[精品]2016-2017年天津市南开区高一上学期期末数学试卷及解析答案word版
天津市南开区2016-2017学年高三上学期期末数学试卷(理科)Word版含解析

天津市南开区2016-2017学年高三上学期期末试卷(理科数学)一、选择题:只有选项是正确的.1.复数=()A.1﹣2i B.1+2i C.﹣1+2i D.﹣1﹣2i2.已知全集U=R,集合M={x|﹣1≤x≤3}和集合N={x|x=2k﹣1,k∈N}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合为()A.{x|﹣1≤x≤3}B.{﹣3,﹣1,1,3,5} C.{﹣1,1,3} D.{﹣1,1,3,5}3.等差数列{an }的前n项和为Sn,a5=11,S12=186,则a8=()A.18 B.20 C.21 D.224.某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.75.已知向量=(1,2),=(﹣3,2),如果k+与﹣3垂直,那么实数k的值为()A.﹣19 B.﹣C.D.196.一个俯视图为正方形的几何体的三视图如图所示,则该几何体的体积为()A.2 B.C.D.7.已知双曲线﹣=1的一个焦点在圆x2+y2﹣4x﹣5=0上,则双曲线的渐近线方程为()A.B.y=x C.D.8.下列四个条件中,p是q的充要条件的是()A.p:a>b,q:a2>b2B.p:ax2+by2=c为双曲线,q:ab<0C.p:ax2+bx+c>0,q:﹣+a>0D.p:m<﹣2或m>6;q:y=x2+mx+m+3有两个不同的零点二、填空题每题5分,共30分9.某高中共有学生900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高二年级抽取的人数为.10.设变量x、y满足约束条件,则z=2x+3y的最大值为.11.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=,,则B= .12.若tanα=2,则= .13.已知函数f (x )=a x (a >0且a≠1),其关于y=x 对称的函数为g (x ).若f (2)=9,则g ()+f (3)的值是 .14.已知点C 在圆O 直径BE 的延长线上,CA 切圆O 于点F ,DC 是∠ACB 的平分线交AE 于点F ,交AB 于点D ,则∠ADF 的度数为 .三、解答题,本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤.15.某篮球队规定,在一轮训练中,每人最多可投篮4次,一旦投中即停止该轮训练,否则一直试投到第四次为止.已知一个投手的投篮命中概率为, (Ⅰ)求该选手投篮3次停止该轮训练的概率;(Ⅱ)求一轮训练中,该选手的实际投篮次数ξ的概率分布和数学期望.16.函数y=sin (ωx+φ)(ω>0,|φ|<)在同一个周期内,当x=时y 取最大值1,当x=时,y 取最小值﹣1.(Ⅰ)求函数的解析式y=f (x )(Ⅱ)函数y=sinx 的图象经过怎样的变换可得到y=f (x )的图象?(Ⅲ)求函数f (x )的单调递减区间.17.已知数列{a n }满足a 1=9,其前n 项和为S n ,对n ∈N *,n≥2,都有S n =3(S n ﹣1﹣2)(Ⅰ)求数列{a n }的通项;(Ⅱ)求证:数列{S n +}是等比数列;(Ⅲ)若b n =﹣2log 3a n +20,n ∈N *,求数列{b n }的前n 项和T n 的最大值.18.已知长方体AC 1中,棱AB=BC=1,棱BB 1=2,连接B 1C ,过B 点作B 1C 的垂线交CC 1于E ,交B 1C 于F (1)求证:A1C⊥平面EBD ; (2)求点A 到平面A 1B 1C 的距离;(3)求平面A 1B 1C 与直线DE 所成角的正弦值.19.已知圆C :x 2+y 2=4.(Ⅰ)直线l 过点P (1,2),且与圆C 相切,求直线l 的方程;(Ⅱ)过圆C 上一动点M 作平行于y 轴的直线m ,设m 与x 轴的交点为N ,若向量=+,求动点Q 的轨迹方程.(Ⅲ) 若点R (1,0),在(Ⅱ)的条件下,求||的最小值.20.已知函数f (x )=(a+1)lnx+ax 2+1.(Ⅰ)若函数f (x )在x=1处切线的斜率k=﹣,求实数a 的值;(Ⅱ)讨论函数f (x )的单调性;(Ⅲ)若xf′(x )≥x 2+x+1,求a 的取值范围.天津市南开区2016-2017学年高三上学期期末试卷(理科数学)参考答案与试题解析一、选择题:只有选项是正确的.1.复数=()A.1﹣2i B.1+2i C.﹣1+2i D.﹣1﹣2i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母都进行复数的乘法运算,得到最简结果.【解答】解: =故选B.【点评】本题考查复数的代数形式的乘除运算,本题解题的关键是正确进行复数的乘除运算,注意运算法则,本题是一个基础题.2.已知全集U=R,集合M={x|﹣1≤x≤3}和集合N={x|x=2k﹣1,k∈N}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合为()A.{x|﹣1≤x≤3}B.{﹣3,﹣1,1,3,5} C.{﹣1,1,3} D.{﹣1,1,3,5} 【分析】根据Venn图表达集合的交集运算,再根据两个集合的交集的意义求解.【解答】解:由Venn图可知,阴影部分所示的集合为M∩N,∵集合M={x|﹣1≤x≤3}和集合N={x|x=2k﹣1,k∈N},∴M∩N={﹣1,1,3},故选:C.【点评】本题主要考查了Venn图表达集合的关系及运算,以及集合交集的运算,属于基础题.3.等差数列{an }的前n项和为Sn,a5=11,S12=186,则a8=()A.18 B.20 C.21 D.22【分析】由数列的性质得a 1+a 12=a 5+a 8又因为×(a 1+a 12)=186所以a 1+a 12=a 5+a 8=31所以a 8=20【解答】解:由数列的性质得a 1+a 12=a 5+a 8 又因为×(a 1+a 12)=186所以a 1+a 12=a 5+a 8=31 因为a 5=11所以a 8=20 故选B .【点评】本题主要考查数列的性质即若m+n=l+k 则a m +a n =a l +a k .4.某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量k 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【解答】解:当S=0时,满足继续循环的条件,故S=1,k=1; 当S=1时,满足继续循环的条件,故S=3,k=2; 当S=3时,满足继续循环的条件,故S=11,k=3; 当S=11时,满足继续循环的条件,故S=2059,k=4;当S=2049时,不满足继续循环的条件,故输出的k 值为4, 故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.5.已知向量=(1,2),=(﹣3,2),如果k+与﹣3垂直,那么实数k的值为()A.﹣19 B.﹣C.D.19【分析】先求出两个向量的坐标,根据向量垂直的充要条件及数量积公式列出方程解得.【解答】解:,∵k+与﹣3垂直∴=0∴10(k﹣3)﹣4(2k+2)=0解得k=19故选项为D【点评】本题考查两向量垂直的充要条件是:数量积为0.6.一个俯视图为正方形的几何体的三视图如图所示,则该几何体的体积为()A.2 B.C.D.【分析】几何体为四棱锥,底面正方形的对角线为2,棱锥的高为1,带入体积公式计算即可.【解答】解:由三视图可知该几何体为四棱锥,棱锥的高为1,棱锥底面正方形的对角线为2,∴棱锥底面正方形的边长为.∴V==.故选C.【点评】本题考查了棱锥的三视图即体积计算,是基础题.7.已知双曲线﹣=1的一个焦点在圆x2+y2﹣4x﹣5=0上,则双曲线的渐近线方程为()A.B.y=x C.D.【分析】确定双曲线﹣=1的右焦点为(,0)在圆x2+y2﹣4x﹣5=0上,求出m的值,即可求得双曲线的渐近线方程.【解答】解:由题意,双曲线﹣=1的右焦点为(,0)在圆x2+y2﹣4x﹣5=0上,∴()2﹣4﹣5=0∴=5∴m=16∴双曲线方程为=1∴双曲线的渐近线方程为故选B.【点评】本题考查双曲线的几何性质,考查学生的计算能力,属于基础题.8.下列四个条件中,p是q的充要条件的是()A.p:a>b,q:a2>b2B.p:ax2+by2=c为双曲线,q:ab<0C.p:ax2+bx+c>0,q:﹣+a>0D.p:m<﹣2或m>6;q:y=x2+mx+m+3有两个不同的零点【分析】A.a>b与a2>b2相互推不出,即可判断出正误;B.p:ax2+by2=c为双曲线,则<0,可得:ab<0,反之不一定成立,即可判断出正误;C.p与q相互推不出,即可判断出正误;D.q:y=x2+mx+m+3有两个不同的零点,可得△>0,解出m即可判断出结论.【解答】解:A.a>b与a2>b2相互推不出,因此不满足条件;B.p:ax2+by2=c为双曲线,则<0,可得:ab<0,⇒q:ab<0,反之不一定成立,不满足条件;C.p与q相互推不出,因此不满足条件;D.q:y=x2+mx+m+3有两个不同的零点,可得△=m2﹣4(m+3)>0,解得m>6或m<﹣2.∴p是q的充要条件.故选:D.【点评】本题考查了不等式的性质、圆锥曲线的性质、充要条件的判定,考查了推理能力与计算能力,属于中档题.二、填空题每题5分,共30分9.某高中共有学生900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高二年级抽取的人数为10 .【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在高三年级中抽取的人数.【解答】解:根据题意得,用分层抽样在各层中的抽样比为=,则在高二年级抽取的人数是200×=10人,故答案为:10.【点评】本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在各层中抽取的个体数目.10.设变量x、y满足约束条件,则z=2x+3y的最大值为18 .【分析】本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.【解答】解:画出可行域,得在直线2x﹣y=2与直线x﹣y=﹣1的交点A(3,4)处,目标函数z最大值为18故答案为18.【点评】本题只是直接考查线性规划问题,是一道较为简单的送分题.近年来高考线性规划问题高考数学考试的热点,数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法.随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题要引起重视.11.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=,,则B= .【分析】根据余弦定理可得b2=a2+c2﹣2accosB,求出cosB的值,利用特殊角的三角函数值求出B即可.【解答】解:由余弦定理得b2=a2+c2﹣2accosB,且a=1,b=,c=,所以cosB===﹣,得到B为钝角即B∈(,π),所以B=故答案为【点评】考查学生灵活运用余弦定理化简求值的能力,以及会根据特殊角的三角函数值求角的能力.12.若tanα=2,则= .【分析】由条件利用同角三角函数的基本关系,求得要求式子的值.【解答】解:∵tanα=2,∴==,故答案为:.【点评】本题主要考查同角三角函数的基本关系,属于基础题.13.已知函数f(x)=a x(a>0且a≠1),其关于y=x对称的函数为g(x).若f(2)=9,则g()+f (3)的值是25 .【分析】根据题意可知f(x)与g(x)化为反函数,再依据f(2)=9求得a值,代值计算即可.【解答】解:函数f(x)=a x(a>0且a≠1),其关于y=x对称的函数为g(x).x,则函数f(x)=a x反函数为:y=loga∴g(x)=logx,a又f(2)=9,∴a2=9,∴a=3,x,∴g(x)=log3+33=25,∴g()+f(3)=)=log3故答案为:25.【点评】本小题主要考查反函数的应用、反函数等基础知识,考查运算求解能力、化归与转化思想.属于基础题.14.已知点C在圆O直径BE的延长线上,CA切圆O于点F,DC是∠AC B的平分线交AE于点F,交AB于点D,则∠ADF的度数为45°.【分析】根据直径上的圆周角是直角、弦切角定理以及三角形内内角和定理等通过角的关系求解.【解答】解:设∠EAC=α,根据弦切角定理,∠ABE=α.根据三角形外角定理,∠AEC=90°+α.根据三角形内角和定理,∠ACE=90°﹣2α.由于CD是∠ACB的内角平分线,所以FCE=45°﹣α.再根据三角形内角和定理,∠CFE=180°﹣(90°+α)﹣(45°﹣α)=45°.根据对顶角定理,∠AFD=45°.