家用分布式光伏系统设计(并网型)

合集下载

分布式光伏发电并网系统设计

分布式光伏发电并网系统设计

分布式光伏发电并网系统设计分布式光伏发电并网系统是指将多个光伏发电系统通过电网连接在一起,并与电网进行互动交流的一种发电模式。

这种系统设计能够提高太阳能的利用效率,减少对传统能源的依赖,实现能源的可持续利用。

下面将从硬件设计、控制策略和经济效益三个方面进行详细介绍。

在硬件设计方面,分布式光伏发电并网系统通常由光伏组件、逆变器、电网连接器、配电柜以及监控装置等组成。

光伏组件是整个系统的核心部分,它将太阳能转化为直流电能。

逆变器则将直流电转换为交流电,并与电网进行连接。

电网连接器用于连接逆变器与电网,确保系统的安全稳定运行。

配电柜用于进行电能的分配和管理,保证电能的正常供应。

监控装置用于对光伏发电系统进行实时监控和管理。

通过合理的硬件设计,可以提高光伏发电系统的效率和稳定性。

在控制策略方面,分布式光伏发电并网系统采用的常见控制策略有功率控制和电压控制两种。

功率控制策略是指根据电网的负荷需求,调节光伏发电系统的输出功率,使得光伏系统的发电功率和电网负荷需求保持匹配。

电压控制策略是指根据电网的电压变化情况,调节光伏发电系统的输出电压,保持电网的电压稳定。

这两种控制策略可以相互结合,实现光伏系统与电网的协同运行。

同时,还可以通过智能控制算法,对系统进行优化调节,提高发电效率和降低电能损耗。

在经济效益方面,分布式光伏发电并网系统能够降低电网运营成本,减少对传统能源的依赖,提高能源利用效率。

通过光伏发电系统的建设和运营,可以实现电能的分散生产和就近消费,减少电能的传输损耗。

同时,光伏发电系统还可以向电网出售多余的电能,从而实现电能的双向流动。

这样既可以降低居民和企业的用电成本,又可以提供额外的经济收益。

另外,分布式光伏发电并网系统还可以减少对传统能源的消耗,降低能源的排放,对环境保护和气候变化具有重要意义。

综上所述,分布式光伏发电并网系统设计是一项复杂而重要的工程,它涉及各个方面的技术和管理问题。

只有通过合理的硬件设计、高效的控制策略和科学的经济分析,才能实现分布式光伏发电并网系统的稳定运行和经济效益。

家用分布式光伏系统设计(并网型)

家用分布式光伏系统设计(并网型)

家用分布式光伏系统设计摘要:太阳能是最普遍的自然资源,也是取之不尽的可再生能源。

分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。

它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。

目前应用最为广泛的分布式光伏发电系统,是建在建筑物屋顶的光伏发电项目,方便接入就近接入公共电网,与公共电网一起为附近的用户供电。

从发电入网角度出发,根据家庭用电情况可以给出系统施工要求、设计方法以及光伏组件、逆变器的选择等。

关键词:太阳能分布式光伏发电系统1.前言太阳能是一种重要的,可再生的清洁能源,是取之不尽用之不竭、无污染、人类能够自由利用的能源。

太阳每秒钟到达地面的能量高达50万千瓦,假如把地球表面0.1%的太阳能转换为电能,转变率5%,每年发电量可达5.6×1012kW·h,相当于目前世界上能耗的40倍。

从长远来看,太阳能的利用前景最好,潜力最大。

近30年来,太阳能利用技术在研究开发、商业化生产和市场开拓方面都获得了长足发展,成为快速、稳定发展的新兴产业之一。

本文简单地阐述了家用分布式光伏发电系统设计方法和施工要求,仅供参考。

2.太阳能光伏发电应用现状太阳能转换为电能的技术称为太阳能光伏发电技术(简称PV技术)。

太阳能光伏发电不仅可以部分代替化石燃料发电,而且可以减少CO2和有害气体的排放,防止地球环境恶化,因此发展太阳能光伏产业已经成为全球各国解决能源与经济发展、环境保护之间矛盾的最佳途径之一。

目前发达国家如美国、德国、日本的光伏发电应用领域从航天、国防、转向了民用,如德国的“百万屋顶计划”使许多家庭不仅利用太阳能光伏发电解决了自家供电,而且这些家庭还办成了一所所私人的“小型电站”,能够源源不断地为公用电网提供电能。

