥青、油漆、润滑脂等,所有粘塑性流体为非宾汉流体,宾汉流体为近似;触变流体(摇溶流体):粘性或剪切应力随时间减小,如加入高分子物质的油、粘土悬浊液;振凝流体:粘性或剪切应力随时间增大,如矿石浆料、膨润土溶胶、五氧化钒溶液等;粘弹性流体:兼有粘性和弹性性质的流体,能量不像弹性体守恒,也不像纯粘性体全部耗散。

高等流体力学的讲义课件流体力学的基本概念

高等流体力学的讲义课件流体力学的基本概念
连续介质方法失效场合 火箭穿越大气层边缘,微观特征尺度接近宏观特征尺度; 研究激波结构,宏观特征尺度接近微观特征尺度。
1.1 连续介质假说
流体质点
由确定流体分子组成的流体团,流体由流体质点连续无间隙 地组成,流体质点的体积在微观上充分大,在宏观上充分小。
流体质点是流体力学学科研究的最小单元。 当讨论流体速度、密度等变量时,实际上是指流体质点的速 度和密度。
ur
dA3
ur
n
tt
1 . 3 雷诺输运定理
CSIII
物理意义
CSI
II III
DN du rn rdA
Dt tCV CS
I
ur
dA3
ur
dA 1
n
DN Dt
d t CV
t
n
tt
系统中的变量N对时间的变化率;
固定控制体内的变量N对时间的变化率,
由 的不定常性引起 ;
tCVdCVt d
urnrdA
1.2 欧拉和拉格朗日参考系
系统和控制体 控制体
流场中某一确定的空间区域,其边界称控制面。 流体可以通过控制面流进流出控制体,占据控制体的流体质点随时 间变化。 为了在欧拉参考系中推导控制方程,通常把注意力集中在通过控制 体的流体上,应用质量、动量和能量守恒定律于这些流体,即可得 到欧拉参考系中的基本方程组。
D
rr rr
r
D t d t d Au n d A Au n d A (u ) d
z
urnrdAadAadAadAadA
A
A左
A右
A前
A后
2adA2adA0
y
r
A上
A下
rr
r

高等流体力学 讲义

高等流体力学 讲义

0.01775
式中水温t /s计 式中水温t以°C计,ν以cm2/s计
前进
牛顿流体与非牛顿流 (3)牛顿流体与非牛顿流体 一般把符合牛顿内摩擦定律的流体称为牛顿流 一般把符合牛顿内摩擦定律的流体称为牛顿流体(属于水力学 研究的范畴),反之称为非牛顿流体(属于流变学研究的范畴)。 研究的范畴),反之称为非牛顿流体(属于流变学研究的范畴)。 ),反之称为非牛顿流体 A线为牛顿流体,当流体种类一定、温 线为牛顿流体,当流体种类一定、
前进
Hale Waihona Puke 绪 论主要内容: 主要内容:
气体、 气体、液体和固体 连续介质 作用于流体上的力 流体的传递特性 液体的表面特性 边界条件
前进 结束
固体、液体、 固体、液体、气体
固体:具有固定的形状和体积。 ◆宏观状态的不同 固体:具有固定的形状和体积。 液体:具有固定的体积,没有固定的形状。 液体:具有固定的体积,没有固定的形状。 气体:没有固定的形状和体积。 气体:没有固定的形状和体积。 凝聚态
根据理论力学( 根据理论力学(Shamed,1966)得 )
M z = I z a z + ω xω y ( I y − I x )
式中:Mz为各作用力对 轴的力矩;Ix、Iy、Iz为隔离体对 为各作用力对z轴的力矩 为隔离体对x,y,z 式中 为各作用力对 轴的力矩; 为隔离体对 轴的惯性矩; 为隔离体的角加速度在 方向分量; 和 为隔离体的角加速度在z方向分量 轴的惯性矩;az为隔离体的角加速度在 方向分量;ωx和ωy 为隔离体角速度在x和 轴的分量 轴的分量。 为隔离体角速度在 和y轴的分量。
以δxδyδz 除之,上式可简化成 除之 上式可简化成
(δx) 2 + (δy ) 2 (δx) 2 + (δy ) 2 τ xy − τ yx = ρ az + ρω xω y 12 12

高等计算流体力学讲义(1)

高等计算流体力学讲义(1)

(8)
∂φ ∂φ ∂ 2φ ∂ 2φ ∂ 2φ ∂ 2φ = ξ xx + η xx + ξ x [ 2 ξ x + ηx ] +ηx[ ξx + 2 ηx ] ∂ξ ∂η ∂ξ ∂ξ∂η ∂ξ∂η ∂η ∂φ ∂φ ∂ 2φ ∂ 2φ ∂ 2φ 2 = ξ xx + η xx + 2 (ξ x ) + 2 ξ xη x + 2 (η x ) 2 ∂ξ ∂η ∂ξ ∂ξ∂η ∂η
2、度量系数及其计算方法
在导数的坐标变换公式中涉及到下列坐标变换系数: ξ x , ξ y ,η x ,η y 。这些系数 称为坐标变换公式(5)对应的度量系数(metrics)。我们看到,为了求解计算平 面中的偏微分方程,如(9)式,必须确定度量系数(有时还包括 ξ xx , ξ xy , ξ yy ,η xx ,η xy ,η yy 等)的离散值。那么,这些度量系数如何计算呢?由于一 般情况下,我们只知道坐标变换关系(5)、(6)的离散表达式,度量系数一般也要 通过有限差分方法近似计算。但是,直接构造 ξ x , ξ y ,η x ,η y 的差分近似是不容易 的。以 ξ x 为例,根据偏导数的意义, ξ x 为 y 保持不变时 ξ 随 x 的变化,如图 2 所示,网格点 P 处的 ξ x 的计算公式应为:
不计质量力的情况下,在直角坐标系中,守恒型 N-S 方程可以写为下列 向量形式: ∂U ∂ ( F − Fv ) ∂ (G − G v ) ∂ ( H − H v ) + + + =0, (1) ∂t ∂x ∂y ∂z 其中
ρu ρv ρw ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 2 ⎜ ρu + p ⎟ ⎜ ρ vu ⎟ ⎜ ρ uw ⎟ F = ⎜ ρ uv ⎟ G = ⎜ ρ v 2 + p ⎟ H = ⎜ ρ vw ⎟ , ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 2 ⎜ ρ uw ⎟ ⎜ ρ vw ⎟ ⎜ ρw + p ⎟ ⎜ ( ρ E + p)u ⎟ ⎜ ( ρ E + p )v ⎟ ⎜ ( ρ E + p) w ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 0 ⎛ ⎞ 0 ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ τ xy τ xx ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ τ ⎜ ⎟ τ xy yy G = Fv = ⎜ v ⎜ ⎟, ⎟ τ τ yz xz ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ T ∂ ∂T ⎜ uτ xy + vτ yy + wτ yz + k ⎟ ⎜ uτ xx + vτ xy + wτ xz + k ⎟ ∂y ⎠ ∂x ⎠ ⎝ ⎝ 0 ⎛ ⎞ ⎜ ⎟ τ xz ⎜ ⎟ ⎜ ⎟ τ zy Hv = ⎜ ⎟。 τ zz ⎜ ⎟ ⎜ ∂T ⎟ ⎜ uτ xz + vτ zy + wτ zz + k ⎟ ∂z ⎠ ⎝ 如果忽略 N-S 方程中的粘性和热传导,得到的简化方程为 Euler 方程:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档