由于∠DAF=90°,所以∠ADF=45°.故答案为:45°.【点评】本题的涉及很独到,试题涉及成动态的,即点C是可变的,在这个动态中求解其中的一个不变量.解决这类试题要善于抓住主要的变化关系,如本题中主要的变量就是∠AEC,抓住这个变量后,其余的角可以使用这个变量进行表达,通过各个角的关系证明求解的目标与这个变量没有关系.三、解答题,本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤.15.某篮球队规定,在一轮训练中,每人最多可投篮4次,一旦投中即停止该轮训练,否则一直试投到第四次为止.已知一个投手的投篮命中概率为,(Ⅰ)求该选手投篮3次停止该轮训练的概率;(Ⅱ)求一轮训练中,该选手的实际投篮次数ξ的概率分布和数学期望.【分析】(Ⅰ)该选手投篮3次停止该轮训练即第三次投中事件为A,由相互独立事件乘法概率公式能求出该选手投篮3次停止该轮训练的概率.(Ⅱ)由题意ξ的可能取值为1、2、3、4,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).【解答】解:(Ⅰ)该选手投篮3次停止该轮训练即第三次投中事件为A,概率为P(A)=(1﹣)2=.由题意ξ的可能取值为1、2、3、4,(5分)P(ξ=1)=,P(ξ=2)=(1﹣)=,P(ξ=3)=(1﹣)2=,P(ξ=4)=(1﹣)3+(1﹣)4=,(11分)∴ξ的分布列为ξ 1 2 3 4PE(ξ)=1×+2×+3×+4×=.(13分)【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.16.函数y=sin(ωx+φ)(ω>0,|φ|<)在同一个周期内,当x=时y取最大值1,当x=时,y取最小值﹣1.(Ⅰ)求函数的解析式y=f(x)(Ⅱ)函数y=sinx的图象经过怎样的变换可得到y=f(x)的图象?(Ⅲ)求函数f(x)的单调递减区间.【分析】(Ⅰ)通过当x=时y取最大值1,当x=时,y取最小值﹣1.求出函数的周期,利用最值求出φ,即可求函数的解析式y=f(x).(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律即可得解.(Ⅲ)根据正弦函数的单调区间,即可得到函数的单调区间.【解答】解:(Ⅰ)∵当x=时y取最大值1,当x=时,y取最小值﹣1.∴T==,∴ω=3.﹣﹣﹣﹣(4分)∵sin(π+φ)=1,∴π+φ=2kπ+(k∈Z),即φ=2kπ﹣,又∵|φ|<,∴可得φ=﹣,﹣﹣﹣﹣﹣﹣(6分)∴函数 f(x)=sin(3x﹣).﹣﹣﹣﹣﹣﹣﹣(7分)(Ⅱ)y=sinx的图象向右平移个单位得y=sin(x﹣)的图象再由y=sin(x﹣)图象上所有点的横坐标变为原来的.纵坐标不变,得到y=sin (3x ﹣)的图象,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)(Ⅲ)令2k≤3x﹣≤2k,(k ∈Z ),求得函数f (x )的单调递减区间为:[,].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)【点评】本题主要考查了函数y=Asin (ωx+φ)的图象变换规律,正弦函数的图象和性质,考查了数形结合思想,属于中档题.17.已知数列{a n }满足a 1=9,其前n 项和为S n ,对n ∈N *,n≥2,都有S n =3(S n ﹣1﹣2)(Ⅰ)求数列{a n }的通项;(Ⅱ)求证:数列{S n +}是等比数列;(Ⅲ)若b n =﹣2log 3a n +20,n ∈N *,求数列{b n }的前n 项和T n 的最大值.【分析】(Ⅰ)由S n =3(S n ﹣1﹣3),S n+1=3(S n ﹣3),相减可得a n+1=3a n .利用等比数列的通项公式即可得出.(Ⅱ)利用等比数列的前n 项和公式可得S n ,变形即可得出.(Ⅲ)由(Ⅰ)可知b n =﹣2log 3a n +20=﹣2n+18,利用等差数列的前n 项和公式,二次函数的单调性即可得出.【解答】解:(Ⅰ)∵S n =3(S n ﹣1﹣3),S n+1=3(S n ﹣3),∴a n+1=3a n .故{a n }是公比为3,首项为9的等比数列,,(Ⅱ)∵,∴,∴,.故数列是为首项,公比为3的等比数列. (Ⅲ)由(Ⅰ)可知b n =﹣2log 3a n +20=﹣2n+18,∴{b n }是公差为﹣2.首项为16的等差数列.∴,∵b 8>0,b 9=0,b 10<0, ∴T 8或T 9最大,最大值为72.【点评】本题考查了等差数列与等比数列的通项公式及其前n 项和公式、二次函数的单调性、递推关系的应用,考查了推理能力与计算能力,属于中档题.18.已知长方体AC 1中,棱AB=BC=1,棱BB 1=2,连接B 1C ,过B 点作B 1C 的垂线交CC 1于E ,交B 1C 于F .(1)求证:A 1C⊥平面EBD ; (2)求点A 到平面A 1B 1C 的距离;(3)求平面A 1B 1C 与直线DE 所成角的正弦值.【分析】(1)以A 为原点,分别为x ,y ,z 轴建立空间直角坐标系,然后求出与,然后根据向量的数量积判定垂直关系,A 1C⊥BD,A 1C⊥BE,又BD∩BE=B 满足线面垂直的判定定理所需条件;(2)连接AE 1,A 到平面A 1B 1C 的距离,即三棱锥A ﹣A 1B 1C 的高,根据等体积法可知,求出高即可;(3)连接DF ,根据BE⊥平面A 1B 1C ,可知DF 是DE 在平面A 1B 1C 上的射影,从而∠EDF 是DE 与平面A 1B 1C 所成的角,最后在Rt△FDE 中,求出此角的正弦值即可.【解答】解:(1)证明:以A 为原点,分别为x ,y ,z 轴建立空间直角坐标系,那么A (0,0,0)、B (1,0,0)、C (1,1,0)、D (0,1,0)、A 1(0,0,2)、B 1(1,0,2)、C 1(1,1,2)、D 1(0,1,2),,,…(2分)设E (1,1,z ),则:,,∵BE⊥B 1C∴,,∴,,∵,,∴A 1C⊥BD,A 1C⊥BE,…(4分)又BD∩BE=B∴A 1C⊥平面EBD .…(5分)(2)连接AE 1,A 到平面A 1B 1C 的距离,即三棱锥A ﹣A 1B 1C 的高,设为h ,…(6分),,由得:,,…(8分)∴点A 到平面A 1B 1C 的距离是.…(9分)(3)连接DF ,∵A 1C⊥BE,B 1C⊥BE,A 1C∩B 1C=C ,∴BE⊥平面A 1B 1C ,∴DF 是DE 在平面A 1B 1C 上的射影,∠EDF 是DE 与平面A 1B 1C 所成的角,…(11分)设F (1,y ,z ),那么,∵∴y﹣2z=0①∵,∴z=2﹣2y②由①、②得,,…(12分)在Rt△FDE 中,.∴,因此,DE 与平面A 1B 1C 所成的角的正弦值是.…(14分)【点评】本题主要考查了用空间向量求直线与平面的夹角,以及点面间的距离计算,属于中档题.19.已知圆C :x 2+y 2=4.(Ⅰ)直线l 过点P (1,2),且与圆C 相切,求直线l 的方程;(Ⅱ)过圆C 上一动点M 作平行于y 轴的直线m ,设m 与x 轴的交点为N ,若向量=+,求动点Q 的轨迹方程.(Ⅲ) 若点R (1,0),在(Ⅱ)的条件下,求||的最小值.【分析】(Ⅰ)直线l 过点P (1,2),且与圆C 相切,圆心到此直线的距离=半径,即可求直线l 的方程;(Ⅱ)设出M 及Q 的坐标,根据题意表示出N 的坐标,利用平面向量的数量积运算法则化简已知的等式,用x 与y 分别表示出x 0及y 0,将表示出的x 0及y 0代入圆C 的方程,得到x 与y 的关系式,再根据由已知,直线m∥y 轴,得到x≠0,即可得出Q 的轨迹方程;(Ⅲ)由Q 及R 的坐标,表示出,利用平面向量模的计算法则表示出||2,由圆C 的方程表示出y 2,将y 2代入表示出的||2中,得到关于x 的二次三项式,配方后根据二次函数的性质,可得出||2的最小值,开方即可得出||的最小值,以及此时x 的值.【解答】解:(Ⅰ)显然直线l 不垂直于x 轴,设其方程为y ﹣2=k (x ﹣1),即kx ﹣y ﹣k+2=0…(2分)设圆心到此直线的距离为d ,则d==2,得k=0或k=﹣ …(4分) 故所求直线方程为y=2或4x+3y ﹣10=0.…(5分) (Ⅱ)设点M 的坐标为(x 0,y 0),Q 点坐标为(x ,y ),则N 点坐标是(x 0,0),∵=+,∴(x ,y )=(2x 0,y 0),即x 0=,y 0=y ,又∵x 02+y 02=4,∴+y 2=4,(8分)由已知,直线m∥y 轴,得到x≠0,∴Q 点的轨迹方程是+y 2=4(x≠0);(9分)(Ⅲ)设Q 坐标为(x ,y ),R (1,0),∴=(x ﹣1,y ),∴||2=(x ﹣1)2+y 2,(10分)又+y 2=4(x≠0),∴||2=(x ﹣1)2+y 2=(x ﹣1)2+4﹣=≥,(12分)∵x∈[﹣4,0)∪(0,4],∴x=时,||取到最小值.(14分)【点评】此题考查了直线与圆的位置关系,涉及的知识有:垂径定理,勾股定理,点到直线的距离公式,直线的点斜式方程,动点的轨迹方程,平面向量的数量积运算法则,以及二次函数的性质,利用了数形结合及转化的思想,熟练掌握定理及公式是解本题的关键.20.已知函数f(x)=(a+1)lnx+ax2+1.(Ⅰ)若函数f(x)在x=1处切线的斜率k=﹣,求实数a的值;(Ⅱ)讨论函数f(x)的单调性;(Ⅲ)若xf′(x)≥x2+x+1,求a的取值范围.【分析】(Ⅰ)求出函数的导数,根据f′(1)=﹣,求出a的值即可;(Ⅱ)求出函数的导数,通过讨论a的范围,判断导函数的符号,从而求出函数的单调区间;(Ⅲ)分离参数得到a≥,令g(x)=,求出其最大值即可.【解答】解:(Ⅰ)因为f′(x)=,f′(1)==﹣,解得:a=﹣.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)(Ⅱ)f(x)的定义域为(0,+∞),f′(x)=,当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调增加;﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)当a≤﹣1时,f′(x)<0,故f(x)在(0,+∞)单调减少;﹣﹣﹣﹣﹣(6分)当﹣1<a<0时,令f′(x)=0,解得x=,当x∈(0,)时,f′(x)>0;单调增,x∈(,+∞)时,f′(x)<0,单调减﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(Ⅲ)xf′(x)≥x2+x+1,得:a≥﹣﹣﹣﹣﹣﹣﹣(11分)令g(x)=,则g′(x)=,当0<x<时,g(x)单调递增,当x>时,g(x)单调递减,=g=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)所以,g(x)max故a≥﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.。
天津市高一上学期期末数学试题(解析版)