近几年,我国光伏行业发展也非常迅速。

分布式光伏发电系统的电网连接方案设计

分布式光伏发电系统的电网连接方案设计

分布式光伏发电系统的电网连接方案设计一、引言分布式光伏发电系统是一种可再生能源发电系统,能够将太阳能转化为电能并接入电网供电。

为了确保分布式光伏发电系统的安全运行和高效利用,本文将针对该系统的电网连接方案进行设计,并详细阐述方案的实施方法和技术要点。

二、电网连接类型选择1.并网型连接并网型连接是将分布式光伏发电系统连接到电网中,并将发电系统的电能与电网上的用电负荷直接进行匹配。

这种连接方式简单方便,但需要满足电网的稳定性和电能质量的要求。

2.储能型连接储能型连接是将分布式光伏发电系统与储能设备相连,通过储能设备储存多余电能,并在需要时向电网供电。

这种连接方式能够在电网负荷高峰期间对电网进行支持,提高系统的稳定性。

三、并网型连接方案设计1.功率调节技术为了确保并网型分布式光伏发电系统与电网的平稳连接,需要采用功率调节技术。

常见的功率调节技术包括MPPT(最大功率点跟踪)和功率控制技术等。

通过这些技术,可以实现光伏发电系统的最大功率输出,并确保其电能与电网平衡。

2.电能质量控制并网型分布式光伏发电系统需要满足电网的电能质量要求。

在设计方案中,需要考虑低谐波、功率因数调整、电压调节等功能,以确保分布式光伏发电系统与电网的稳定连接和电能质量的控制。

3.安全保护措施在设计并网型连接方案时,需要考虑保护措施以保障系统的安全性。

包括过电压保护、过电流保护、短路保护等,以应对电网故障和异常情况,确保系统和工作人员的安全。

四、储能型连接方案设计1.储能设备选择储能型分布式光伏发电系统需要选择适合的储能设备。

可以考虑使用锂电池、铅酸电池等,根据系统需求和经济性进行选择。

同时,需要保证储能设备的容量和寿命能够满足系统的供电需求。

2.能量管理系统为了实现储能型分布式光伏发电系统的有效运行,需要配备能量管理系统。

能量管理系统可以监测和管理储能设备的充放电状态,并根据负荷需求进行智能控制。

这样可以合理存储和释放电能,提高系统的利用率。

家庭分布式光伏并网一体箱的设计及应用

家庭分布式光伏并网一体箱的设计及应用

家庭 分 布式 光伏 并 网一 体 箱 实物 如 图 4
所示 。
超过 6 k W。近年来 , 国家连 续 出 台政策 推进 家庭
分布式发电, 但用于并网的箱体设计急需进行标
准化 , 以降低成本 , 使 家庭 分 布式光 伏 并 网接 人 工
程 的时间缩 短 5 0 % 。由嘉兴供 电公 司牵头组 成 的 课题小组 对并 网箱进行 了一体化 的标准化设计 。
何 平( 1 9 8 1 一) 。 男.
高 级 工 程师 。 从 事 配
网设 计 。
关键 词 : 家庭分布式光伏并网一体箱 ; 标准化设计 ; 功能特点 ; 并 网时间
中 图分 类 号 : T U 8 5 5 文献 标 志码 :B 文 章 编 号 :I 6 7 4 — 8 4 1 7 ( 2 0 I 6 ) 1 2 - 0 0 6 1 03 -
DOI :1 0 . 1 6 6 1 8 / . . e n k i . 1 6 7 4— 8 41 7 . 2 01 6 . 1 2 . 0 1 4
0 引 言
我国自2 0 0 9年开 始启 动“ 金太阳” 工程 和 光
式光 伏并 网工 作流 程 和缩 短施 工 时 间 , 降低 分 布 式光伏并 网的设备价格 , 促 进 光 伏 产 业 健 康 发 展, 本文 对家庭 分 布式 光伏 并 网一 体 箱 进行 了研
布式 光伏 发 电并 网服 务工 作 的意 见》 以及 国家 陆 续发 布一 系列 分布式 光 伏优 惠 政 策 , 大力 扶 持 光
伏企 业 。因此 , 近几年 , 分 布 式 光 伏 发 电呈 爆 发
式增 长 。
目前 , 家庭 分布式 光 伏 并 网相 关 的新 设 备 相 对滞 后 。调查结 果显 示 , 家庭 分 布 式 光伏 并 网项 目施 工时 间普 遍 较 长 , 工作涉及业务受理 、 现 场 查勘 及编制 接人 系统 方 案 、 施工 图设计 、 审图、 设 备制 造 、 工 程施工 并 验 收并 网等 。一 个家 庭 分 布 式光 伏并 网项 目平 均 整 个 工期 在 3 0 d左 右 。 同

