大学概率论与数理统计复习资料

合集下载

大学概率论与数理统计复习资料(word文档良心出品)

大学概率论与数理统计复习资料(word文档良心出品)

第一章 随机事件及其概率知识点:概率的性质 事件运算 古典概率事件的独立性 条件概率 全概率与贝叶斯公式常用公式)()()()()()2(加法定理AB P B P A P B A P -+= ),,()()(2111有限可加性两两互斥设n ni i ni i A A A A P A P ∑===),(0)()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==)()()()()5(AB P A P B A P B A P -==-)()()()()(时当A B B P A P B A P B A P ⊂-==-))0(,,()()/()()()6(211>Ω=∑=i n ni i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ),,()](1[1)(2111相互独立时n ni i n i i A A A A P A P ∏==--=)/()()/()()()4(B A P B P A B P A P AB P ==)(/)()/()3(A P AB P A B P =)()/()()/()()/()7(1逆概率公式∑==ni iii i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L AP nr A P ==应用举例1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。

2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。

3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。

4、若,3.0)(=A P===)(,5.0)(,4.0)(B A B P B A P B P ()。

5、,,A B C 是三个随机事件,C B ⊂,事件()A C B -与A 的关系是( )。

概率论与数理统计期末考试复习资料

概率论与数理统计期末考试复习资料
第 1 章 随机事件及其概率
(1)排 列组合 公式
Pmn

m! (m n)!
C
n m

m! n!(m n)!
从 m 个人中挑出 n 个人进行排列的可能数。 从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2)加 法和乘 法原理
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方 法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步
率。分布函数F(x) 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° 0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即x1 x2 时,有 F(x1) F(x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
设F(x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意 实数x ,有
F (x) x f (x)dx ,
则称 X 为连续型随机变量。f (x) 称为 X 的概率密度函数或密度函 数,简称概率密度。 密度函数具有下面 4 个性质: 1° f (x) 0 。
2° f (x)dx 1。
X
| x1, x2,, xk, 。
P( X xk) p1, p2,, pk,
显然分布律应满足下列条件:
(1) pk 0 ,k 1,2,, (2) pk 1。 k 1
(2)连 续型随 机变量 的分布 密度

统计学复习资料概率论与数理统计重点知识点整理

统计学复习资料概率论与数理统计重点知识点整理

统计学复习资料概率论与数理统计重点知识点整理概率论与数理统计是统计学的基础课程之一,也是应用最为广泛的数学工具之一。

下面将对概率论与数理统计的重点知识点进行整理,以供复习使用。

一、概率论的基本概念1. 样本空间和事件:样本空间是指随机试验的所有可能结果构成的集合,事件是样本空间的子集。

2. 古典概型和几何概型:古典概型是指样本空间中的每个结果具有相同的概率,几何概型是指采用几何方法进行分析的概率模型。

3. 概率公理和条件概率:概率公理是概率论的基本公理,条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

4. 独立事件和全概率公式:独立事件是指两个事件的发生与否互不影响,全概率公式是用于计算复杂事件的概率的公式。

5. 随机变量和概率分布函数:随机变量是对样本空间中的每个结果赋予一个数值,概率分布函数是随机变量的分布情况。

二、概率分布的基本类型1. 离散型概率分布:包括二项分布、泊松分布和几何分布等。

2. 连续型概率分布:包括正态分布、指数分布和均匀分布等。

三、多维随机变量及其分布1. 边缘分布和条件分布:边缘分布是指多维随机变量中的某一个或几个变量的分布,条件分布是指在已知某些变量取值的条件下,其他变量的分布。

2. 二维随机变量的相关系数:相关系数用于刻画两个随机变量之间的线性关系的强度和方向。

3. 多维随机变量的独立性:多维随机变量中的各个分量独立时,称为多维随机变量相互独立。

四、参数估计与假设检验1. 参数估计方法:包括点估计和区间估计,点估计是通过样本数据得到参数的估计值,区间估计是对参数进行一个范围的估计。

2. 假设检验的基本概念:假设检验是用于对统计推断的一种方法,通过与某个假设进行比较来得出结论。

3. 假设检验的步骤:包括建立原假设和备择假设、选择显著性水平、计算检验统计量和做出统计决策等步骤。

五、回归分析与方差分析1. 简单线性回归分析:简单线性回归分析是研究两个变量之间的线性关系的方法,通过建立回归方程来拟合数据。

概率论与数理统计复习要点

概率论与数理统计复习要点

第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。

2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。

④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。

) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。

若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。

4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21 ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。