数学试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知,那么是() cos tan 0θθ⋅>θA. 第一、二象限角B. 第二、三象限角C. 第三、四象限角D. 第一、四象限角 【答案】A【解析】【分析】化简代数式,根据正弦值为正,得出终边所在象限.cos tan =sin θθθ⋅【详解】由可知同号,即,cos tan 0θθ⋅>cos ,tan θθcos tan =sin 0θθθ⋅>从而为第一、二象限角,故选A .θ故选:A【点睛】此题考查根据三角函数符号判断角的终边所在象限,关键在于熟记各个象限三角函数值的符号进行辨析.2.( ) 253364a a a ÷=A .B. C. D. 43a 127a 712a 34a 【答案】C 【解析】【分析】根据指数幂的运算性质计算即可.【详解】. 235734612253364a aa a a +-==÷故选:C.3. 函数的零点是( ) ()sin 1f x x =+A.B. ()π2πZ 2k k +∈()3π2πZ 2k k +∈C. D.()ππZ 2k k +∈()πZ k k ∈【答案】B【解析】 【分析】令,再根据正弦函数的性质即可得解.()sin 10f x x =+=【详解】令,则,()sin 10f x x =+=sin 1x =-所以, ()3π2πZ 2x k k =+∈所以函数的零点是. ()sin 1f x x =+()3π2πZ 2k k +∈故选:B.4. 已知半径为的圆上,有一条弧的长是,则该弧所对的圆心角的弧度数为( )120mm 144mm A. 12B. 1.2C. 16D. 1.6【答案】B【解析】【分析】根据弧长公式即可得解.【详解】设该弧所对的圆心角的弧度数为,α则,解得.120144α= 1.2α=故选:B . 5. 设,,,则( ). 13log 2a =121log 3b =0.312c ⎛⎫= ⎪⎝⎭A.B. C. D. a b c <<b<c<a a c b <<b a c <<【答案】C 【解析】【分析】利用对数指数函数的单调性求出a,b,c 的范围即得解. 【详解】由题得, 1133log 2log 10a =<=, 112211log log 132b =>=, 0.30110122c ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭所以.a cb <<故选:C【点睛】本题主要考查指数对数函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 6. 为了得到函数的图象,只需将函数的图象上所有的点( )()sin 21y x =+()sin 21y x =-A. 向左平移2个单位长度B. 向右平移2个单位长度C. 向左平移1个单位长度D. 向右平移1个单位长度【答案】C【解析】【分析】根据平移变换的原则即可得解.【详解】为了得到函数的图象,()()sin 21=sin 211y x x ⎡⎤=++-⎣⎦只需将函数的图象上所有的点向左平移1个单位长度即可.()sin 21y x =-故选:C .7. 设,,都是正数,且,那么( )a b c 346a b c ==A. B. C. D. 111c a b =+221c a b =+122c a b =+212c a b=+【答案】B【解析】【分析】令,根据指数与对数的关系将指数式化为对数式,再由换底公式及对数的运算346a b c M ===法则计算可得.【详解】解:由,,都是正数,令,则,,a b c 346a b c M ===()1M >3log a M =4log b M =,6log c M =所以,,, 1log 3M a =1log 4M b =1log 6M c=对于A :,故A 错误; 111log 4log 3log 12log 6M M M M a b c+=+=>=对于B :,22log 6log 36M M c ==()22212log 3log 4log 3log 4log 34log 36M M M M M M a b +=+=+=⨯=,所以,故B 正确; 221c a b=+对于C :, ()222222log 32log 4log 3log 4log 34log 1442M M M M M M a b+=+=+=⨯=所以,故C 错误; 122c a b≠+对于D :, ()221log 32log 4log 3log 4log 3824log 4M M M M M M a b +=+=+=⨯=所以,故D 错误; 212c a b≠+故选:B .8. 函数的图象大致为 2sin ()1||x f x x =-A.B.C.D.【答案】A【解析】【分析】根据奇偶性排除B ,D ,取特殊值排除C ,即可得到答案.【详解】的定义域为关于原点对称 2sin ()1||x f x x =-(,1)(1,1)(1,)-∞--+∞ ()()2sin 2sin ()()1||1||x x f x f x x x --==-=----所以函数是奇函数,故排除B ,D()f x 因为,所以排除C 2sin 4(041||4f πππ==>-故选:A【点睛】本题主要考查了函数图像的识别,属于中等题.9. 下述四条性质:①最小正周期是,②图象关于直线对称,③图象关于点对称,④在ππ3x =π,012⎛⎫ ⎪⎝⎭上是增函数.下列函数同时具有上述性质的一个函数是( ) ππ-,63⎡⎤⎢⎥⎣⎦A. B. πsin +26x y ⎛⎫= ⎪⎝⎭πsin 26y x ⎛⎫=- ⎪⎝⎭C. D. πcos 23y x ⎛⎫=+ ⎪⎝⎭πsin 26y x ⎛⎫=+ ⎪⎝⎭【答案】B【解析】【分析】根据条件判断选项中函数的周期性,单调性以及图像的对称性,从而得到结论.【详解】条件① :的周期为,排除A ; πsin 26x y ⎛⎫=+ ⎪⎝⎭2π4π12=条件② :当代入B ,函数取得最大值,满足关于对称;代入C ,函数取得最小值,满足关于π3x =π3x =对称;代入D ,函数值不是最大值也不是最小值,排除D ; π3x =条件③ :代入B ,函数值为0,满足;代入C ,函数值为0,满足; π12x =条件④ :在上,代入B ,是增函数;代入C ,单调ππ-,63⎡⎤⎢⎥⎣⎦πππ2622x ⎡⎤-∈-⎢⎥⎣⎦,ππ-,63⎡⎤⎢⎥⎣⎦[]π20π3x +∈,递减,不满足,排除C ;故选:B二、填空题:本大题共6小题,每小题5分,共30分.10. 若对数函数且)的图象经过点,则实数______.log (0a y x a =>1a ≠(4,2)=a 【答案】2【解析】【分析】直接将点代入计算即可.【详解】将点代入得,解得 (4,2)log ay=2log 4a =2a =故答案为:2.11. 已知角的终边经过点那么的值是_______.θ1(2tan θ【答案】【解析】 【分析】直接利用三角函数的定义求解即可.【详解】因为角的终边经过点 θ1(),2所以为第二象限角,,θtan 0θ∴<由三角函数的定义可得,故答案为tan θ==【点睛】本题主要考查任意角的正切函数值,意在考查对基础知识的掌握情况,属于基础题. 12. 函数的定义域为_________.y =【答案】 3{|1}4x x <≤【解析】 【分析】根据根式、对数的性质有求解集,即为函数的定义域. 0.5430log (43)0x x ->⎧⎨-≥⎩【详解】由函数解析式知:,解得, 0.5430log (43)0x x ->⎧⎨-≥⎩314x <≤故答案为:. 3{|1}4x x <≤13. 已知函数的部分图象如图所示,则___________. ()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭ϕ=【答案】π6【解析】 【分析】根据图象可求得,再利用待定系数法求解即可.,A ωϕ【详解】由图可知, 3,π2T A ==所以,所以,2π2πT ω==1ω=所以,()()3sin f x x ϕ=+则,即, ππ3sin 066f ϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭πsin 06ϕ⎛⎫-+= ⎪⎝⎭所以,即, π2π,Z 6k k ϕ-+=∈π2π,Z 6k k ϕ=+∈又因,所以. π2ϕ<π6ϕ=故答案为:. π614. 函数在的值域是___________. π2cos 23y x ⎛⎫=- ⎪⎝⎭π5π,36x ⎡⎤∈⎢⎥⎣⎦【答案】[]2,1-【解析】【分析】根据余弦函数的性质结合整体思想即可得解. 【详解】因为,所以, π5π,36x ⎡⎤∈⎢⎥⎣⎦ππ4π2,333x ⎡⎤-∈⎢⎥⎣⎦所以, π1cos 21,32x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦所以函数在的值域是. π2cos 23y x ⎛⎫=- ⎪⎝⎭π5π,36x ⎡⎤∈⎢⎥⎣⎦[]2,1-故答案为:.[]2,1-15. 已知函数的零点个数为___________. ()4223,0274ln ,0x x f x x x x x +⎧-≤=⎨-+->⎩【答案】3【解析】【分析】分和两种情况讨论,时,函数零点的个数,即为函数0x ≤0x >0x >()2274ln f x x x x =-+-图象交点的个数,作出函数的图象,根据函数图象即2274,ln y x x y x =-+=2274,ln y x x y x =-+=可得解.【详解】当时,由,得, 0x ≤()4023x f x +=-=2log 34x =-当时,由,得,0x >()2274ln 0f x x x x =-+-=2274ln x x x -+=则时,函数零点的个数, 0x >()2274ln f x x x x =-+-即为函数图象交点的个数,2274,ln y x x y x =-+=如图,作出函数的图象,2274,ln y x x y x =-+=由图可知,两函数的图象有个交点,2即当时,函数有个零点, 0x >()2274ln f x x x x =-+-2综上所述,函数有个零点.()f x 3故答案为:.3三、解答题:本大题共3小题,共34分.解答应写出文字说明,证明过程或演算步骤. 16. 计算:(1)已知,求的值; 1sin 3α=-()()πcos 2sin 2πcos 2π5πsin 2αααα⎛⎫- ⎪⎝⎭--⎛⎫+⎪⎝⎭(2)求的值. 5551log 35log log 1450+--【答案】(1)19(2)2【解析】 【分析】(1)根据诱导公式计算即可;(2)根据对数的运算性质计算即可.【小问1详解】 ()()πcos 2sin 2πcos 2π5πsin 2αααα⎛⎫- ⎪⎝⎭--⎛⎫+ ⎪⎝⎭. 2sin 1sin cos sin cos 9ααααα=⋅⋅==【小问2详解】5551log 35log log 1450+-. 51log 3550131214⎛⎫=⨯⨯-=-= ⎪⎝⎭17. 已知为第二象限角,为第一象限角,. α3sin ,5αβ=5cos 13β=(1)求的值;()sin αβ+(2)求的值.()tan 2αβ-【答案】(1) 3365-(2) 204253【解析】【分析】(1)先利用平方关系求出,再利用两角和的正弦公式即可得解; cos ,sin αβ(2)先利用二倍角的正切公式求出,再根据两角差的正切公式即可得解.tan 2α【小问1详解】因为为第二象限角,为第一象限角,, α3sin ,5αβ=5cos 13β=所以, 412cos ,sin 513αβ=-=所以. ()3541233sin 51351365αβ⎛⎫+=⨯+-⨯=- ⎪⎝⎭【小问2详解】 , sin 3sin 12tan ,tan cos 4cos 5αβαβαβ==-==所以, 232tan 242tan 291tan 7116ααα-===---所以. ()241220475tan 22412253175αβ---==⎛⎫+-⨯ ⎪⎝⎭18. 已知函数 ()()2πcos 2cos2R 3f x x x x ⎛⎫=--∈ ⎪⎝⎭(1)求的最小正周期;()f x (2)求的单调递增区间.()f x 【答案】(1) πT =(2) π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦【解析】【分析】(1)先利用两角差的余弦公式和辅助角公式化简,再根据正弦函数的周期性即可得解; (2)根据正弦函数的单调性结合整体思想即可得解.【小问1详解】()2πcos 2cos23f x x x ⎛⎫=-- ⎪⎝⎭,13πcos 22cos 22cos 22223x x x x x x ⎛⎫=-+-=-=- ⎪⎝⎭所以;πT =【小问2详解】令, πππ2π22π232k x k -+≤-≤+得, π5πππ1212k x k -+≤≤+所以的单调递增区间为.()f x π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦。
2016-2017学年天津市新人教版高一上期末数学试卷(含答案解析)