家庭分布式10KW光伏电站并网方案

家庭分布式10KW光伏电站并网方案

家庭分布式10KW光伏电站并⽹⽅案1. 系统简介太阳能电池板发电系统是利⽤光⽣伏打效应原理,它是将太阳辐射能量直接转换成电能的发电系统。

太阳能并⽹发电系统通过把太阳能转化为电能,不经过蓄电池储能,把满⾜负载需要后多余的电量或在没有负载情况下把产⽣的电量,通过并⽹逆变器送上电⽹。

2. 10KW系统并⽹原理图光伏并⽹系统所需主要器件由光伏电池板和光伏逆变器构成。

其⼯作模式为,当光伏能量充⾜时光伏电池板的不稳定直流电能转换为优质稳定的交流电能以电流环控制⽅式将电能注⼊电⽹,其优点是不需要蓄电池的储能 节省了投资和蓄电池的充放电设备损耗和折旧,将公共电⽹作为储能媒介。

光伏并⽹发的缺点是当电⽹异常时(电压过⾼过低异常、频率异常),根据并⽹规则与约定必须进⾏反孤岛保护⽽停⽌并⽹发电。

3. 光伏系统的主要组成1) 光伏组件光伏组件是将太阳光能直接转变为直流电能的发电装置,根据⽤户对功率和电压的需求,通过串并量得到适合的太阳能电池组件阵列,满⾜⽤电需求2) 并⽹逆变器逆变器是将直流电变换为交流电的设备,并⽹型逆变器是光伏发电系统中的重要部件之⼀。

3) 交流防雷配电柜系统配置⼀台交流防雷配电柜,按照1个10KW的交流配电单元进⾏设计,每台逆变器的交流输⼊接⼊交流配电柜,经交流断路器并⼊单相交流低压电⽹发电。

另由按照分布式家⽤并⽹要求,要求安装⼀块光伏侧单相电表和负载侧双向电表,⽤来计量电量⾃⽤和供给国⽹部分。

同时并⽹交流柜具有单独、可靠的⼑闸,具有漏电保护器空开并有失压脱扣功能,具有同电⽹同时⾃动断电功能。

4.)系统防雷接地装置为了保证本⼯程光伏并⽹发电系统安全可靠,防⽌累计、浪涌等外在因素导致系统旗舰的损坏等情况发⽣,系统的防雷接地装置必不可少。

系统的防雷接地装置措施有多重⽅法,主要有⼀下⼏个⽅⾯供参考1 地线是避雷、防雷的关键,在进⾏配电室基础建设,若原有配电室直接连接到原配电室接地⽹上,和太阳能电池⽅阵基础建设的同时,选择附近⼟层较厚、潮湿的地点,挖1~2⽶深地线坑,采⽤40扁钢,添加降阻剂并引出地线,引出线采⽤16~35mm通信电缆,接地电阻应⼩于4欧姆。

