光伏并网发电

合集下载

光伏并网发电系统方案

光伏并网发电系统方案

光伏并网发电系统方案随着对可再生能源的需求不断增加,光伏并网发电系统方案在能源领域中变得越来越重要。

光伏并网发电系统通过将太阳能转化为电能,并将其与电网进行连接,实现电能的互补使用。

本文将介绍光伏并网发电系统的基本原理、组成部分以及其应用领域。

一、光伏并网发电系统的基本原理光伏并网发电系统的基本原理是将太阳能转化为直流电能,然后通过逆变器将直流电能转化为交流电能,并将其与电网进行连接。

光伏电池组件是光伏并网发电系统的核心部件,它将太阳能转化为直流电能。

逆变器则起到将直流电能转化为交流电能的作用。

光伏并网发电系统还包括其他辅助设备,如电表、保护装置等。

二、光伏并网发电系统的组成部分1. 光伏电池组件:光伏电池组件是光伏并网发电系统中最核心的部件,它由多个光伏电池片组成,将太阳能转化为直流电能。

光伏电池组件的性能直接影响着系统的发电效率。

2. 逆变器:逆变器是光伏并网发电系统中的关键设备,它将直流电能转化为交流电能,并将其与电网进行连接。

逆变器还能实现对发电功率的监测和控制,确保系统的安全运行。

3. 电表:电表用于测量光伏并网发电系统的发电量和用电量,以及电网与系统之间的电能流动情况。

电表还能实现对电能的计量和结算,方便用户进行能源管理。

4. 保护装置:保护装置包括过流保护、过压保护、欠压保护等功能,用于保护光伏并网发电系统和电网的安全运行。

保护装置能够检测异常情况,并及时切断故障电路,确保系统的可靠性和安全性。

三、光伏并网发电系统的应用领域1. 家庭和商业用途:光伏并网发电系统可以安装在家庭和商业建筑的屋顶或地面上,通过吸收太阳能来发电。

这样一来,不仅可以满足建筑物自身的用电需求,还可以将多余的电能卖给电网,实现发电的经济效益。

2. 农业领域:在农田或农业温室中安装光伏并网发电系统,可以利用太阳能为农业生产提供电力。

这样可以减少对传统电力的依赖,降低能源成本,同时减少环境污染。

3. 供电不足地区:在供电不足的地区,光伏并网发电系统可以作为一种替代能源来满足当地居民的电力需求。

光伏并网发电

光伏并网发电

光伏并网发电,是指将太阳能光伏发电装置的直流电能,通过光伏电池所产生的电能,转换为交流电能,联接送电系统,实现发电设备与电网的互联互通。

,是综合能源系统中的一个重要组成部分,是实现可持续能源化的最重要手段之一。

技术的发展,从20世纪80年代末期开始,经历了数十年的发展。

的优势是明显的,它能够帮助我们实现节能减排的目标,减少了传统能源的使用,从而达到了环保的效果。

同时,也具有能源自给自足的效果,为普通百姓带来了实惠。

的实现,需要具备高效、稳定、安全的并网系统。

首先,系统需要有逆变器,它能够自动调整直流电转换为交流电,并接入到电网系统。

逆变器能够提供大量的稳定电能,实现光伏发电设备的稳定运行。

其次,系统需要有计量表,用于对发电系统的电量进行测量,以便进行合理的调整和管理。

通过计量表,我们可以准确测算出系统所产生的电量,进行经济、功能方面的判断和分析。

此外,为了保证太阳能光伏发电装置的安全性和稳定性,我们还需要在发电系统中设立监控系统,实时了解装置的运行状态和动态信息。

监控系统能够及时反馈光伏发电设备的各种基本参数和状态信息,为维修、调整和管理提供了便利和支持。

现在,系统已经被广泛应用于国内外的电力系统中。

例如,在我国,随着技术的不断成熟和完善,各地的太阳能光伏发电装置的装机容量在逐年增长,已经从2011年的10W多,增长到2018年的四千多万千瓦。

在未来的发展中,系统将会继续发挥其重要的作用,并且得到更广泛的应用。

成为可持续发展的一个重要手段,可以解决环保问题、节能减排问题以及绿色发展问题。

在今后的发展过程中,我们需要不断创新,并且将发电技术发扬光大,实现科技创新和可持续发展。

光伏并网发电系统

光伏并网发电系统
Grid
Inverter
1 or 3 phase connection
多串式逆变器
1.3 光伏并网系统接入方式
Ac module Ac module
Ac module
Grid