2016-2017学年天津高一(上)期末数学试卷■选择题:每小题给出的四个选项中,只有一个是符合要求的 cos 「等于( 3B.- 1C. 12 2(5分)为了得到周期y=sin (2x+ )的图象,只需把函数y=sin 6的图象( )A .向左平移"个单位长度B .向右平移 个单位长度 44 C •向左平移——个单位长度D .向右平移——个单位长度 2 25. (5分)设平面向量◎二(5, 3), b = (1,- 2),则目-2匚等于(A . (3, 7) B. (7, 7) C. (7, 1) D. (3, 1)6. (5分)若平面向量;与匸的夹角为120° a =(罠-%, |可=2, 5 57. (5分)如图,在平行四边形ABCD 中,疋=(3, 2), BD = (- 1, 2),则疋?AD A . 1 B. 6 C. - 7 D . 798. (5 分)已知 sin a +cos a=,贝U sin2 o 的值为( )(5 分)A . 2. A. 3. 已知' '=2,则tan a 的值为( )3sin 口 +5cos CtB.-匚C. 2 D .-5 5 12 12 (5分)函数f (x ) = :sin (十+ ) (x € R )的最小正周期是( (5 分) A . B n C 2n D ・ 4n (2x -…) 等于() A .二 B. 2 二 C. 4D . 12 4. 等于(C )A.巴B.±§C.—巴D. 0 99 99. (5分)计算cos ?cos 的结果等于()o 8A.丄B. -C.—丄D.—-2 4 2 4 10. (5 分)已知a, p€(0,弓_),且满足sin , cos 5,贝U o+B的值为()A.二B.二C. —D.三或二4 2 4 4 4二■填空题(本大题共5小题,每小题4分,共20分)11. (4分)函数f (x)=2sin 0)在[0,飞-]上单调递增,且在这个区间上的最大值是匚,贝U 3的值为______ .12. (4分)已知向量目=(-1,2),b = (2,—3),若向量话+ 匸与向量心=(—4, 7)共线,贝U入的值为_____ .JT13. (4分)已知函数y=3cos(x+妨—1的图象关于直线x= 对称,其中长[0, n,贝u ©的值为 ______ .14. (4 分)若tan a =, tan B=,则tan (a— B 等于 ______ .15. (4分)如图,在矩形ABCD中,AB=3, BC=2若点E为BC的中点,点F在CD上,? -1=6,贝U二?I的值为三■解答题(本大题5小题,共40分)16. (6分)已知向量;与匚共线,E = (1 , —2), a?匸=-10(I)求向量才的坐标;(U)若c= (6,—7),求| 口+匚|17. (8分)已知函数f (x)=cos2x+2sinx(I)求f (-三)的值;6(n)求f(x)的值域.18. (8 分)已知sin a=, a€(f n)5 2(I)求sin ( a-—)的值;(n) 求tan2 a的值.19. (8 分)已知—(1, 2), ■= (-2, 6)(I)求1与「的夹角9;(n)若与•共线,且1 - ■与I垂直,求■ ■.20. (10 分)已知函数f (x) =sinx (2;『:cosx— sinx) +1(I)求f (x)的最小正周期;(n)讨论f(x)在区间[-二,二]上的单调性.4 42016-20仃学年天津市和平区高一(上)期末数学试卷 参考答案与试题解析 一 ■选择题:每小题给出的四个选项中,只有一个是符合要求的 1. (5分)cos 虽二等于( ) A .-二 B .- 1 C. 1 D .二 2 2 2 2 【解答】 解:cos =cos (2 n-——)=cos =. 3 3 3 2 故选:C.故选:B.3. (5分)函数f (x )=匚sin + ) (x € R )的最小正周期是( ) JI A . — B. n C. 2 n D . 4 n【解答】解:函数f (x ) =>sin (初+ ) (x € R )的最小正周期是:T= =i =4 n 3 1_~2故选:D .兀 兀4. (5分)为了得到周期y=sin (2x+ )的图象,只需把函数y=sin (2x -) 2. (5分)已知 3sina+5cosa A .「 B.-「 C. D . 5 5 12 【解答】解:••二丁…n- =2,则 tan a 勺值为( 3sin +5cos 3tan +5 =2,则 tan 12a =的图象()71 兀A.向左平移——个单位长度B.向右平移个单位长度C•向左平移二个单位长度D•向右平移二个单位长度2 2【解答】解:I y=sin(2x+ ) =sin[2 (x+ )-一],6 4 3•••只需把函数y=sin (2x-宀)的图象向左平移个单位长度即可得到y=sin3 4(2x+ )的图象.6故选:A.5. (5 分)设平面向量1= (5, 3), '■= (1,- 2),则1- 2「等于( )A. (3, 7)B. (7, 7)C. (7, 1)D. (3, 1)【解答】解:•••平面向量a= (5, 3), b = (1 , - 2),••• - 2 = (5, 3)-( 2,- 4) = (3, 7).故选:A.6. (5分)若平面向量;与匸的夹角为120°二(辛,-半),|可=2,则|2;-b |5 5等于( )A.二B. 2 二C. 4D. 12【解答】解:•••平面向量;与匸的夹角为120°, a =(二-学),币=2,5 5•」1=1,-1=| J ?| J ?cos120° =12X 「=- 1,2| 2 1 - | 2=4| J 2+| -| 2- 4• =4+4 - 4X(—1) =12,••• |2 1- | =2 乙故选:B7. (5分)如图,在平行四边形ABCD中,•「=(3, 2), ' ''= ( - 1,2),贝厂;?汕等于( )A . 1 B. 6C. - 7 D . 7. , , . 【解答】解:T AC =AD +AB = (3, 2), BD =AD -隠=(-1, 2),•-2小=(2, 4),••• ;?:1= (3, 2) ? (1, 2) =3+4=7,故选:D 故选:C.f 缶77 W 缶77 兀 C R 兀 C / TT TT 、 ■兀 C 兀 1 ・【解答】 解:cos ?cos =cos ? I : = - sin ?cos =- = si S 8 8 2 8 o o 2故选:D .8. (5 分) 已知sin A-i B. 土: C 【解答】 解: T sin +cos a=, 3—D. 0g +COS a=, 3 则sin2 a 勺值为( )平方可得 1+2sin a cos a +s1n2 a=, 9 则 sin2 5 a -—, 9'9. (5分)计算的结果等于( A< B-:cos ?cos — 8 8C. -D.-" 2 410. (5分)已知a,B€( 0, £"),且满足sin 0==。
2016-2017高一上期末数学(一中、南开、耀华、河西区卷、和平区卷、南开区卷)

sin
ω
x
+
π 4
在
π 2
,π
上单调递
减,则 ω 的取值范围是___________.
三、解答题
17.
(16-17
南开高一上期末
17)已知 α
∈
π 2
,π
,
sin
α
= 2 5 . 5
(1)
求
sin
α
+
π 3
的值;
(2)
求
cos
5π 6
(
).
A.12
B. 6
C. −6
D. −12
4. (16-17 耀华高一上期末 4)若 tanα = 3 ,则 cos2 α + 2sin 2α = ( ). 4
A. 64
B. 48
C.1
65
25
D. 16 25
5.
(16-17 耀华高一上期末 5)为了得到函= 数 y
sin
2x
−
π 3
13. (16-17 南开高一上期末 13)已知 tan x = 3 ,则
2
等于_______________.
sin x − 2 cos x
14. (16-17 南开高一上期末 14)若 0 < α < β < π ,sinα + co= sα a,sin β + co= s β b ,则 a,b 的 4
13
20.⑴ ω = 2
,增区间
5π 12
, 11π 12
2016-2017学年天津市南开区高一上期末数学试卷(含答案解析)

2016-2017学年天津市南开区高一(上)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(3分)设集合U={n|n∈N*且n≤9},A={2,5},B={1,2,4,5},则∁U(A∪B)中元素个数为()A.4 B.5 C.6 D.72.(3分)与α=+2kπ(k∈Z)终边相同的角是()A.345°B.375° C.﹣πD.π3.(3分)sin80°cos70°+sin10°sin70°=()A.﹣B.﹣ C.D.4.(3分)下列函数中是奇函数的是()A.y=x+sinx B.y=|x|﹣cosx C.y=xsinx D.y=|x|cosx5.(3分)已知cosθ>0,tan(θ+)=,则θ在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)函数f(x)=log2x+x﹣4的零点在区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)7.(3分)若偶函数f(x)在[0,+∞)上单调递减,设a=f(1),b=f(log0.53),c=f(log23﹣1),则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b8.(3分)如图,正方形ABCD边长为1,从某时刻起,将线段AB,BC,CD,DA分别绕点A,B,C,D顺时针旋转相同角度α(0<α<),若旋转后的四条线段所围成的封闭图形面积为,则α=()A.或B.或C.或D.或9.(3分)函数f(x)=Asin(ωx+φ)的单调递减区间为[kπ﹣,kπ+](k∈Z),则下列说法错误的是()A.函数f(﹣x)的最小正周期为πB.函数f(﹣x)图象的对称轴方程为x=+(k∈Z)C.函数f(﹣x)图象的对称中心为(+,0)(k∈Z)D.函数f(﹣x)的单调递减区间为[kπ+,kπ+](k∈Z)10.(3分)设函数f(x)=,则下列说法正确的是()①若a≤0,则f(f(a))=﹣a;②若f(f(a))=﹣a,则a≤0;③若a≥1,则f(f(a))=;④若f(f(a))=,则a≥1.A.①③B.②④C.①②③D.①③④二、填空题:本大题共5小题,每小题4分,共20分).11.(4分)函数f(x)=的定义域为.12.(4分)函数f(x)=2cos2x•tanx+cos2x的最小正周期为;最大值为.13.(4分)如果将函数f(x)=sin2x图象向左平移φ(φ>0)个单位,函数g(x)=cos(2x﹣)图象向右平移φ个长度单位后,二者能够完全重合,则φ的最小值为.14.(4分)如图所示,已知A,B是单位圆上两点且|AB|=,设AB与x轴正半轴交于点C,α=∠AOC,β=∠OCB,则sinαsinβ+cosαcosβ=.15.(4分)设函数f(x)=,若关于x的方程f(x)﹣a=0有三个不等实根x1,x2,x3,且x1+x2+x3=﹣,则a=.三、解答题:本大题共5小题,共50分.解答写出文字说明、证明过程或演算过程.16.(8分)已知集合A={x|2x﹣6≤2﹣2x≤1},B={x|x∈A∩N},C={x|a≤x≤a+1}.(Ⅰ)写出集合B的所有子集;(Ⅱ)若A∩C=C,求实数a的取值范围.17.(10分)已知函数f(x)=cos(x﹣)﹣sin(x﹣).(Ⅰ)判断函数f(x)的奇偶性,并给出证明;(Ⅱ)若θ为第一象限角,且f(θ+)=,求cos(2θ+)的值.18.(10分)设函数f(x)为R上的奇函数,已知当x>0时,f(x)=﹣(x+1)2.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(m2+2m)+f(m)>0,求m的取值范围.19.(10分)设某等腰三角形的底角为α,顶角为β,且cosβ=.(Ⅰ)求sinα的值;(Ⅱ)若函数f(x)=tanx在[﹣,α]上的值域与函数g(x)=2sin(2x﹣)在[0,m]上的值域相同,求m的取值范围.20.(12分)函数f(x)=4sinωx•cos(ωx+)+1(ω>0),其图象上有两点A(s,t),B(s+2π,t),其中﹣2<t<2,线段AB与函数图象有五个交点.(Ⅰ)求ω的值;(Ⅱ)若函数f(x)在[x1,x2]和[x3,x4]上单调递增,在[x2,x3]上单调递减,且满足等式x4﹣x3=x2﹣x1=(x3﹣x2),求x1、x4所有可能取值.2016-2017学年天津市南开区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(3分)设集合U={n|n∈N*且n≤9},A={2,5},B={1,2,4,5},则∁U(A∪B)中元素个数为()A.4 B.5 C.6 D.7【解答】解:∵A={2,5},B={1,2,4,5},∴A∪B={1,2,4,5},又∵集合U={n|n∈N*且n≤9}={1,2,3,4,5,6,7,8,9},∴∁U(A∪B)={3,6,7,8,9},故∁U(A∪B)共有5个元素,故选:B.2.(3分)与α=+2kπ(k∈Z)终边相同的角是()A.345°B.375° C.﹣πD.π【解答】解:由α=+2kπ(k∈Z),得与角α终边相同的角是:,360°+15°=375°.故选:B.3.(3分)sin80°cos70°+sin10°sin70°=()A.﹣B.﹣ C.D.【解答】解:sin80°cos70°+sin10°sin70°=cos10°cos70°+sin10°sin70°=.故选:C.4.(3分)下列函数中是奇函数的是()A.y=x+sinx B.y=|x|﹣cosx C.y=xsinx D.y=|x|cosx【解答】解:A,y=x+sinx,有f(﹣x)=﹣x﹣sinx=﹣f(x),为奇函数;B,y=|x|﹣cosx,f(﹣x)=|﹣x|﹣cos(﹣x)=f(x),为偶函数;C,y=xsinx,f(﹣x)=(﹣x)sin(﹣x)=xsinx=f(x),为偶函数;D,y=|x|cosx,f(﹣x)=|﹣x|cos(﹣x)=f(x),为偶函数.故选:A.5.(3分)已知cosθ>0,tan(θ+)=,则θ在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由题意得,tan(θ+)=,所以=,即,解得tanθ=<0,则θ在第二或四象限,由cosθ>0得,θ在第一或四象限,所以θ在第四象限,故选:D.6.(3分)函数f(x)=log2x+x﹣4的零点在区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【解答】解:f(x)=log2x+x﹣4,在(0,+∞)上单调递增.