5KW家用并网光伏发电系统设计

5KW家用并网光伏发电系统设计

5KW家用并网光伏发电系统设计一、背景介绍随着能源危机的加剧和环保意识的提高,新能源逐渐成为人们重要的能源选择。

光伏发电作为最为常见的新能源之一,其具有无污染、可再生等优点,受到越来越多人的关注。

为了将太阳能光伏发电系统应用于家庭中,需要进行系统的设计,保证其高效、可靠地发挥作用。

二、系统设计要求1.功率:系统设计为5KW,满足家庭基本用电需求。

2.可靠性:系统要能可靠地工作,并能适应不同的气候条件,如高温、低温、多云等。

3.安全性:系统要具备过载保护、短路保护等功能,确保使用过程中的安全。

4.易于操作:系统要简化操作步骤,方便使用者进行监控和维护。

5.美观性:系统的设计要考虑配备光伏组件的外观和布局,以保持建筑的美观性。

三、系统组成1.光伏组件:根据功率需求,选择合适的光伏组件,如单晶硅光伏组件或多晶硅光伏组件,保证系统的发电量。

2.逆变器:逆变器是将直流电转换为交流电的设备,选择具备高效率和稳定性的逆变器,如串联逆变器或微逆变器。

3.集中控制系统:集中控制系统包括监测设备、控制器和数据采集装置等,可以对光伏发电系统的性能进行实时监控,并通过数据采集进行数据分析和优化调整。

4.电池储能系统:电池储能系统可以将多余的电能存储起来,以备不时之需,增加光伏发电系统的可靠性。

5.电网接入装置:将光伏发电系统与电网连接起来,通过双向计量装置实现发电和购电的结算,将多余的电能发送给电网,为家庭提供电力。

6.监控系统:提供光伏发电系统的状态、发电量、电池储能情况等信息的监视与报警功能,方便用户了解系统运行情况。

四、系统布置1.光伏组件:根据建筑的外观和采光情况,将光伏组件安装在建筑的屋顶或外墙,使其可以最大程度地接收太阳辐射。

2.逆变器:逆变器可以放置在室内或室外,避免因水、尘等外界环境影响其正常工作。

3.电池储能系统:电池储能系统可以安装在室内,如地下室或储藏室,以减少对室内空间的影响。

4.电网接入装置:电网接入装置需要在室内或室外设置,与光伏发电系统和家庭电网连接。

分布式光伏发电系统电网接入及并网运行设计

分布式光伏发电系统电网接入及并网运行设计

分布式光伏发电系统电网接入及并网运行设计一、引言分布式光伏发电系统是指将太阳能光伏电池组件分布在不同的地理位置上并互相连接,形成一个分布式的发电网络。

与传统的集中式光伏发电系统相比,分布式光伏发电系统具有灵活性高、容错性强、能源利用效率高等优点。

本文旨在探讨分布式光伏发电系统的电网接入及并网运行设计,以确保系统的高效运行和安全性。

二、分布式光伏发电系统的电网接入设计1. 运行模式选择根据电网接入的需求和条件,选择适合的运行模式,包括独立运行模式、并网运行模式以及并网与独立运行模式的混合模式。

并网运行模式是分布式光伏发电系统的主要运行方式,可实现与电网的互联互通。

2. 电网接口设计确保分布式光伏发电系统与电网之间的接口匹配,采用适当的电网接口设计,包括逆变器、并网保护设备、电力电容器等。

逆变器的选择要考虑系统的功率输出、效率和稳定性,并网保护设备要满足电网接入的安全要求,电力电容器要提供有利于功率因数校正的功能。

三、分布式光伏发电系统的并网运行设计1. 并网运行策略制定合理的并网运行策略,确保系统平稳地接入和退出电网,包括并网时的功率控制策略、电压控制策略以及频率控制策略等。

根据电网的要求,合理调整并网功率的大小,避免对电网稳定性产生不利影响。

2. 互动控制系统设计设计互动控制系统,实现光伏发电系统与电网之间的实时信息交互和控制。

通过互动控制系统,可以监测光伏发电系统的功率输出、电流电压等参数,实时调整并网运行策略,保持系统的稳定性和可靠性。

3. 安全保护系统设计设计安全保护系统,保护光伏发电系统和电网的安全运行。

安全保护系统包括过压保护、欠压保护、过流保护、短路保护等功能,确保系统在异常情况下能够及时断开并网连接,避免事故的发生。

4. 功率管理系统设计设计功率管理系统,实现对分布式光伏发电系统的功率分配和调度。

通过功率管理系统,可以根据电网需求和自身条件,合理分配和调整系统的功率输出,最大程度地利用光伏发电系统的发电能力,实现经济运行和高效利用。

10.36kW户用光伏系统设计

10.36kW户用光伏系统设计

10.36kW户用光伏系统设计本项目所建设分布式光伏发电系统,供给用户自己使用,实现“自发自用,余电上网”。

光伏阵列:主要由太阳电池组件、光伏支架、直流电缆等构成;并网逆变:主要由并网逆变器构成;低压输配电:主要由低压交流配电柜、低压交流电缆等构成;监控:主要由光伏系统监控部分构成。