(完整版)概率论与数理统计知识点总结(详细)

(完整版)概率论与数理统计知识点总结(详细)

《概率论与数理统计》第一章概率论的基本概念 (2)§2.样本空间、随机事件 (2)§4等可能概型(古典概型) (3)§5.条件概率 (4)§6.独立性 (4)第二章随机变量及其分布 (5)§1随机变量 (5)§2离散性随机变量及其分布律 (5)§3随机变量的分布函数 (6)§4连续性随机变量及其概率密度 (6)§5随机变量的函数的分布 (7)第三章多维随机变量 (7)§1二维随机变量 (7)§2边缘分布 (8)§3条件分布 (8)§4相互独立的随机变量 (9)§5两个随机变量的函数的分布 (9)第四章随机变量的数字特征 (10)§1.数学期望 (10)§2方差 (11)§3协方差及相关系数 (11)第五章 大数定律与中心极限定理 (12)§1. 大数定律 ...................................................................................... 12 §2中心极限定理 . (13)第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

大学概率论与数理统计复习资料

大学概率论与数理统计复习资料

知识点:概率的性质事件运算古典概率常用公式(2)P(A BP P(A) P(B)- P(AB)(加法定理)nnP(U A) Y p(A)i d innP(U A)=l-n [1-P(A)]i di d(3) P(B/A)二 P(AB)/P(A) (4)P(AB)二 P(A)P(B/A)二P(B)P(A/B) P(AB)二 P(A)P(B) (A 与B 独立时)P(AB)二0(A,B 互不相容时)(5) P (A- Bp P(ABp P(A)- P(AB)P(A- B)二 P(AB)二 P(A) - P(B)(当B A 时)n(6) P (B)八 P(A i )P(B/A i )(全概率公式)i=1(其中A ,,A 2 A n 为"的一个划分,且P(A i 0)) (7) P (A /B) = nP(A)P(B/A)(逆概率公式)迟 P(A i )P(B/A)事件的独立性条件概率全概率与贝叶斯公式(1)P(Ap r/nP(AP L(A)/L(S)(设A,4…A 两两互斥,有限可加性)(A ,4, A 相互独立时)i =1应用举例1、已知事件A, B 满足P(AB) = P(AB),且P(A) = 0.6 ,贝卩P(B)=()。

2、已知事件A,B 相互独立,P(A) =k, P(B) =0.2, P(0 B)=0.6,贝k - ()。

3、已知事件A,B 互不相容,P(A) =0.3, P(B) = 0.5,则 P(A B)=()。

4、若P(A) =0.3, P(B)=0.4 ,P(AB) = 0.5, P(BA B)=( )。

5、A, B,C是三个随机事件,C B,事件AUC - B与A的关系是6、5张数字卡片上分别写着1, 2, 3, 4, 5,从中任取3张,某日他抛一枚硬币决定乘地铁还是乘汽车。

(1 )试求他在5:40〜5:50到家的概率;(2)结果他是5:47到家的。

试求他是乘地铁回家的概率。

《概率论与数理统计》综合复习资料

《概率论与数理统计》综合复习资料

《概率论与数理统计》综合复习资料《概率论与数理统计》综合复习资料⼀、填空题1.由长期统计资料得知,某⼀地区在4⽉份下⾬(记作事件A )的概率为4/15,刮风(记作事件B )的概率为7/15,刮风⼜下⾬(记作事件C )的概率为1/10。

则:=)|(B A P ;=)(B A P 。

2.⼀批产品共有8个正品2个次品,从中任取两次,每次取⼀个(不放回)。

则:(1)第⼀次取到正品,第⼆次取到次品的概率为;(2)恰有⼀次取到次品的概率为。

3.设随机变量)2,1(~2N X 、)3(~P Y (泊松分布),且相互独⽴,则:)2(Y X E += ; )2(Y X D + 。

4.设随机变量X 的概率分布为X -1 0 1 2 p k 0.1 0.2 0.3 p 则: =EX ;DX = ;Y X =-21的概率分布为。

5.设⼀批产品中⼀、⼆、三等品各占60%、30%、10%,从中任取⼀件,结果不是三等品,则取到的是⼆等品的概率为。

6.设Y X 、相互独⽴,且概率分布分别为 2)1(1)(--=x ex f π(-∞<<+∞x ) ; ?≤≤=其它,,0312/1)(y y ?则:)(Y X E += ; )32(2Y X E -= 。