∵f(2)=1+2﹣4=﹣1<0,f(3)=log23﹣1>0∴根据函数的零点存在性定理得出:f(x)的零点在(2,3)区间内∴函数f(x)=log2x+x﹣4的零点所在的区间为(2,3),故选:C.7.(3分)若偶函数f(x)在[0,+∞)上单调递减,设a=f(1),b=f(log0.53),c=f(log23﹣1),则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b【解答】解:∵偶函数f(x)在[0,+∞)上单调递减,∴f(x)在(﹣∞,0]上单调递增,∵log0.53=<=﹣1,log23﹣1=log21.5∈(0,1),a=f(1),b=f(log0.53),c=f(log23﹣1),∴b<a<c.故选:B.8.(3分)如图,正方形ABCD边长为1,从某时刻起,将线段AB,BC,CD,DA分别绕点A,B,C,D顺时针旋转相同角度α(0<α<),若旋转后的四条线段所围成的封闭图形面积为,则α=()A.或B.或C.或D.或【解答】解:如图所示,旋转后的四条线段所围成的封闭图形为正方形,边长为cosα﹣sinα,由题意可得:(cosα﹣sinα)2=,可得:cosα﹣sinα=±①,2sinαcosα=又0<α<,可得:cosα+sinα==,②所以:由①②可得:cosα=.故α=或.故选:A.9.(3分)函数f (x )=Asin (ωx +φ)的单调递减区间为[kπ﹣,kπ+](k ∈Z ),则下列说法错误的是( )A .函数f (﹣x )的最小正周期为πB .函数f (﹣x )图象的对称轴方程为x=+(k ∈Z )C .函数f (﹣x )图象的对称中心为(+,0)(k ∈Z )D .函数f (﹣x )的单调递减区间为[kπ+,kπ+](k ∈Z )【解答】解:由题意,ω=2,函数f (x )=Asin (ωx +φ)的周期为π,φ=,f (﹣x )=Asin (﹣2x +),x=+,﹣2x +=kπ+,f (﹣x )=Asin (﹣2x +)≠0,故选C .10.(3分)设函数f (x )=,则下列说法正确的是( )①若a ≤0,则f (f (a ))=﹣a ; ②若f (f (a ))=﹣a ,则a ≤0;③若a ≥1,则f (f (a ))=; ④若f (f (a ))=,则a ≥1. A .①③B .②④C .①②③D .①③④【解答】解:当a ≤0时,则f (f (a ))==﹣a ,故①正确;当a ≥1时,f (f (a ))==,故③正确;当0<a <1,f (f (a ))=log 0.5(log 0.5a )∈R ,故此时存在0<a <1,使得f (f (a ))=﹣a 也存在0<a <1,使得f (f (a ))=, 故②④错误; 故选:A二、填空题:本大题共5小题,每小题4分,共20分).11.(4分)函数f(x)=的定义域为(﹣1,0)∪(0,+∞).【解答】解:由题意得:,解得:x>﹣1且x≠0,故函数的定义域是(﹣1,0)∪(0,+∞),故答案为:(﹣1,0)∪(0,+∞).12.(4分)函数f(x)=2cos2x•tanx+cos2x的最小正周期为π;最大值为.【解答】解:函数f(x)=2cos2x•tanx+cos2x=2sinxcosx+cos2x=sin2x+cos2x=sin(2x+)的最小正周期为=π,最大值为,故答案为:π,13.(4分)如果将函数f(x)=sin2x图象向左平移φ(φ>0)个单位,函数g(x)=cos(2x﹣)图象向右平移φ个长度单位后,二者能够完全重合,则φ的最小值为.【解答】解:将函数y=sin2x的图象向左平移φ(φ>0)个单位得到:y=sin[2(x+φ)]=sin(2x+2φ)的图象,将函数g(x)=cos(2x﹣)图象向右平移φ个长度单位后,可得函数y=cos[2(x﹣φ)﹣]=cos (2x﹣2φ﹣)=sin[﹣(2x﹣2φ﹣)]=sin(﹣2x+2φ)=sin(2x﹣2φ+)的图象,二者能够完全重合,由题意可得,即:2x+2φ=2x﹣2φ++2kπ,k∈Z,解得:φ=kπ+,(k∈Z)当k=0时,φmin=.故答案为:.14.(4分)如图所示,已知A,B是单位圆上两点且|AB|=,设AB与x轴正半轴交于点C,α=∠AOC,β=∠OCB,则sinαsinβ+cosαcosβ=.【解答】解:由题意,∠OAC=β﹣α,∵A,B是单位圆上两点且|AB|=,∴sinαsinβ+cosαcosβ=cos(β﹣α)=cos∠OAC==,故答案为.15.(4分)设函数f(x)=,若关于x的方程f(x)﹣a=0有三个不等实根x1,x2,x3,且x1+x2+x3=﹣,则a=.【解答】解:如图所示,画出函数f(x)的图象,不妨设x1<x2<x3,则x1+x2=2×=﹣3,又x1+x2+x3=﹣,∴x3=.∴a==.故答案为:.三、解答题:本大题共5小题,共50分.解答写出文字说明、证明过程或演算过程.16.(8分)已知集合A={x|2x﹣6≤2﹣2x≤1},B={x|x∈A∩N},C={x|a≤x≤a+1}.(Ⅰ)写出集合B的所有子集;(Ⅱ)若A∩C=C,求实数a的取值范围.【解答】解:(Ⅰ)对于集合A,因为2x﹣6≤2﹣2x≤1,则x﹣6≤﹣2x≤0,解可得:0≤x≤2.即A={x|0≤x≤2},又由B={x|x∈A∩N},则B={0,1,2};故B的子集有∅、{0}、{1}、{2}、{0,1}、{0,2}、{1,2}、{0,1,2};(Ⅱ)若A∩C=C,则C是A的子集,则必有:,解可得:0≤a≤1,即a的取值范围是:[0,1].17.(10分)已知函数f(x)=cos(x﹣)﹣sin(x﹣).(Ⅰ)判断函数f(x)的奇偶性,并给出证明;(Ⅱ)若θ为第一象限角,且f(θ+)=,求cos(2θ+)的值.【解答】解:(Ⅰ)结论:函数f(x)为定义在R上的偶函数.证明:函数f(x)的定义域为R,关于原点对称,f(x)=cos(x﹣)﹣sin(x﹣)=f(﹣x)=.因此,函数f(x)为定义在R上的偶函数;(Ⅱ)∵f(θ+)=,∴.由于θ为第一象限角,故,∴cos(2θ+)===.18.(10分)设函数f(x)为R上的奇函数,已知当x>0时,f(x)=﹣(x+1)2.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(m2+2m)+f(m)>0,求m的取值范围.【解答】解:(Ⅰ)∵函数f(x)为R上的奇函数,∴f(0)=0,若x<0,则﹣x>0,∵当x>0时,f(x)=﹣(x+1)2.∴当﹣x>0时,f(﹣x)=﹣(﹣x+1)2=﹣(x﹣1)2.∵f(x)是奇函数,∴f(﹣x)=﹣(x﹣1)2=﹣f(x),则f(x)=(x﹣1)2,x<0,则函数f(x)的解析式f(x)=;(Ⅱ)若f(m2+2m)+f(m)>0,则f(m2+2m)>﹣f(m)=f(﹣m),当x>0时,f(x)=﹣(x+1)2为减函数,且f(x)<﹣1<f(0),当x<0时,f(x)=(x﹣1)2为减函数,且f(x)>1>f(0),则函数f(x)在R上是减函数,则m2+2m<﹣m,即m2+3m<0,则﹣3<m<0,即m的取值范围是(﹣3,0).19.(10分)设某等腰三角形的底角为α,顶角为β,且cosβ=.(Ⅰ)求sinα的值;(Ⅱ)若函数f(x)=tanx在[﹣,α]上的值域与函数g(x)=2sin(2x﹣)在[0,m]上的值域相同,求m的取值范围.【解答】解:(Ⅰ)由题意,β=π﹣2α,∴cosβ==﹣cos2α=2sin2α﹣1∵α∈(0,),∴sinα=;(Ⅱ)由题意,函数f(x)=tanx在[﹣,α]上单调递增,∵α∈(0,),sinα=,∴cosα=,∴tanα=2,∴函数f(x)=tanx在[﹣,α]上的值域为[﹣,2],∴函数g(x)=2sin(2x﹣)在[0,m]上的值域为[﹣,2],∴y=sinx在[﹣,2m﹣]上的取值范围是[﹣,1],∴≤2m﹣≤,∴≤m≤.20.(12分)函数f(x)=4sinωx•cos(ωx+)+1(ω>0),其图象上有两点A(s,t),B(s+2π,t),其中﹣2<t<2,线段AB与函数图象有五个交点.(Ⅰ)求ω的值;(Ⅱ)若函数f(x)在[x1,x2]和[x3,x4]上单调递增,在[x2,x3]上单调递减,且满足等式x4﹣x3=x2﹣x1=(x3﹣x2),求x1、x4所有可能取值.【解答】解:(Ⅰ)f(x)=4sinωx•cos(ωx+)+1====,由于|AB|=2π,且线段AB与函数f(x)图象有五个交点,因此,故ω=1;(Ⅱ)由(Ⅰ)得,函数f(x)=,由题意知,因此x4﹣x3=x2﹣x1=(x3﹣x2)=.即,.∵函数f(x)在[x1,x2]上单调递增,在[x2,x3]上单调递减,∴f(x)在x2处取得最大值,即=2.,即.∴=.=.。
高一数学第一学期期末测试题和答案

高一数学第一学期期末测试题本试卷共4页,20题,满分为150分钟,考试用时120分钟。
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{13,4,5,7,9}=A ,B {3,5,7,8,10}=,那么=AB ( )A 、{13,4,5,7,8,9},B 、{1,4,8,9}C 、{3,5,7}D 、{3,5,7,8} 2.cos()6π-的值是( )A B . C .12 D .12- 3.函数)1ln()(-=x x f 的定义域是( )A . ),1(+∞B .),1[+∞C . ),0(+∞D .),0[+∞ 4.函数cos y x =的一个单调递增区间为 ( ) A .,22ππ⎛⎫-⎪⎝⎭ B .()0,π C .3,22ππ⎛⎫⎪⎝⎭D .(),2ππ 5.函数tan(2)4y x π=+的最小正周期为( )A .4π B .2πC .πD .2π 6.函数2()ln f x x x=-的零点所在的大致区间是 ( ) A .(1,2) B .(,3)e C .(2,)e D .(,)e +∞7.已知0.30.2a=,0.2log 3b =,0.2log 4c =,则( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a 8.若函数23()(23)m f x m x-=+是幂函数,则m 的值为( )A 、1-B 、0C 、1D 、2 9.若1tan()47πα+=,则tan α=( )A 、34 B 、43C 、34-D 、43-10.函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是( ) A.最小正周期为π的奇函数 B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数二、填空题:本大题共4小题,每小题5分,满分20分.11.已知函数()()()2log 030x x x f x x >⎧⎪=⎨⎪⎩,则()0f f =⎡⎤⎣⎦ . 12.已知3tan =α,则ααααsin 3cos 5cos 2sin 4+-= ;13.若cos α=﹣,且α∈(π,),则tan α= .14.设{1,2,3,4,5,6},B {1,2,7,8},A ==定义A 与B 的差集为{|},A B x x A x B A A B -=∈∉--,且则()三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(满分12分)(1)4253sin cos tan()364πππ-(2)22lg 4lg 25ln 2e -+-+16.(满分12分)已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭)(R x ∈ (1)求()f x 的振幅和初相;(2)该函数图象可由)(sin R x x y ∈=的图象经过怎样的平移和伸缩变换得到?17.(本题满分14分) 已知函数()sin 2cos 21f x x x =+-(1)把函数化为()sin(),(0,0)f x A x B A ωϕω=++>>的形式,并求()f x 的最小正周期;(2)求函数()f x 的最大值及()f x 取得最大值时x 的集合; 18.(满分14分)()2sin(),(0,0,),()62.1(0)228730(),(),sin 35617f x x A x R f x f ABC A B C f A f B C πωωπωππ=->>∈+=+=-已知函数且的最小正周期是()求和的值;()已知锐角的三个内角分别为,,,若求的值。
2016-2017学年天津市南开区高一(上)期末数学试卷