一、项目地勘察自建住宅,南北朝向,在闲置的楼顶装上光伏电站,选用的是370WP的组件,经过测算,安装28块组件共计10.36KW。

二、系统设计组件的朝向、倾角完全一致,分为2个相同的组串,每串14块组件,接到逆变器的直流侧,如下图所示。

1、设计方案▲系统设计原理图2、材料清单表根据现场勘察结果和系统设计方案,选择系统安装需要的材料设备,下表为该光伏系统所需材料清单列表。

管、胶带确认3、材料设备的选择1)、光伏组件的选择该用户装机容量选择了日托光伏370Wp的高效组件,该组件有着优异的低辐照性能,其技术参数如下:➀组件的主要参数Pm=370Wp;Voc=42.6V, Vmpp=35.1V,Imp=10.54A,Isc=11.16A。

➁根据组件的型号和敷设的数量计算得到10.36KWp(370Wp*28块)的装机容量。

根据装机容量、组件实际排布情况来选择合适的逆变器。

2)、并网逆变器的选择该项目容量为10.26kWp且并网电压为220V,故选择锦浪科技股份有限公司单相三路G5-GR1P10K这款光伏逆变器,超配比为1.125倍。

3)、直流侧线缆选择直流线缆选择光伏认证的专用线缆,光伏直流电缆为PV1-F 1*4mm²。

▲图光伏直流线缆图示4)、交流侧线缆的选择交流线缆主要用于逆变器交流侧至交流汇流箱或交流并网柜,可选用YJV型电缆。

长距离铺设还要考虑到电压损失和载流量大小,10.36KW三相交流线缆推荐使用YJV-3*10mm²。

▼表3 交流线缆选型表部设备选型说明:断路器断路器的一端接逆变器,一端接电网侧;交流断路器一般选择逆变器最大交流输出电流的1.25倍以上,10.36kW逆变器交流输出最大电流为45.9A,即至少选择50A的断路器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

家用分布式光伏系统设计邓李军(通威太阳能光伏电力事业部技术研发部,成都)摘要:太阳能是最普遍的自然资源,也是取之不尽的可再生能源。

分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。

它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。

目前应用最为广泛的分布式光伏发电系统,是建在建筑物屋顶的光伏发电项目,方便接入就近接入公共电网,与公共电网一起为附近的用户供电。

从发电入网角度出发,根据家庭用电情况可以给出系统施工要求、设计方法以及光伏组件、逆变器的选择等。

关键词:太阳能分布式光伏发电系统1.前言太阳能是一种重要的,可再生的清洁能源,是取之不尽用之不竭、无污染、人类能够自由利用的能源。

太阳每秒钟到达地面的能量高达50万千瓦,假如把地球表面0.1%的太阳能转换为电能,转变率5%,每年发电量可达5.6×1012kW·h,相当于目前世界上能耗的40倍。

从长远来看,太阳能的利用前景最好,潜力最大。

近30年来,太阳能利用技术在研究开发、商业化生产和市场开拓方面都获得了长足发展,成为快速、稳定发展的新兴产业之一。

本文简单地阐述了家用分布式光伏发电系统设计方法和施工要求,仅供参考。

2.太阳能光伏发电应用现状太阳能转换为电能的技术称为太阳能光伏发电技术(简称PV技术)。

太阳能光伏发电不仅可以部分代替化石燃料发电,而且可以减少CO2和有害气体的排放,防止地球环境恶化,因此发展太阳能光伏产业已经成为全球各国解决能源与经济发展、环境保护之间矛盾的最佳途径之一。

目前发达国家如美国、德国、日本的光伏发电应用领域从航天、国防、转向了民用,如德国的“百万屋顶计划”使许多家庭不仅利用太阳能光伏发电解决了自家供电,而且这些家庭还办成了一所所私人的“小型电站”,能够源源不断地为公用电网提供电能。

近几年,我国光伏行业发展也非常迅速。

国家对光伏发电较为重视,国家和地方政府相继出台了一些列的补贴政策以促进光伏产业的发展,国家发改委实施“送电到乡”、“光明工程”等惠农项目,地方政府也陆续启动了光伏照明项目工程。