DC bus
Central inverter
3 phase connection
集中式逆变器——目前主流应用
Grid
1 phase connection
①光伏电池方阵;②控制器;③电缆;④逆变 器;⑤配电系统;⑥用电器;⑦输电电缆;⑧ 电网
1、光伏并网发电系统
发电----直流配电----并网逆变---交流配电--变压---电网
光伏阵列:
由太阳电池 汇流
串并联封装 箱:
为电池组件, 再由组件串
汇集 连线、 采集
并联构成光 信号、
伏发电方阵, 防雷、
上述几种拓扑都可以有效解决 漏电流问题,在行业内得到广 泛的应用。
1.2 三相光伏并网逆变器主电路拓扑现状
S1
S3
S5
a
C
b
c
AC
S4
S6
S2
三相逆变桥是光伏并网逆变系 统的功率主电路的核心,它的 作用是将光伏阵列输出的非线 性直流电源转换成可以并入电 网的交流电源。
三相并网逆变器主功率逆变桥 主要有两电平逆变桥、三电平 逆变桥、H桥并联等几种典型拓 扑
在太阳光的 防反、
照射下,产 隔离 生电压,形 等
成回路电流,
输出直流电
力。
配电:
计量、 开关、 漏电保 护、防 雷、保 险、滤 波、
并网逆变器: 将直流转换 为与电网同 频率、同幅、 同相的交流 电的电力设 备。具有控 制、保护、 安全功能。

光伏并网发电系统

光伏并网发电系统

系统设计原则与步骤
• 原则:确保系统安全、可靠、高效、经济、环保,满足用 户需求。
系统设计原则与步骤
步骤
1
2
1. 确定安装地点和规模,评估当地光照资源。
3
2. 设计光伏方阵,选择合适的组件和支架。
系统设计原则与步骤
5. 进行系统调试和验收。
4. 设计输配电系统,包括 变压器和电缆。
3. 设计并网逆变器和控制 系统。
储能式逆变器
具备储能功能,可在电力需求 低谷期储存电能,并在高峰期
释放,平衡电网负荷。
逆变器的工作原理与技术参数
工作原理
将光伏组件产生的直流电转换为交流 电,并输送到电网中。
技术参数
包括额定功率、输入电压范围、输出 电压范围、效率、功率因数等。
效率
衡量逆变器转换效率的重要指标,通 常要求达到95%以上。
为公园、学校、医院等公共设施提供电力 ,减少对传统能源的依赖。
农业领域
偏远地区供电
应用于农业大棚、灌溉系统等,提供绿色 能源,促进农业可持续发展。
解决偏远地区供电难题,提高当地居民生 活质量。
光伏并网发电系统的实际案例分析
住宅区光伏并网发电系统
医院光伏并网发电系统
该系统为住宅区提供稳定、可靠的绿 色电力,降低碳排放,提高居民生活 质量。
将太阳能转换为直流电能。
逆变器
将直流电能转换为交流电能。
并网控制器
确保交流电能与电网同步,实现并网发电。
储能设备(可选)
用于平衡电网负荷,提高供电稳定性。
02 光伏电池与组件
光伏电池的类型与特性
晶体硅电池
基于单晶硅或多晶硅材料,是目 前市场占有率最高的光伏电池类 型。其特性是效率高、稳定性好, 但成本相对较高。

光伏的分类

光伏的分类

光伏主要分为独立光伏发电和并网光伏发电两种类型。

独立光伏发电,也称为离网光伏发电,主要由太阳能电池组件、控制器、蓄电池组成。

这种类型的发电系统多建在山区、丘陵等地的无电网地区,以及通信信号电源、阴极保护、太阳能路灯等各种带有蓄电池的可以独立运行的光伏发电系统。

并网光伏发电是指太阳能组件产生的直流电经过并网逆变器转换成符合电网要求的交流电后接入公共电网。

并网光伏发电分为集中式光伏电站和分布式光伏电站两种类型。

集中式光伏电站一般具有投资规模大、建设周期长、占地面积大等特点,通常建设在沙漠、戈壁等地区。

分布式光伏电站通常建设在居民、工厂、园区等建筑物的屋顶上,数量多且资源分散。

除此之外,光伏还可以根据建设地点的不同分为山地丘陵光伏电站、沙漠戈壁光伏电站、光互补光伏电站等。

光伏风电项目并网发电需具备的条件及并网流程

光伏风电项目并网发电需具备的条件及并网流程

光伏风电项目并网发电需具备的条件及并网流程
一、光伏并网所需具备条件
1、安装资质
光伏发电系统应当由具备安装资质的企业或个人安装,需持有有效的安装资质,如交流电气安装和维护一级工程资格证书、监理工程师资格证书等等,以确保安装工作质量。