2016-2017学年天津市南开区高一(上)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(3分)设集合U={n|n∈N*且n≤9},A={2,5},B={1,2,4,5},则∁U(A ∪B)中元素个数为()A.4 B.5 C.6 D.72.(3分)与α=+2kπ(k∈Z)终边相同的角是()A.345°B.375° C.﹣πD.π3.(3分)sin80°cos70°+sin10°sin70°=()A.﹣B.﹣ C.D.4.(3分)下列函数中是奇函数的是()A.y=x+sinx B.y=|x|﹣cosx C.y=xsinx D.y=|x|cosx5.(3分)已知cosθ>0,tan(θ+)=,则θ在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)函数f(x)=log2x+x﹣4的零点在区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)7.(3分)若偶函数f(x)在[0,+∞)上单调递减,设a=f(1),b=f(log0.53),c=f(log23﹣1),则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b8.(3分)如图,正方形ABCD边长为1,从某时刻起,将线段AB,BC,CD,DA 分别绕点A,B,C,D顺时针旋转相同角度α(0<α<),若旋转后的四条线段所围成的封闭图形面积为,则α=()A.或B.或C.或D.或9.(3分)函数f(x)=Asin(ωx+φ)的单调递减区间为[kπ﹣,kπ+](k ∈Z),则下列说法错误的是()A.函数f(﹣x)的最小正周期为πB.函数f(﹣x)图象的对称轴方程为x=+(k∈Z)C.函数f(﹣x)图象的对称中心为(+,0)(k∈Z)D.函数f(﹣x)的单调递减区间为[kπ+,kπ+](k∈Z)10.(3分)设函数f(x)=,则下列说法正确的是()①若a≤0,则f(f(a))=﹣a;②若f(f(a))=﹣a,则a≤0;③若a≥1,则f(f(a))=;④若f(f(a))=,则a≥1.A.①③B.②④C.①②③D.①③④二、填空题:本大题共5小题,每小题4分,共20分).11.(4分)函数f(x)=的定义域为.12.(4分)函数f(x)=2cos2x•tanx+cos2x的最小正周期为;最大值为.13.(4分)如果将函数f(x)=sin2x图象向左平移φ(φ>0)个单位,函数g (x)=cos(2x﹣)图象向右平移φ个长度单位后,二者能够完全重合,则φ的最小值为.14.(4分)如图所示,已知A,B是单位圆上两点且|AB|=,设AB与x轴正半轴交于点C,α=∠AOC,β=∠OCB,则sinαsinβ+cosαcosβ=.15.(4分)设函数f(x)=,若关于x的方程f(x)﹣a=0有三个不等实根x1,x2,x3,且x1+x2+x3=﹣,则a=.三、解答题:本大题共5小题,共50分.解答写出文字说明、证明过程或演算过程.16.(8分)已知集合A={x|2x﹣6≤2﹣2x≤1},B={x|x∈A∩N},C={x|a≤x≤a+1}.(Ⅰ)写出集合B的所有子集;(Ⅱ)若A∩C=C,求实数a的取值范围.17.(10分)已知函数f(x)=cos(x﹣)﹣sin(x﹣).(Ⅰ)判断函数f(x)的奇偶性,并给出证明;(Ⅱ)若θ为第一象限角,且f(θ+)=,求cos(2θ+)的值.18.(10分)设函数f(x)为R上的奇函数,已知当x>0时,f(x)=﹣(x+1)2.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(m2+2m)+f(m)>0,求m的取值范围.19.(10分)设某等腰三角形的底角为α,顶角为β,且cosβ=.(Ⅰ)求sinα的值;(Ⅱ)若函数f(x)=tanx在[﹣,α]上的值域与函数g(x)=2sin(2x﹣)在[0,m]上的值域相同,求m的取值范围.20.(12分)函数f(x)=4sinωx•cos(ωx+)+1(ω>0),其图象上有两点A (s,t),B(s+2π,t),其中﹣2<t<2,线段AB与函数图象有五个交点.(Ⅰ)求ω的值;(Ⅱ)若函数f(x)在[x1,x2]和[x3,x4]上单调递增,在[x2,x3]上单调递减,且满足等式x4﹣x3=x2﹣x1=(x3﹣x2),求x1、x4所有可能取值.2016-2017学年天津市南开区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(3分)设集合U={n|n∈N*且n≤9},A={2,5},B={1,2,4,5},则∁U(A ∪B)中元素个数为()A.4 B.5 C.6 D.7【解答】解:∵A={2,5},B={1,2,4,5},∴A∪B={1,2,4,5},又∵集合U={n|n∈N*且n≤9}={1,2,3,4,5,6,7,8,9},∴∁U(A∪B)={3,6,7,8,9},故∁U(A∪B)共有5个元素,故选:B.2.(3分)与α=+2kπ(k∈Z)终边相同的角是()A.345°B.375° C.﹣πD.π【解答】解:由α=+2kπ(k∈Z),得与角α终边相同的角是:,360°+15°=375°.故选:B.3.(3分)sin80°cos70°+sin10°sin70°=()A.﹣B.﹣ C.D.【解答】解:sin80°cos70°+sin10°sin70°=cos10°cos70°+sin10°sin70°=.故选:C.4.(3分)下列函数中是奇函数的是()A.y=x+sinx B.y=|x|﹣cosx C.y=xsinx D.y=|x|cosx【解答】解:A,y=x+sinx,有f(﹣x)=﹣x﹣sinx=﹣f(x),为奇函数;B,y=|x|﹣cosx,f(﹣x)=|﹣x|﹣cos(﹣x)=f(x),为偶函数;C,y=xsinx,f(﹣x)=(﹣x)sin(﹣x)=xsinx=f(x),为偶函数;D,y=|x|cosx,f(﹣x)=|﹣x|cos(﹣x)=f(x),为偶函数.故选:A.5.(3分)已知cosθ>0,tan(θ+)=,则θ在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由题意得,tan(θ+)=,所以=,即,解得tanθ=<0,则θ在第二或四象限,由cosθ>0得,θ在第一或四象限,所以θ在第四象限,故选:D.6.(3分)函数f(x)=log2x+x﹣4的零点在区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【解答】解:f(x)=log2x+x﹣4,在(0,+∞)上单调递增.∵f(2)=1+2﹣4=﹣1<0,f(3)=log23﹣1>0∴根据函数的零点存在性定理得出:f(x)的零点在(2,3)区间内∴函数f(x)=log2x+x﹣4的零点所在的区间为(2,3),故选:C.7.(3分)若偶函数f(x)在[0,+∞)上单调递减,设a=f(1),b=f(log0.53),c=f(log23﹣1),则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b【解答】解:∵偶函数f(x)在[0,+∞)上单调递减,∴f(x)在(﹣∞,0]上单调递增,∵log0.53=<=﹣1,log23﹣1=log21.5∈(0,1),a=f(1),b=f(log0.53),c=f(log23﹣1),∴b<a<c.故选:B.8.(3分)如图,正方形ABCD边长为1,从某时刻起,将线段AB,BC,CD,DA 分别绕点A,B,C,D顺时针旋转相同角度α(0<α<),若旋转后的四条线段所围成的封闭图形面积为,则α=()A.或B.或C.或D.或【解答】解:如图所示,旋转后的四条线段所围成的封闭图形为正方形,边长为cosα﹣sinα,由题意可得:(cosα﹣sinα)2=,可得:cosα﹣sinα=±①,2sinαcosα=又0<α<,可得:cosα+sinα==,②所以:由①②可得:cosα=.故α=或.故选:A.9.(3分)函数f(x)=Asin(ωx+φ)的单调递减区间为[kπ﹣,kπ+](k ∈Z),则下列说法错误的是()A.函数f(﹣x)的最小正周期为πB.函数f(﹣x)图象的对称轴方程为x=+(k∈Z)C.函数f(﹣x)图象的对称中心为(+,0)(k∈Z)D.函数f(﹣x)的单调递减区间为[kπ+,kπ+](k∈Z)【解答】解:由题意,ω=2,函数f(x)=Asin(ωx+φ)的周期为π,φ=,f(﹣x)=Asin(﹣2x+),x=+,﹣2x+=kπ+,f(﹣x)=Asin(﹣2x+)≠0,故选C.10.(3分)设函数f(x)=,则下列说法正确的是()①若a≤0,则f(f(a))=﹣a;②若f(f(a))=﹣a,则a≤0;③若a≥1,则f(f(a))=;④若f(f(a))=,则a≥1.A.①③B.②④C.①②③D.①③④【解答】解:当a≤0时,则f(f(a))==﹣a,故①正确;当a≥1时,f(f(a))==,故③正确;当0<a<1,f(f(a))=log0.5(log0.5a)∈R,故此时存在0<a<1,使得f(f(a))=﹣a也存在0<a<1,使得f(f(a))=,故②④错误;故选:A二、填空题:本大题共5小题,每小题4分,共20分).11.(4分)函数f(x)=的定义域为(﹣1,0)∪(0,+∞).【解答】解:由题意得:,解得:x>﹣1且x≠0,故函数的定义域是(﹣1,0)∪(0,+∞),故答案为:(﹣1,0)∪(0,+∞).12.(4分)函数f(x)=2cos2x•tanx+cos2x的最小正周期为π;最大值为.【解答】解:函数f(x)=2cos2x•tanx+cos2x=2sinxcosx+cos2x=sin2x+cos2x=sin(2x+)的最小正周期为=π,最大值为,故答案为:π,13.(4分)如果将函数f(x)=sin2x图象向左平移φ(φ>0)个单位,函数g (x)=cos(2x﹣)图象向右平移φ个长度单位后,二者能够完全重合,则φ的最小值为.【解答】解:将函数y=sin2x的图象向左平移φ(φ>0)个单位得到:y=sin[2(x+φ)]=sin(2x+2φ)的图象,将函数g(x)=cos(2x﹣)图象向右平移φ个长度单位后,可得函数y=cos[2(x﹣φ)﹣]=cos(2x﹣2φ﹣)=sin[﹣(2x﹣2φ﹣)]=sin(﹣2x+2φ)=sin(2x﹣2φ+)的图象,二者能够完全重合,由题意可得,即:2x+2φ=2x﹣2φ++2kπ,k∈Z,解得:φ=kπ+,(k∈Z)当k=0时,φmin=.故答案为:.14.(4分)如图所示,已知A,B是单位圆上两点且|AB|=,设AB与x轴正半轴交于点C,α=∠AOC,β=∠OCB,则sinαsinβ+cosαcosβ=.【解答】解:由题意,∠OAC=β﹣α,∵A,B是单位圆上两点且|AB|=,∴sinαsinβ+cosαcosβ=cos(β﹣α)=cos∠OAC==,故答案为.15.(4分)设函数f(x)=,若关于x的方程f(x)﹣a=0有三个不等实根x1,x2,x3,且x1+x2+x3=﹣,则a=.【解答】解:如图所示,画出函数f(x)的图象,不妨设x1<x2<x3,则x1+x2=2×=﹣3,又x1+x2+x3=﹣,∴x3=.∴a==.故答案为:.三、解答题:本大题共5小题,共50分.解答写出文字说明、证明过程或演算过程.16.(8分)已知集合A={x|2x﹣6≤2﹣2x≤1},B={x|x∈A∩N},C={x|a≤x≤a+1}.(Ⅰ)写出集合B的所有子集;(Ⅱ)若A∩C=C,求实数a的取值范围.【解答】解:(Ⅰ)对于集合A,因为2x﹣6≤2﹣2x≤1,则x﹣6≤﹣2x≤0,解可得:0≤x≤2.即A={x|0≤x≤2},又由B={x|x∈A∩N},则B={0,1,2};故B的子集有∅、{0}、{1}、{2}、{0,1}、{0,2}、{1,2}、{0,1,2};(Ⅱ)若A∩C=C,则C是A的子集,则必有:,解可得:0≤a≤1,即a的取值范围是:[0,1].17.(10分)已知函数f(x)=cos(x﹣)﹣sin(x﹣).(Ⅰ)判断函数f(x)的奇偶性,并给出证明;(Ⅱ)若θ为第一象限角,且f(θ+)=,求cos(2θ+)的值.【解答】解:(Ⅰ)结论:函数f(x)为定义在R上的偶函数.证明:函数f(x)的定义域为R,关于原点对称,f(x)=cos(x﹣)﹣sin(x﹣)=f(﹣x)=.因此,函数f(x)为定义在R上的偶函数;(Ⅱ)∵f(θ+)=,∴.由于θ为第一象限角,故,∴cos(2θ+)===.18.(10分)设函数f(x)为R上的奇函数,已知当x>0时,f(x)=﹣(x+1)2.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(m2+2m)+f(m)>0,求m的取值范围.【解答】解:(Ⅰ)∵函数f(x)为R上的奇函数,∴f(0)=0,若x<0,则﹣x>0,∵当x>0时,f(x)=﹣(x+1)2.∴当﹣x>0时,f(﹣x)=﹣(﹣x+1)2=﹣(x﹣1)2.∵f(x)是奇函数,∴f(﹣x)=﹣(x﹣1)2=﹣f(x),则f(x)=(x﹣1)2,x<0,则函数f(x)的解析式f(x)=;(Ⅱ)若f(m2+2m)+f(m)>0,则f(m2+2m)>﹣f(m)=f(﹣m),当x>0时,f(x)=﹣(x+1)2为减函数,且f(x)<﹣1<f(0),当x<0时,f(x)=(x﹣1)2为减函数,且f(x)>1>f(0),则函数f(x)在R上是减函数,则m2+2m<﹣m,即m2+3m<0,则﹣3<m<0,即m的取值范围是(﹣3,0).19.(10分)设某等腰三角形的底角为α,顶角为β,且cosβ=.(Ⅰ)求sinα的值;(Ⅱ)若函数f(x)=tanx在[﹣,α]上的值域与函数g(x)=2sin(2x﹣)在[0,m]上的值域相同,求m的取值范围.【解答】解:(Ⅰ)由题意,β=π﹣2α,∴cosβ==﹣cos2α=2sin2α﹣1∵α∈(0,),∴sinα=;(Ⅱ)由题意,函数f(x)=tanx在[﹣,α]上单调递增,∵α∈(0,),sinα=,∴cosα=,∴tanα=2,∴函数f(x)=tanx在[﹣,α]上的值域为[﹣,2],∴函数g(x)=2sin(2x﹣)在[0,m]上的值域为[﹣,2],∴y=sinx在[﹣,2m﹣]上的取值范围是[﹣,1],∴≤2m﹣≤,∴≤m≤.20.(12分)函数f(x)=4sinωx•cos(ωx+)+1(ω>0),其图象上有两点A (s,t),B(s+2π,t),其中﹣2<t<2,线段AB与函数图象有五个交点.(Ⅰ)求ω的值;(Ⅱ)若函数f(x)在[x1,x2]和[x3,x4]上单调递增,在[x2,x3]上单调递减,且满足等式x4﹣x3=x2﹣x1=(x3﹣x2),求x1、x4所有可能取值.【解答】解:(Ⅰ)f(x)=4sinωx•cos(ωx+)+1====,由于|AB|=2π,且线段AB与函数f(x)图象有五个交点,因此,故ω=1;(Ⅱ)由(Ⅰ)得,函数f(x)=,由题意知,因此x4﹣x3=x2﹣x1=(x3﹣x2)=.即,.∵函数f(x)在[x1,x2]上单调递增,在[x2,x3]上单调递减,∴f(x)在x2处取得最大值,即=2.,即.∴=.=.。