与此同时,偏远地区消费者逐渐认可光伏产品,越来越多的居民开始使用家用太阳能电源产品。

光伏应用市场发展较为迅速。

但目前我国的太阳能光伏发电技术和国外相比还有很大差距,主要表现为技术水平较低、电池效率低、成本高。

因此我国还必须不断改进技术,使我国的太阳能光伏发电产业更上新台阶。

3.分布式光伏系统结构太阳能光伏发电系统是利用光伏组件半导体材料的“光伏”效应,将太阳光的辐射直接转换为电能的一种新型发电系统。

它的规模可大可小,在发电过程中不会排放污染物质,具有安装方便,没有噪音,整个寿命期间几乎无需维护等优点。

太阳能光伏发电系统分为两大类,一类是太阳能光伏发电独立系统,另一类是太阳能光伏发电并网系统,本文只讲述后者。

太阳能光伏发电并网系统主要包括太阳能光伏组件、光伏汇流箱、直流配电柜、并网型逆变器和交流配电柜等,家用并网型分布式光伏系统由于规模不大,汇流箱和交直流配电柜都用不到,整体框架如图1所示。

图1 太阳能光伏发电并网系统本文涉及的家用太阳能光伏发电系统为小型分布式光伏系统,因此在设计过程中应充分考虑实际情况,一般应遵循经济适用原则,可靠性高、牢固耐用、容易维护、充分考虑地理和气候环境的影响。

4.安装地点选择家庭分布式光伏系统的选址一般可选择在自家屋顶或空地上,需要考虑的条件就是可使用面积、房屋结构和承重要求、地面基础情况和气象水文条件等。

若选择安装在自家屋顶上,屋面承重能力必须大于20kg/m2。

房屋房梁如果是木质结构的话就不要考虑了,光伏系统使用年限长达25年,木质房梁易腐坏,建议不要进行安装。

若在人字结构屋顶建设太阳能光伏电站,不能像地面电站那样设计最佳倾角,并且考虑前后遮挡间距。

为了便于光伏组件和屋顶结合,一般都在屋面上直接平铺支架,北半球铺朝南面,南半球铺朝北面,这样方可最大效率利用光能。

支架与屋顶采用夹具连接,电池组件再安装于支架上。

这种方式不仅美观,而且可以实现屋顶面积利用最大化,见图2。

在平顶结构屋顶建设太阳能光伏电站,需要架设光伏支架和设计最佳倾角和组件前后间距,见图3。

图2 人字屋顶安装方式图3 平顶屋顶安装方式若选择安装在自家空地上,可以采用锚桩和混凝土条基做支架基础,见图4和图具体选哪种则需要从地质情况和成本综合考虑了。

另外,支架基础强度的设计还要以当地气象条件做依据。

图4 锚桩基础图5 水泥条基础需要注意一点,考虑到组件的热胀冷缩效应,安装时上下左右组件之间的间隔要达到3cm左右为佳。

5.家用分布式光伏系统设计5.1 光伏组件目前使用较多的两种太阳能电池板是单晶硅和多晶硅太阳电池组件。

(1)单晶硅太阳能电池目前单晶硅太阳能电池板的单体光电转换效率为16%~18%,是转换效率最高的,但是制作成本高,还没有实现大规模的应用。

(2)多晶硅太阳能电池多晶硅太阳能电池板的单体光电转换效率约15%~17%。

制作成本比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总生产成本较低,因此得到大量发展。

目前主流的组件是250Wp多晶硅太阳电池组件,技术参数见表1。

太阳能电池组件种类多晶硅指标单位数据峰值功率Wp 250组件效率% 15.3最大工作电压(Vmpp)V 30.3最大工作电流(Impp) A 8.27开路电压(Voc)V 38.0短路电流Isc A 8.79开路电压系数/℃0.32%短路电流系数/℃0.053%抗风力Pa 2400最大保险丝额定电流 A 15最高系统电压V 1000尺寸mm 1650×992×40表1 250Wp太阳电池组件技术参数(3)我国太阳能资源分布情况如下一类地区年日照3200~3300小时,辐射量7500~9250MJ/m2。

青藏高原、甘肃北部、宁夏北部和新疆南部等地。

二类地区年日照3000~3200小时,辐射量5850~7500MJ/m2。

河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。

此区为我国太阳能资源较丰富区。

三类地区年日照2200~3000小时,辐射量5000~5850 MJ/m2。

山东、河南、河北东南部、山西南部、新疆北部、吉林、辽宁、云南、陕西北部、甘肃东南部、广东南部、福建南部、江苏中北部和安徽北部等地。

四类地区年日照1400~2200小时,辐射量4150~5000 MJ/m2。

长江中下游、福建、浙江和广东的一部分地区。

五类地区全年日照时数约1000~1400小时,辐射量3350~4190MJ/m2。

四川、贵州两省。

此区是我国太阳能资源最少的地区。

结合现在的光伏发电技术,1k Wp的多晶硅太阳能电池组件五类区域年发电量大致如下:用户可以根据系统的安装地点和自己年用电量情况来合理选择装机规模。

例如A家庭位于太阳能资源四类区域,平均年用电量是3000 kWh,装机3000W就够用了;B家庭位于二类地区,平均年用电量也是3000 kWh,装机2000W就可以了。