7.已知随机变量X 的分布列为 X 0 1 2 P k 0.3 0.5 0.2 则:随机变量X 的期望EX = ;⽅差DX = 。

8.已知⼯⼚A B 、⽣产产品的次品率分别为2%和1%,现从由A B 、⼯⼚分别占30%和70%的⼀批产品中随机抽取⼀件,发现是次品,则该产品是B ⼯⼚的概率为。

9.设Y X 、的概率分布分别为≤≤=其它,,0514/1)(x x ?; ?()y e y y y =>≤-40004,,则:)2(Y X E += ;)4(2Y XE -= 。

10.设随机变量X 的概率密度为≤=其它,,02cos )(πx x A x f ,则:系数A = 。

非常全面的《概率论与数理统计》复习材料

非常全面的《概率论与数理统计》复习材料

《概率论与数理统计》复习大纲第一章随机事件与概率事件与集合论的对应关系表古典概型古典概型的前提是Ω={ω1, ω2,ω3,…, ωn,}, n为有限正整数,且每个样本点ωi出现的可能性相等。

例1设3个球任意投到四个杯中去,问杯中球的个数最多为1个的事件A1,最多为2个的事件A2的概率。

[解]:每个球有4种放入法,3个球共有43种放入法,所以|Ω|=43=64。

(1)当杯中球的个数最多为1个时,相当于四个杯中取3个杯子,每个杯子恰有一个球,所以|A1|= C433!=24;则P(A1)=24/64 =3/8. (2) 当杯中球的个数最多为2个时,相当于四个杯中有1个杯子恰有2个球(C41C32),另有一个杯子恰有1个球(C31C11),所以|A2|= C41C32C31C11=36;则P(A2)=36/64 =9/16例2从1,2,…,9,这九个数中任取三个数,求:(1)三数之和为10的概率p1;(2)三数之积为21的倍数的概率p2。

[解]:p1=4C93=121, p2=C31C51+C32C93=314P(A)=A包含样本总个数样本点总数=|A||Ω|几何概型前提是如果在某一区域Ω任取一点,而所取的点落在Ω中任意两个度量相等的子区域的可能性是一样的。

若A⊂Ω,则P(A)=A的度量Ω的度量例1把长度为a的棒任意折成三段,求它们可以构成一个三角形的概率。

[解]:设折得的三段长度分别为x,y和a-x-y,那么,样本空间,S={(x,y)|0≤x≤a,0≤y≤a,0≤a-x-y≤a}。

而随机事件A:”三段构成三角形”相应的区域G应满足两边之和大于第三边的原则,得到联立方程组,⎩⎪⎨⎪⎧a-x-y<x+yx<a-x-y+yy<a-x-y+x解得0<x<a2, 0<y<a2,a2<x+y<a 。

即G={(x,y)| 0<x<a2, 0<y<a2,a2<x+y<a }由图中计算面积之比,可得到相应的几何概率P(A)=1/4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 随机事件及其概率知识点:概率的性质 事件运算 古典概率事件的独立性 条件概率 全概率与贝叶斯公式常用公式)()()()()()2(加法定理AB P B P A P B A P -+= ),,()()(2111有限可加性两两互斥设n ni i ni i A A A A P A P ∑===),(0)()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==)()()()()5(AB P A P B A P B A P -==-)()()()()(时当A B B P A P B A P B A P ⊂-==-))0(,,()()/()()()6(211>Ω=∑=i n ni i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ),,()](1[1)(2111相互独立时n ni i n i i A A A A P A P ∏==--=)/()()/()()()4(B A P B P A B P A P AB P ==)(/)()/()3(A P AB P A B P =)()/()()/()()/()7(1逆概率公式∑==ni iii i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L AP nr A P ==应用举例1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。

2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。

3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。

4、若,3.0)(=A P===)(,5.0)(,4.0)(B A B P B A P B P ()。

5、,,A B C 是三个随机事件,C B ⊂,事件()A C B -与A 的关系是( )。

6、5张数字卡片上分别写着1,2,3,4,5,从中任取3张,排成3位数,则排成3位奇数的概率是( )。

某日他抛一枚硬币决定乘地铁还是乘汽车。

(1)试求他在5:40~5:50到家的概率;(2)结果他是5:47到家的。

试求他是乘地铁回家的概率。

解(1)设1A ={他是乘地铁回家的},2A ={他是乘汽车回家的},i B ={第i 段时间到家的},4,3,2,1=i 分别对应时间段5:30~5:40,5:40~5:50,5:50~6:00,6:00以后 则由全概率公式有)|()()|()()(2221212A B P A P A B P A P B P +=由上表可知4.0)|(12=A B P ,3.0)|(22=A B P ,5.0)()(21==A P A P35.05.03.04.05.0)(2=⨯+⨯=B P (2)由贝叶斯公式7435.04.05.0)()()|(22121=⨯==B P B A P B A P8、盒中12个新乒乓球,每次比赛从中任取3个来用,比赛后仍放回盒中,求:第三次比赛时取到3个新球的概率。