2016-2017年天津市南开区高三(上)期末数学试卷和参考答案(理科)

2016-2017学年天津市南开区高三(上)期末数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合M={x|1+x≥0},N={x|>0},则M∩N=()A.{x|﹣1≤x<1}B.{x|x>1}C.{x|﹣1<x<1}D.{x|x≥﹣1}2.(5分)复数(i是虚数单位)的虚部是()A.i B.1 C.﹣i D.﹣13.(5分)如果命题“¬(p∧q)”为假命题,则()A.p、q均为真命题B.p、q均为假命题C.p、q至少有一个为真命题D.p、q至多有一个为真命题4.(5分)一个空间几何体的三视图如图所示,则该几何体的体积为()A.πcm3B.3πcm3C.πcm3D.πcm35.(5分)若实数x,y满足约束条件则目标函数z=的最大值为()A.B.C.D.26.(5分)从抛物线y2=4x上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则△MPF的面积为()A.5 B.10 C.20 D.7.(5分)抛物线y=x2与直线x=0、x=1及该抛物线在x=t(0<t<1)处的切线所围成的图形面积的最小值为()A.B.C.D.8.(5分)已知函数f(x)=,则函数g(x)=f(1﹣x)﹣1的零点个数为()A.1 B.2 C.3 D.4二、填空题:本大题共6大题,每小题5分,共30分.9.(5分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果分成五组:每一组[13,14);第二组[14,15),…,第五组[17,18].如图是按上述分组方法得到的频率分布直方图若成绩大于或等于14秒且小于16秒认为良好,则该班在这次百米测试中成绩良好的人数是.10.(5分)阅读下列程序框图,该程序输出的结果是.11.(5分)定义在R上的奇函数f(x),当x∈(0,+∞)时,f(x)=log2x,则不等式f(x)<﹣1的解集是.12.(5分)已知圆C:x2+y2﹣6x+8=0,若直线y=kx与圆C相切,且切点在第四象限,则k=.13.(5分)如图,正方形ABCD中,M,N分别是BC,CD的中点,若=λ+μ,则λ+μ=.14.(5分)已知实数a,b满足:a≥,b∈R,且a+|b|≤1,则+b的取值范围是.三、解答题:本大题共6小题,共80分.解答写出文字说明、证明过程或验算过程.15.(13分)已知函数f(x)=2cosxsin(x+)﹣.(Ⅰ)求函数f(x)的最小正周期和对称中心;(Ⅱ)求函数f(x)在区间[,π]上的取值范围.16.(13分)在△ABC中,设内角A、B、C的对边分别为a、b、c,且(1)求角C的大小;(2)若且a+b=5求△ABC的面积.17.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,∠ABC=∠ADC=90°,∠BAD=120°,AD=AB=1,AC交BD于O点.(Ⅰ)求证:平面PBD⊥平面PAC;(Ⅱ)当点A在平面PBD内的射影G恰好是△PBD的重心时,求二面角B﹣PD ﹣C的余弦值.18.(13分)在等差数列{a n}中,首项a1=1,数列{b n}满足b n=()an,b1b2b3=(I)求数列{a n}的通项公式;(Ⅱ)求a1b1+a2b2+…+a n b n<2.19.(14分)已知椭圆+=1(a>b>0)离心率为.(1)椭圆的左、右焦点分别为F1,F2,A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程;(2)求b为何值时,过圆x2+y2=t2上一点M(2,)处的切线交椭圆于Q1、Q2两点,且OQ1⊥OQ2.20.(14分)已知函数f(x)=e x﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x <ce x.2016-2017学年天津市南开区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合M={x|1+x≥0},N={x|>0},则M∩N=()A.{x|﹣1≤x<1}B.{x|x>1}C.{x|﹣1<x<1}D.{x|x≥﹣1}【解答】解:∵集合M={x|1+x≥0}={x|x≥﹣1},N={x|>0}={x|x<1},∴M∩N={x|﹣1≤x<1}.故选:A.2.(5分)复数(i是虚数单位)的虚部是()A.i B.1 C.﹣i D.﹣1【解答】解:∵=,∴复数的虚部是1.故选:B.3.(5分)如果命题“¬(p∧q)”为假命题,则()A.p、q均为真命题B.p、q均为假命题C.p、q至少有一个为真命题D.p、q至多有一个为真命题【解答】解:∵命题“¬(p∧q)”为假命题,∴命题“p∧q”为真命题,∴命题p、q均为真命题.故选:A.4.(5分)一个空间几何体的三视图如图所示,则该几何体的体积为()A.πcm3B.3πcm3C.πcm3D.πcm3【解答】解:由三视图可知,此几何体为底面半径为1 cm、高为3 cm的圆柱上部去掉一个半径为1 cm的半球,所以其体积为V=πr2h﹣πr3=3π﹣π=π(cm3).故选:D.5.(5分)若实数x,y满足约束条件则目标函数z=的最大值为()A.B.C.D.2【解答】解:作出不等式组对应的平面区域,z=的几何意义是区域内的点到点D(﹣3,﹣1)的斜率,由图象知AD的斜率最大,由,得,即A(1,5),则z=的最大值z===,故选:C.6.(5分)从抛物线y2=4x上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则△MPF的面积为()A.5 B.10 C.20 D.【解答】解:设P(x0,y0)依题意可知抛物线准线x=﹣1,∴x0=5﹣1=4∴|y0|==4,∴△MPF的面积为×5×4=10故选:B.7.(5分)抛物线y=x2与直线x=0、x=1及该抛物线在x=t(0<t<1)处的切线所围成的图形面积的最小值为()A.B.C.D.【解答】解:∵y=f(x)=x2,∴f'(x)=2x,即切线l在P处的斜率k=f'(t)=2t,∴切线方程为y﹣t2=2t(x﹣t)=2tx﹣2t2,即y﹣t2=2t(x﹣t)=2tx﹣2t2,y=2tx﹣t2,作出对应的图象,则曲线围成的面积S====,∵0<t<1,∴当t=时,面积取的最小值为.故选:A.8.(5分)已知函数f(x)=,则函数g(x)=f(1﹣x)﹣1的零点个数为()A.1 B.2 C.3 D.4【解答】解:函数f(x)=,f(1﹣x)=,函数g(x)=f(1﹣x)﹣1的零点个数,就是y=f(1﹣x)与y=1交点个数,如图:可知两个函数的图象由三个交点,函数g(x)=f(1﹣x)﹣1的零点个数为3.故选:C.二、填空题:本大题共6大题,每小题5分,共30分.9.(5分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果分成五组:每一组[13,14);第二组[14,15),…,第五组[17,18].如图是按上述分组方法得到的频率分布直方图若成绩大于或等于14秒且小于16秒认为良好,则该班在这次百米测试中成绩良好的人数是27.【解答】解:由频率分布直方图知,成绩在[14,16)内的人数为50×0.16+50×0.38=27(人)∴该班成绩良好的人数为27人.故答案为:27.10.(5分)阅读下列程序框图,该程序输出的结果是729.【解答】解:分析框图可得该程序的作用是计算并输出S=9×9×9的值.∵S=9×9×9=729故答案为:72911.(5分)定义在R上的奇函数f(x),当x∈(0,+∞)时,f(x)=log2x,则不等式f(x)<﹣1的解集是(﹣∞,﹣2)∪(0,).【解答】解:设x<0,则﹣x>0,∵当x∈(0,+∞)时,f(x)=log2x,∴f(﹣x)=log2(﹣x),∵f(x)是奇函数,∴f(x)=﹣f(﹣x)=﹣log2(﹣x),①当x∈(0,+∞)时,f(x)<﹣1,即log2x<﹣1=,解得0<x<,②当x∈(﹣∞,0)时,f(x)<﹣1,即﹣log2(﹣x)<﹣1,则log2(﹣x)>1=log22,解得x<﹣2,综上,不等式的解集是(﹣∞,﹣2)∪(0,).故答案为:(﹣∞,﹣2)∪(0,).12.(5分)已知圆C:x2+y2﹣6x+8=0,若直线y=kx与圆C相切,且切点在第四象限,则k=.【解答】解:∵圆C:x2+y2﹣6x+8=0的圆心为(3,0),半径r=1∴当直线y=kx与圆C相切时,点C(3,0)到直线的距离等于1,即=1,解之得k=∵切点在第四象限,∴当直线的斜率k=时,切点在第一象限,不符合题意直线的斜率k=﹣时,切点在第四象限.因此,k=﹣故答案为:﹣13.(5分)如图,正方形ABCD中,M,N分别是BC,CD的中点,若=λ+μ,则λ+μ=.【解答】解:设=,=,则=﹣+,=+.由于=λ+μ=μ(+)+λ(﹣+)=+,∴λ+μ=1,且﹣λ+μ=1,解得λ=,μ=,∴λ+μ=,故答案为:.14.(5分)已知实数a,b满足:a≥,b∈R,且a+|b|≤1,则+b的取值范围是[﹣1,] .【解答】解:由题意作平面区域如下,,结合图象可知,当a+b=1时,+b才有可能取到最大值,即+1﹣a≤+1﹣=,当a﹣b=1时,+b才有可能取到最小值,即+a﹣1≥2﹣1=﹣1,(当且仅当=a,即a=时,等号成立),结合图象可知,+b的取值范围是[﹣1,].三、解答题:本大题共6小题,共80分.解答写出文字说明、证明过程或验算过程.15.(13分)已知函数f(x)=2cosxsin(x+)﹣.(Ⅰ)求函数f(x)的最小正周期和对称中心;(Ⅱ)求函数f(x)在区间[,π]上的取值范围.【解答】(本题满分为13分)解:(Ⅰ)∵f(x)=2cosxsin(x+)﹣=2cosx(sinxcos+cosxsin)﹣=sinxcosx+cos2x﹣=sin2x+cos2x=sin(2x+),…5分∴T==π,…6分∴令2x+=kπ,k∈Z,解得:x=﹣,k∈Z,即函数的对称中心为:(﹣,0),k∈Z…7分(Ⅱ)∵x∈[,π],∴f(x)在区间[,]单调递增,在区间[,π]单调递减,∵f()=sinπ=0,f()=sin=﹣1,f(π)=sin=,∴函数f(x)在区间[,π]上的取值范围为[﹣1,]…13分16.(13分)在△ABC中,设内角A、B、C的对边分别为a、b、c,且(1)求角C的大小;(2)若且a+b=5求△ABC的面积.【解答】解:(1)∵∴(2分)∴(4分)∵在△ABC中,0<C<π∴(6分)(2)∵c2=a2+b2﹣2abcosC∴7=a2+b2﹣ab=(a+b)2﹣3ab=25﹣3ab(8分)∴ab=6∴.(12分)17.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,∠ABC=∠ADC=90°,∠BAD=120°,AD=AB=1,AC交BD于O点.(Ⅰ)求证:平面PBD⊥平面PAC;(Ⅱ)当点A在平面PBD内的射影G恰好是△PBD的重心时,求二面角B﹣PD ﹣C的余弦值.【解答】解:(Ⅰ)依题意Rt△ABC≌Rt△ADC,∠BAC=∠DAC,△ABO≌△ADO,∴AC⊥BD.而PA⊥平面ABCD,PA⊥BD,又PA∩AC=A,所以BD⊥面PAC,又BD⊂面PBD,所以平面PAC⊥平面PBD.(Ⅱ)过A作AD的垂线为x轴,AD为y轴,AP为z轴,建立如图所示坐标系,则B,D(0,1,0),C,设P(0,0,λ),所以G,,由AG⊥PB得,=0,解得,所以.∴P点坐标为,面PBD的一个法向量为,设面PCD的一个法向量为=∴,∴,cos<>==,所以二面角B﹣PD﹣C的余弦值为.18.