2、安装合格证
光伏发电站安装完成后,应当取得安装检测的报告以及安装合格证,由报告中报告验收的光伏发电设备才能正式投入商用发电。

3、特殊设备要求
由于光伏发电的工作性能,在发电并网时,由于特殊的特性,有些设备必须安装,如抗浪涌保护器、隔离开关和绝缘监测装置等,以保障发电系统的安全性。

4、电力设施
有些地区需要对电力设施进行特殊要求,如架空线路的抗风等级、户内引入线路的相关参数、电表电压等,以保障并网发电的正常安全运行。

二、光伏并网流程
1、申请及审核
投资方准备好详细的发电并网申请书,并提供发电设备安装合格证,提交给电网供电公司,由电网供电公司组织专家组审核,评估并评定发电并网的可行性。

2、联络协商
当第一步审核完成以后,双方开展联络协商,由电网供电公司组织发电方代表和电网供电公司发电管理部门代表,就发电并网的具体事项进行磋商,决定是否同意发电并网。

光伏发电并网原理

光伏发电并网原理

光伏发电并网原理光伏发电并网是指将光伏发电系统与电网连接,将太阳能转化为电能并输送到电网中供电使用的过程。

光伏发电并网系统由光伏组件、逆变器、电网连接装置、监控系统等组成,其工作原理主要包括光伏发电、逆变器转换和并网供电三个环节。

首先,光伏发电是指利用光伏组件将太阳能光线转化为直流电能的过程。

光伏组件由许多光伏电池组成,当太阳光照射到光伏电池上时,光子与半导体材料发生光生电子-空穴对,产生电流。

这些光伏电池串联并联成光伏组件,通过光伏组件与逆变器连接,将直流电能转化为交流电能。

其次,逆变器转换是指将光伏组件输出的直流电能通过逆变器转换为交流电能的过程。

逆变器是光伏发电系统的核心设备,其内部包含直流-交流的电能转换装置,能够将光伏组件输出的直流电能转换为符合电网要求的交流电能。

逆变器还具有最大功率点跟踪功能,能够根据光照强度和温度变化动态调整工作状态,最大限度地提高光伏发电系统的发电效率。

最后,并网供电是指将逆变器输出的交流电能通过电网连接装置接入到电网中,供电使用的过程。

光伏发电系统通过并网装置与电网连接,将发电系统产生的电能输送到电网中,供电使用。

在并网供电过程中,监控系统能够实时监测光伏发电系统的运行状态、发电量和电网连接情况,保障系统安全稳定运行。

总的来说,光伏发电并网原理是通过光伏组件将太阳能转化为直流电能,再经过逆变器转换为交流电能,最终通过电网连接装置接入到电网中供电使用的过程。

光伏发电并网系统能够实现清洁能源的利用,减少对传统能源的依赖,具有环保、可持续的特点,是未来能源发展的重要方向之一。

随着技术的不断进步和成本的不断降低,光伏发电并网系统将在未来得到更广泛的应用和推广。

光伏并网发电系统

光伏并网发电系统

光伏并网发电系统1. 概述光伏并网发电系统是一种利用太阳能光伏电池组将光能转化为电能,并通过并网逆变器将电能注入电网的发电系统。

它是清洁能源发电的重要组成部分,具有环保、可持续等优点,被广泛应用于家庭、工业和商业等领域。

2. 原理光伏并网发电系统的工作原理主要分为光电转换、电能调节和并网注入三个步骤。

首先,太阳能光线通过光伏电池组,光能转化为直流电能。

然后,通过光伏逆变器将直流电转化为交流电,并对电能进行调节,确保输出电压和频率符合电网要求。

最后,交流电能通过电网连接,供应给周围的电力用户使用。

3. 组件和设备光伏并网发电系统主要由光伏电池组、光伏逆变器、配电箱和计量装置等组件和设备构成。

3.1 光伏电池组光伏电池组是光伏并网发电系统的核心组件,由多个太阳能电池板组成。

它们将太阳能光线转化为直流电能,并提供给逆变器进行转换。

3.2 光伏逆变器光伏逆变器是光伏并网发电系统中的关键设备,负责将直流电能转化为交流电能,并实时监测并调节输出电压和频率,以满足电网的要求。