看作业习题1: 4, 9, 11, 15, 16第二章 随机变量及其分布知识点:连续型(离散型)随机变量分布的性质连续型(离散型)随机变量分布(包括随机变量函数的分布) 常用分布重要内容)(R x x f ∈≥0)()()()(12121x F x F x x x F ≤⇒<单调递增,即)(1)(lim )(0)(lim )(2==+∞==-∞+∞→-∞→x F F x F F x x )()()0()(3x F x F x F =+右连续,即)(Rx x F ∈≤≤10)4()(1=∑iip2.分布律的性质...)2,1(,10=≤≤i p i 1.分布函数的性质(1)非负性 (2)规范性3.分布密度函数的性质⎰+∞∞-=1)(dx x f (1)非负性 (2)规范性4. 概率计算5.常用分布)(或泊松分布λλπP X X ~)(~)0,...;1,0(,!)(>===-λλλk e k k X P k1221()()()P x X x P X x P X x ∴<≤=≤-≤)()(a F a X P =≤)0()()(--==a F a F a X P ⎰=≤<21)()(21x x dxx f x X x P 0)0()()(=--==a Fa F a X P ⎰+∞=<adx x f X a P )()(⎰∞-=≤adx x f a X P )()(为连续型随机变量:X ),(~,~p n b X p n B X )或(记为 二项分布: ),...1,0(,)(n k qp C k X P kn kk n===-条件:n较大且p很小泊松定理)(,!)1(np e k p p C kkn kk n=≈---λλλ⎪⎩⎪⎨⎧≤≤-=,其他均匀分布0,1)(),(~b x a a b x f b a U X ⎩⎨⎧>≥=-,其他指数分布0)0(,0,)()(~λλλλx e x f E X x ),(,21)(),(~222)(2+∞-∞∈⋅=--x ex f N X x σμσπσμ正态分布⎪⎭⎫⎝⎛-Φ=σμx x F )(5.0)0()1(=Φ)(1)()2(x x Φ-=-Φ73.99}3|{|%45.95}2|{|%27.68}1|{|=⋅<-=⋅<-=⋅<-∴σμσμσμX P X P X P应用举例1、设2()(0)x f x ke x -=>是某随机变量的密度函数,则k =( )。

2、设随机变量X 的概率密度为)22(,cos 21)(ππ+≤≤-=x x x f ,则)01(<<-X P =()。

3、设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.,1,1,ln ,1,0)(e x e x x x x F 则)2(>X P =()。

4、设),(~2σμN X ,满足)1()1(-≤=->X P X P 的参数μ=( )。

5、离散型随机变量X 的分布律为11()(1,2,3)!P X k k c k ===,则c =( )。

6、土地粮食亩产量(单位:kg ))60,360(~2N X.按亩产量高低将土地分成等级.若亩产量高于420kg 为一级,在360~420kg 间为二级,在315~360kg 间为三等,低于315kg 为四级.求等级Y 的概率分布。

(5.0)0(=Φ,8413.0)1(=Φ,7734.0)75.0(=Φ) 解⎪⎪⎩⎪⎪⎨⎧≤≤<≤<<=3154360315342036024201X X X XY7、110在长度为t 的时间(单位:h)间隔内收到的紧急呼救的次数X 服从参数为t 21的泊松分布,而与时间间隔的起点无关.求某一天中午12时至下午3时至少收到1次呼救的概率。

解X 的分布律为),2,1,0(!)2()(2===-k k t e k X P kt中午12时到下午3时,表明3=t 求)1(≥X P8、一批产品由8件正品、2件次品组成。