5.2 光伏组件阵列安装朝向和角度如果安装地点是平面,则要计算光伏支架的倾角,北半球朝南,南半球相反。

考虑到跟踪系统虽然能提高系统效率,但需要维护,而且会增加故障率,再结合费用、实用性等因素,家庭分布式光伏系统采用固定的光伏方阵较好。

从气象站得到的资料,均为水平面上的太阳能辐射量,需要换算成光伏阵列倾斜面的辐射量才能进行发电量的计算。

对于某一倾角固定安装的光伏阵列,所接受的太阳辐射能与倾角有关,较简便的辐射量计算经验公式为:Rβ=S×[sin(α+β)/sinα]+D式中:Rβ——倾斜光伏阵列面上的太阳能总辐射量S ——水平面上太阳直接辐射量D ——散射辐射量α——中午时分的太阳高度角β——光伏阵列倾角根据当地气象局提供的太阳能辐射数据,按上述公式可以计算出不同倾斜面的太阳辐射量,确定太阳能光伏阵列安装倾角。

现在用得很多的是利用RETScreen软件来分析不同倾角是斜面上的辐照度,再根据组件的相关参数计算出不同倾角的年发电量,最后取年发电量最大所对应的倾角。

例如A地不同倾斜面各月的辐射量(KWh/m2)见表2所示,表2从中可以看出,当倾角在38°~40°之间时,光伏阵列上的辐射量能达到最大,固A 地的太阳能光伏阵列安装最佳倾角就在38°~40°之间。

5.3 太阳电池方阵间距计算计算当太阳能电池组件子阵前后安装时的最小间距D。

一般确定原则:冬至当天早9:00至下午3:00太阳能电池组件方阵不应被遮挡。

计算公式如下:式中:φ:为纬度(在北半球为正、南半球为负),根据项目地点经纬度计算;H:为光伏方阵阵列的高度;光伏方阵阵列间距应不小于D。

6.并网逆变器的选择6.1 选型并网逆变器主要分高频变压器型、低频变压器型和无变压器型三大类。

根据所设计系统以及业主的具体要求,主要从安全性和效率两个层面来考虑变压器类型。

以下是它们之间的对照表:类型安全性转换效率成本价格重量、尺寸因素高频变压器型中低中中低频变压器型高中高大无变压器型低高低小家用分布式光伏系统是小系统,不需要很高的技术指标,逆变器不带隔离变压器时,能源转换效率更高,再结合成本等因素,选择无变压器型较为合理。

6.2容量匹配设计并网系统设计中要求电池阵列与所接逆变器的功率容量相匹配,一般的设计思路是:组件标称功率×组件串联数×组件并联数=电池阵列功率在容量设计中,并网逆变器的最大输入功率应近似等于电池阵列功率,已实现逆变器资源的最大化利用。

6.3 MPP电压范围与电池组电压匹配根据太阳能电池的输出特性,电池组件存在功率最大输出点,并网逆变器具有在特点输入电压范围内自动追踪最大功率点的功能,因此电池阵列的输出电压应处于逆变器MPP电压范围以内。

电池组件电压×组件串联数=电池阵列电压一般的设计思路是电池阵列的标称电压近似等于并网逆变器MPP电压的中间值,这样可以达到MPPT的最佳效果。

6.4 最大输入电流与电池组电流匹配电池组阵列的最大输出电流应小于逆变器最大输入电流。

为了减少组件到逆变器过程中的直流损耗,以及防止电流过大对逆变器造成过热或电气损坏,逆变器最大输入电流值与电池阵列的电流值的差值应尽量大一些。

电池组件短路电流×组件并联数=电池阵列最大输出电流6.5 转换效率并网逆变器的效率标示一般分最大效率和欧洲效率,通过加权系数修正的欧洲效率更为科学。

逆变器在其它条件满足的情况下,转换效率应越高越好。

相关文档
最新文档