逆变器通常具有高效率、稳定性和安全性等特点。

3.3 配电箱配电箱用于分配光伏发电系统和电网之间的电能流向,确保发电系统与电网正常连接,并提供过电压和过电流保护功能。

3.4 计量装置计量装置用于测量光伏发电系统的发电量和电能消耗量,对系统运行情况进行监测和统计。

4. 运行流程光伏并网发电系统的运行流程分为系统启动、发电和停机三个阶段。

4.1 系统启动系统启动需要先将光伏电池组的直流电源与逆变器连接,并配置合适的工作参数。

逆变器根据配置参数开始运行并监测光伏电池组的电流、电压等信息。

4.2 发电在光伏电池组接收到阳光后,光能被转化为直流电能,通过逆变器转化为交流电能,并注入电网供电。

逆变器实时监测电网电压和频率,并调节输出电能以跟随电网的变化。

4.3 停机当光伏并网发电系统停止工作时,逆变器将停止输出电能并断开与电网的连接。

此时,光伏电池组暂停接收太阳能光线,系统进入待机状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光伏并网发电系统光伏并网发电系统 (1)1光伏并网发电系统的简单介绍 (1)2光伏并网发电系统分类 (2)2.1有逆流和无逆流 (2)2.2可调度式和不可调度式 (2)3并网光伏系统各部件 (3)4并网逆变器 (4)4.1并网逆变器功能 (4)4.2最大功率点跟踪控制 (4)4.3孤岛效应及其检测 (7)5结语 (8)参考文献 (8)1光伏并网发电系统的简单介绍根据光伏系统与电网的关系,一般分为并网系统和离网系统。

而在并网系统中,根据有无逆流分为有逆流系统、无逆流系统。

所谓逆流,即用户处采用太阳能电池和电网并行供电,太阳能电池供电有剩余时,将剩余电能送入电网,电能输送方向恰与电网供电方向相反,故称为逆流。

这种系统一般为发电能力大于负载或发电时间同负荷不匹配。

无逆流系统,则是光伏系统发电量始终小于负荷的用电量。

根据光伏系统是否配置蓄电池,分为可调度系统、不可调度系统。

可调度系统主动性较强,当出现电网限电、掉电、停电时仍可正常供电。

虽然光伏系统有并网、离网之分,并网系统又有逆流、无逆流,可调度、不可调度之分,但其基本组件一般都包括以下几个部分:太阳能电池方阵、储能装置、电子电力变换系统、控制器。

对于并网系统,由于与电网相连,因此一般不需要储能装置,只有对特殊要求的负荷,如需要有UPS(Uninterruptible Power Supply)功能,才配有储能装置。

显然,与离网相比,并网发电节省了储能装置的成本,也省去了电池容量的设计。

2光伏并网发电系统分类2.1有逆流和无逆流图1为逆流系统,这种系统最大特点就是太阳能方阵所产生电力除了供给交流负载外,多余的电力反馈给电网。

在夜晚或阴雨,太阳能电池不能满足负载需要时,直接由电网供电。

可见,有逆流系统免除了配置蓄电池,省掉了蓄能和释放的过程,可以充分利用光伏方阵图1 有逆流系统所发的电力,降低了成本。

但是该系统中需要专用的并网双向逆变器,以保证满足该系统各项要求。

无逆流系统,则是指光伏系统的发电量始终小于或等于负荷的用电量,不够的电量由电网提供,在该系统中使用的并网逆变器为单向。

2.2可调度式和不可调度式根据并网光伏系统中是否配置蓄电池,又有可调度和不可调度系统之分,分别如图2、图3所示。

图2 可调度式系统图3 不可调度式系统可调度系统中配有容量较小的储能装置,一般采用自给天数为1~2天的蓄电池,市电与太阳能电源并行工作:太阳能电池产生的电力有剩余则反馈给电网;太阳能电池电力不足,则启用市电给负载供电,市电还保证蓄电池长期处于浮充状态;如果市电发生故障,且太阳能电池无法工作,则转成独立模式,由蓄电池给负载供电,一旦市电恢复正常再转成联网模式。