若随机地从中每次抽取一件产品后,无论抽出的是正品还是次品总用一件正品放回去,直到取到正品为止,求抽取次数X的分布律。

解X所有可能的取值为1,2,3A={第i次取到正品}(3,2,1 i)i看作业习题2: 4,7, 17,20,24,26, 27,28第三章 多维随机变量及其分布知识点:二维连续型(离散型)随机变量分布的性质 二维连续型(离散型)随机变量的分布(包括边际分布) 随机变量的独立性 二维常用分布 内容提要 1.概率分布的性质2.二维概率计算3.边际密度函数计算4.常用分布,2,1,,0=≥j i p ij 离散型非负性111=∑∑∞=∞=i j ijp归一性1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 连续型归一性⎰+∞∞-=;),()(dy y x f x f X ⎰+∞∞-=dxy x f y f Y ),()({(,)}(,)GP X Y G f x y dxdy∈=⎰⎰⎪⎩⎪⎨⎧∈=其他),(),(均匀分布01Dy x Ay x f二维正态分布5.随机变量的独立性6.正态分布的可加性)()(),(y F x F y x F Y X ⋅=),2,1,( =⨯=⋅⋅j i p p p ji ij )()(),(y f x f y x f Y X ⨯=21221211~(,)(1,2),,,~(,)i i in nnn i ii i N i n N ξμσξξξξξξμσ===++∑∑设且相互独立则),(~),,(~222211σμσμN Y N X ),,,,(~),(222121ρσσμμN Y X应用举例1、设()Y X ,的密度函数()⎩⎨⎧>>=--其他,00,0,,2y x ke y x f y x 则k =( )。

2、设离散型随机变量(,)X Y 的联合分布律为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y Pαβ且Y X ,相互独立,则( )。

3、某箱中有100件产品,其中一、二、三等品分别为70、20、10件,现从中随机的抽取一件,记⎩⎨⎧=等品抽到其它i X i10,3,2,1=i 求(1)1X 和2X 的联合分布律;(2)并求)(21X X P ≠。

4、设随机变量),(Y X 在曲线x y =,xy =围成的区域D 里服从均匀分布,求联合概率密度和边缘概率密度。

5、设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧≤≤=其它01421),(22y x y x y x f 求)(X Y P <6、设随机变量321,,X X X 相互独立,并且均服从正态分布3,2,1),,(~2=i N X ii i σμ,则∑=+=31~)(i i i i b X a X ()。

看作业习题3: 1,2,3,4,5,6,7,9,10,11,12,13,18第四章 随机变量的数字特征知识点:随机变量的数学期望的性质与计算随机变量的方差(协方差、相关系数)的性质与计算 主要内容1、数学期望的计算⎰∑∞+∞-==dxx xf X E px X E X E X iii )()()().(,1连续型离散型求的分布已知)(⎰∑∞+∞-===dxx f x g Y E px g Y E Y E X g Y X iii)()()()()().(),(,2连续型离散型求且的分布已知)(dydx y x yf Y E p yY E dydx y x xf X E px X E Y E X E Y X R jiijjR ij iji⎰⎰∑∑⎰⎰∑∑====22),()()(),()()(:1).()(,),(4连续型离散型连续型离散型方法或求的联合分布已知)(dydx y x f y x g Z E py x g Z E Z E Y X g Z Y X R ijijji⎰⎰∑∑===2),(),()(),()().(),,(),(3连续型离散型求,且的联合分布已知)(⎰∑⎰∑∞+∞-∞+∞-====dyy yf Y E p yY Edxx xf X E px X E Y jjj X i ii )()()()()()(,:2..连续型离散型连续型离散型则先求出边际分布方法2、性质当随机变量相互独立时3、方差的计算4,、方差性质5、协方差与相关系数协方差的计算EXEY EXY Y X COV -=),(DY DXY X COV XY ρ=),(相关系数的计算DYDXY X COV XY ),(=ρ)()()()(2121n n X E X E X E X X X E +++=+++ 1212()()();()()()().n n E XY E X E Y E X X X E X E X E X =⋅=⋅2()()D XE X EX =-即22()()[()]D XE X E X =-易证2(2)()()D aX b a D X +=2,()()D aX a D X =特别地(3)()()()2{[()][()]}DX Y D X D Y E X E X Y E Y ±=+±--(1)()0D c =,,()()()X Y D X Y D X D Y ±=+特别地当与独立时12:,,n X X X 推广当相互独立时有∑∑===ni in i i DX X D 11)((,)[()][()]Cov X Y E X E X Y E Y =--应用举例1. 某农产品的需求量X(单位:吨)服从区间[1200,3000]上的均匀分布。

相关文档
最新文档