可调度系统一般运用要求不间断的场合,而并网发电采用不可调度式系统即可。

3并网光伏系统各部件太阳能电池方阵,由太阳能电池组件按照系统需求串、并联而成,在太阳照射下将太阳能转换成电能输出,它是并网光伏系统的能量之源。

储能装置,一般采用铅蓄电池,与离网系统相比,并网对铅蓄电池的容量要求较低,一般只要1~2天即可,并且并非所有并网系统都需要蓄电池,如纯并网发电系统就无需蓄电池,因此,蓄电池在并网系统中并没有在离网系统中那么重要。

控制器,控制系统各部件按着要求运行,尽可能多的输出符合电网要求的电能。

逆变器,是整个并网系统中最为重要的一个部件,与离网不同,它不仅可将直流电转换成交流电,还可对转换的交流电的频率、电压、相位、电能品质等进行控制,具体将在下一节中详细介绍。

4并网逆变器4.1并网逆变器功能逆变器是联网光伏系统的核心部件和技术关键。

世界各大光伏系统公司都各有所长地推出了各种主电路拓朴结构及不同控制方式、不同功率等级的产品,它们可以是阶梯波形输出或全正弦波形输出,性能及效率指标相差悬殊。

据德国汉诺威太阳能研究所报道,同样阵列容量在同样气象条件下,由于采用了不同构造的逆变器,每年送向电网的发电量竟可相差一倍之多。

并网逆变器一般具有如下功能:1、自动开关。

根据从日出到日落的日照条件,尽量发挥太阳能电池方阵输出功率的潜力,在此范围内实现自动开始和停止。

2、最大功率点跟踪控制(MPPT)。

对随着太阳能电池方阵表面温度变化和太阳能辐射照度变化而产生出的输出电压与电流进行跟踪控制,使方阵经常保持最大输出的状态,以获得最大的功率输出。

3、防止“孤岛效应”。

系统所在地的公共电网发生停电,当负荷电力与逆变器输出电力相同时,逆变器的输出电压不会发生改变,难以察觉停电,因而有通过系统向所在地继续供电,这种情况叫“孤岛效应”。

在这种情况下,本应停了电的配电线中又有了电,这对于安检人员是危险的,除此外还有很多其它危害,因此应设置防止“孤岛效应”的功能。

4、自动电压调整。

在剩余电力逆流入电网时,因电力逆向输送而导致送电点电压上升,有可能超过商用电网的运行范围,为保持系统电压正常,运转过程中要能够自动防止电压上升。

4.2最大功率点跟踪控制太阳能电池板的输出具有非线性特性,而且输出受光照强度、温度和负载特性影响,实时调节太阳能电池板输出电压,使之工作在最大功率点电压处以使太阳能电池板输出功率达到最大值,这个过程即最大功率点跟踪(Maximum Power Point Tracking MPPT)。

由于光伏电源装置原始投入高,并且光伏电池转换效率较低,所以需要使装置的效率最大,而使光伏电池工作于最大功率点上是一个提高效率的主要途径,因此进行最大功率跟踪控制是光伏发电系统所必需采取的措施。

最大功率跟踪控制具体到P-V特性曲线(如图4)上,就是使光伏电池端电压始终处于Pm对应的电压附近。

下面介绍几种常用的最大功率跟踪算法:1、恒电压控制法(CVT)通过图4可知,光伏阵列在不同光照强度下的最大功率输出点总是近似在某一恒定的电压值Vm附近,这样可以采用CVT法,在光伏阵列和负载之间通过一定的阻抗变换,使得系统成为一个稳压器,即阵列的工作点始终稳定在VM附近。

这样不但简化了整个控制系统,还可以保证它的输出功率接近最大功率点。

但一般硅型光伏阵列的开路电压都会受到结温度的影响,在同样的光照强度下,最大功率点还会受到温度的影响,在光伏阵列的功率输出随着温度变化的情况下,如果仍然采用恒定电压控制策略,阵列的输出功率将会偏离最大功率点,产生较大的功率损失。

特别是在有些情况下,光伏阵列的结温升高的比较明显,导致阵列的伏安曲线与系统预先设定的工作电压可能不存在交点,那么系统将会产生振荡。

对于那些一年四季或者每天早晨温差比较图4 光伏电池I-V曲线和P-V曲线大的地区,温度对整个光伏阵列输出将会产生比较大的影响,如果采用CVT控制策略就只能通过降低系统得效率来保证其稳定性。

2、扰动观察法扰动观察法((perturb&observe algorithms-P&O)。

是目前实现MPPT常用的方法之一。

其原理是每隔一定的时间增加或者减少光伏电池端电压,并观测其后的功率变化方向,来决定下一步的控制信号。

算法可以简述如下:光伏控制器在每个控制周期用较小的步长改变光伏阵列输出,改变步长是一定的,方向可以是增加也可以是减小,控制对象可以是光伏阵列的输出电压或电流,这一过程称为“扰动”;然后通过比较扰动周期前后光伏阵列的输出功率,如果输出功率增加,那么继续按照上一周期的方向继续扰动,相反,如果输出功率减小,则改变“扰动”方向。

此法的最大优点在于其结构简单,被测参数少。

其缺点是由于始终有“扰动”的存在,其输出会有一定的微小波动,在最大功率跟踪过程中将导致些微功率损失,并且跟踪速度较慢;而光照发生快速变化时,跟踪算法可能会失效,判断得到错误的跟踪方向。

扰动观察法的流程图如图5所示。

3、电导增量法电导增量法(Incremental conductance Algorithm)也是MPPT控制常用的算法。

通过光伏电池阵列P-V曲线可知其在最大功率点Pm处的斜率为零,即下式成立:P=V*IdP/dV=I+V*dI/dV=0dI/dV=-I/V从图6中可以看出,dP/dV值是与输出电压值一一对应的。

当dP/dV = 0,在最大功率点处;当dP/dV>0,在最大功率点左边;当dP/dV < 0,在最大功率点右边。

图5 扰动观察法流程图图6 光伏电池P-V和dP-dV关系图电导增量法通过设定一些很小的变化阐值,判断目前工作点在最大功率点的哪一侧,然后改变逆变器输出功率,使太阳能光伏阵列最后稳定在最大功率点附近的某个点,而不是来回的跳动。

当从一个稳态过渡到另外一个稳态时,电导增量法根据电流的变化就能够做出正确的判断,不会出现误判断的过程。

此跟踪法最大的优点,是当光伏电池上的光照强度产生变化时,输出端电压能以平稳的方式追随其变化,电压波动较扰动观察法小。

缺点是其算法较为复杂,对硬件的要求特别是对传感器的精度要求比较高,系统各个部分响应速度都要求比较快,因而整个系统的硬件造价也会比较高。

而且实际的太阳能光伏阵列可能存在局部的功率最大点,这种算法可能导致系统稳定在局部最优点上。

除上述介绍的几种方法外,还有滞环比较法,模糊逻辑控制法,改进扰动控制法等,各种方案各有千秋,需要根据实际情况选择最合适的方案。

4.3孤岛效应及其检测孤岛效应,最初由美国Sandia国家实验室(5andia National Laboratories)的报告指出:当电力公司的供电,因故障事故或停电维修而跳脱时,各个用户端的太阳能并网发电系统未能即时检测出停电状态而将自身切离市电网路,而形成由太阳能并网发电系统和周围的负载形成的一个电力公司无法掌握的自给供电孤岛。

事实上,不只太阳能发电系统会有这个问题的存在,只要是分散式的发电系统,例如:风力发电、燃料电池发电等,或是一般并联在市电的发电设备都会有此问题产生。

一般来说,孤岛效应可能对整个配电系统设备及用户端的设备造成不利的影响,包括:.1、危害电力公司输电线路维修人员的安全:2、影响配电系统上的保护开关动作程序;3、电力孤岛区域所发生的供电电压与频率的不稳定现象:4、当电力公司供电恢复时所造成的相位不同步问题:5、太阳能供电系统因单相供电而造成系统三相负载的欠相供电问题。

所以当越来越多的光伏并网发电系统并联于交流电网时,发生孤岛效应的机率也就越高,虽然通常在配电开关跳脱时,如果太阳能供电系统的供电量和电网负载需求量之间的差异根大,市电网路上的电压及频率将会发生很大的变动,此时可以利用系统软硬件所规定的电网电压的过(欠)电压保护设置点及过(欠)频率保护设置点来检测电网断电,从而防止孤岛效应。

可是当太阳能供电系统的供电量与网路负载需求量平衡或差异很小时,则当配电开关跳脱后,并网系统附近市电网路上的电压及频率的变动量将不足以被保护电路所检测到,还是会有孤岛效应的产生。

相关文档
最新文档