(13分)在等差数列{a n}中,首项a1=1,数列{b n}满足b n=()an,b1b2b3=(I)求数列{a n}的通项公式;(Ⅱ)求a1b1+a2b2+…+a n b n<2.【解答】(I)解:设等差数列{a n}的公差为d,依题意,b1=,b2=,b3=,∵b1b2b3=,∴••=,∴1+(1+d)+(1+2d)=6,解得:d=1,∴a n=1+(n﹣1)=n;(Ⅱ)证明:∵a n=n,∴b n=,a nb n=n•,记T n=a1b1+a2b2+…+a n b n=1•+2•+3•+…+n•,则T n=1•+2•+…+(n﹣1)•+n•,两式相减得:T n=+++…+﹣n•=﹣n•=1﹣﹣n•,∴T n=2(1﹣﹣n•)=2﹣﹣,∵2﹣﹣<2,∴a1b1+a2b2+…+a n b n<2.19.(14分)已知椭圆+=1(a>b>0)离心率为.(1)椭圆的左、右焦点分别为F1,F2,A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程;(2)求b为何值时,过圆x2+y2=t2上一点M(2,)处的切线交椭圆于Q1、Q2两点,且OQ1⊥OQ2.【解答】解:(1)∵椭圆+=1(a>b>0)离心率为,椭圆上的一点A到两焦点的距离之和为4,∴,解得a=2,b=,∴椭圆的方程为.(2)过圆x2+y2=t2上一点M(2,)处切线方程为,令Q1(x1,y1),Q2(x2,y2),则,化为5x2﹣24x+36﹣2b2=0,由△>0,得b>,,,y1y2=2x1x2﹣6(x1+x2)+18=,由OQ1⊥OQ2,知x1x2+y1y2=0,解得b2=9,即b=±3,∵b>,∴b=3.20.(14分)已知函数f(x)=e x﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x <ce x.【解答】解:(1)由f(x)=e x﹣ax得f′(x)=e x﹣a.又f′(0)=1﹣a=﹣1,∴a=2,∴f(x)=e x﹣2x,f′(x)=e x﹣2.由f′(x)=0得x=ln2,当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增;∴当x=ln2时,f(x)有极小值为f(ln2)=e ln2﹣2ln2=2﹣ln4.f(x)无极大值.(2)令g(x)=e x﹣x2,则g′(x)=e x﹣2x,由(1)得,g′(x)=f(x)≥f(ln2)=e ln2﹣2ln2=2﹣ln4>0,即g′(x)>0,∴当x>0时,g(x)>g(0)>0,即x2<e x;(3)对任意给定的正数c,总存在x0=>0.当x∈(x0,+∞)时,由(2)得e x>x2>x,即x<ce x.∴对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<ce x.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年天津市南开区高一(上)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(3分)设集合U={n|n∈N*且n≤9},A={2,5},B={1,2,4,5},则∁U(A ∪B)中元素个数为()A.4 B.5 C.6 D.72.(3分)与α=+2kπ(k∈Z)终边相同的角是()A.345°B.375° C.﹣πD.π3.(3分)sin80°cos70°+sin10°sin70°=()A.﹣B.﹣ C.D.4.(3分)下列函数中是奇函数的是()A.y=x+sinx B.y=|x|﹣cosx C.y=xsinx D.y=|x|cosx5.(3分)已知cosθ>0,tan(θ+)=,则θ在()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)函数f(x)=log2x+x﹣4的零点在区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)7.(3分)若偶函数f(x)在[0,+∞)上单调递减,设a=f(1),b=f(log0.53),c=f(log23﹣1),则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b8.(3分)如图,正方形ABCD边长为1,从某时刻起,将线段AB,BC,CD,DA 分别绕点A,B,C,D顺时针旋转相同角度α(0<α<),若旋转后的四条线段所围成的封闭图形面积为,则α=()A.或B.或C.或D.或9.(3分)函数f(x)=Asin(ωx+φ)的单调递减区间为[kπ﹣,kπ+](k ∈Z),则下列说法错误的是()A.函数f(﹣x)的最小正周期为πB.函数f(﹣x)图象的对称轴方程为x=+(k∈Z)C.函数f(﹣x)图象的对称中心为(+,0)(k∈Z)D.函数f(﹣x)的单调递减区间为[kπ+,kπ+](k∈Z)10.(3分)设函数f(x)=,则下列说法正确的是()①若a≤0,则f(f(a))=﹣a;②若f(f(a))=﹣a,则a≤0;③若a≥1,则f(f(a))=;④若f(f(a))=,则a≥1.A.①③B.②④C.①②③D.①③④二、填空题:本大题共5小题,每小题4分,共20分).11.(4分)函数f(x)=的定义域为.12.(4分)函数f(x)=2cos2x•tanx+cos2x的最小正周期为;最大值为.13.(4分)如果将函数f(x)=sin2x图象向左平移φ(φ>0)个单位,函数g (x)=cos(2x﹣)图象向右平移φ个长度单位后,二者能够完全重合,则φ的最小值为.14.(4分)如图所示,已知A,B是单位圆上两点且|AB|=,设AB与x轴正半轴交于点C,α=∠AOC,β=∠OCB,则sinαsinβ+cosαcosβ=.15.(4分)设函数f(x)=,若关于x的方程f(x)﹣a=0有三个不等实根x1,x2,x3,且x1+x2+x3=﹣,则a=.三、解答题:本大题共5小题,共50分.解答写出文字说明、证明过程或演算过程.16.(8分)已知集合A={x|2x﹣6≤2﹣2x≤1},B={x|x∈A∩N},C={x|a≤x≤a+1}.(Ⅰ)写出集合B的所有子集;(Ⅱ)若A∩C=C,求实数a的取值范围.17.(10分)已知函数f(x)=cos(x﹣)﹣sin(x﹣).(Ⅰ)判断函数f(x)的奇偶性,并给出证明;(Ⅱ)若θ为第一象限角,且f(θ+)=,求cos(2θ+)的值.18.(10分)设函数f(x)为R上的奇函数,已知当x>0时,f(x)=﹣(x+1)2.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(m2+2m)+f(m)>0,求m的取值范围.19.(10分)设某等腰三角形的底角为α,顶角为β,且cosβ=.(Ⅰ)求sinα的值;(Ⅱ)若函数f(x)=tanx在[﹣,α]上的值域与函数g(x)=2sin(2x﹣)在[0,m]上的值域相同,求m的取值范围.20.(12分)函数f(x)=4sinωx•cos(ωx+)+1(ω>0),其图象上有两点A (s,t),B(s+2π,t),其中﹣2<t<2,线段AB与函数图象有五个交点.(Ⅰ)求ω的值;(Ⅱ)若函数f(x)在[x1,x2]和[x3,x4]上单调递增,在[x2,x3]上单调递减,且满足等式x4﹣x3=x2﹣x1=(x3﹣x2),求x1、x4所有可能取值.2016-2017学年天津市南开区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(3分)设集合U={n|n∈N*且n≤9},A={2,5},B={1,2,4,5},则∁U(A ∪B)中元素个数为()A.4 B.5 C.6 D.7【解答】解:∵A={2,5},B={1,2,4,5},∴A∪B={1,2,4,5},又∵集合U={n|n∈N*且n≤9}={1,2,3,4,5,6,7,8,9},∴∁U(A∪B)={3,6,7,8,9},故∁U(A∪B)共有5个元素,故选:B.2.(3分)与α=+2kπ(k∈Z)终边相同的角是()A.345°B.375° C.﹣πD.π【解答】解:由α=+2kπ(k∈Z),得与角α终边相同的角是:,360°+15°=375°.故选:B.3.(3分)sin80°cos70°+sin10°sin70°=()A.﹣B.﹣ C.D.【解答】解:sin80°cos70°+sin10°sin70°=cos10°cos70°+sin10°sin70°=.故选:C.4.(3分)下列函数中是奇函数的是()A.y=x+sinx B.y=|x|﹣cosx C.y=xsinx D.y=|x|cosx【解答】解:A,y=x+sinx,有f(﹣x)=﹣x﹣sinx=﹣f(x),为奇函数;B,y=|x|﹣cosx,f(﹣x)=|﹣x|﹣cos(﹣x)=f(x),为偶函数;C,y=xsinx,f(﹣x)=(﹣x)sin(﹣x)=xsinx=f(x),为偶函数;D,y=|x|cosx,f(﹣x)=|﹣x|cos(﹣x)=f(x),为偶函数.故选:A.5.(3分)已知cosθ>0,tan(θ+)=,则θ在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由题意得,tan(θ+)=,所以=,即,解得tanθ=<0,则θ在第二或四象限,由cosθ>0得,θ在第一或四象限,所以θ在第四象限,故选:D.6.(3分)函数f(x)=log2x+x﹣4的零点在区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【解答】解:f(x)=log2x+x﹣4,在(0,+∞)上单调递增.∵f(2)=1+2﹣4=﹣1<0,f(3)=log23﹣1>0∴根据函数的零点存在性定理得出:f(x)的零点在(2,3)区间内∴函数f(x)=log2x+x﹣4的零点所在的区间为(2,3),故选:C.7.(3分)若偶函数f(x)在[0,+∞)上单调递减,设a=f(1),b=f(log0.53),c=f(log23﹣1),则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b【解答】解:∵偶函数f(x)在[0,+∞)上单调递减,∴f(x)在(﹣∞,0]上单调递增,∵log0.53=<=﹣1,log23﹣1=log21.5∈(0,1),a=f(1),b=f(log0.53),c=f(log23﹣1),∴b<a<c.故选:B.8.(3分)如图,正方形ABCD边长为1,从某时刻起,将线段AB,BC,CD,DA 分别绕点A,B,C,D顺时针旋转相同角度α(0<α<),若旋转后的四条线段所围成的封闭图形面积为,则α=()A.或B.或C.或D.或【解答】解:如图所示,旋转后的四条线段所围成的封闭图形为正方形,边长为cosα﹣sinα,由题意可得:(cosα﹣sinα)2=,可得:cosα﹣sinα=±①,2sinαcosα=又0<α<,可得:cosα+sinα==,②所以:由①②可得:cosα=.故α=或.故选:A.9.(3分)函数f(x)=Asin(ωx+φ)的单调递减区间为[kπ﹣,kπ+](k ∈Z),则下列说法错误的是()A.函数f(﹣x)的最小正周期为πB.函数f(﹣x)图象的对称轴方程为x=+(k∈Z)C.函数f(﹣x)图象的对称中心为(+,0)(k∈Z)D.函数f(﹣x)的单调递减区间为[kπ+,kπ+](k∈Z)【解答】解:由题意,ω=2,函数f(x)=Asin(ωx+φ)的周期为π,φ=,f(﹣x)=Asin(﹣2x+),x=+,﹣2x+=kπ+,f(﹣x)=Asin(﹣2x+)≠0,故选C.10.(3分)设函数f(x)=,则下列说法正确的是()①若a≤0,则f(f(a))=﹣a;②若f(f(a))=﹣a,则a≤0;③若a≥1,则f(f(a))=;④若f(f(a))=,则a≥1.A.①③B.②④C.①②③D.①③④【解答】解:当a≤0时,则f(f(a))==﹣a,故①正确;当a≥1时,f(f(a))==,故③正确;当0<a<1,f(f(a))=log0.5(log0.5a)∈R,故此时存在0<a<1,使得f(f(a))=﹣a也存在0<a<1,使得f(f(a))=,故②④错误;故选:A二、填空题:本大题共5小题,每小题4分,共20分).11.(4分)函数f(x)=的定义域为(﹣1,0)∪(0,+∞).【解答】解:由题意得:,解得:x>﹣1且x≠0,故函数的定义域是(﹣1,0)∪(0,+∞),故答案为:(﹣1,0)∪(0,+∞).12.(4分)函数f(x)=2cos2x•tanx+cos2x的最小正周期为π;最大值为.【解答】解:函数f(x)=2cos2x•tanx+cos2x=2sinxcosx+cos2x=sin2x+cos2x=sin(2x+)的最小正周期为=π,最大值为,故答案为:π,13.(4分)如果将函数f(x)=sin2x图象向左平移φ(φ>0)个单位,函数g (x)=cos(2x﹣)图象向右平移φ个长度单位后,二者能够完全重合,则φ的最小值为.【解答】解:将函数y=sin2x的图象向左平移φ(φ>0)个单位得到:y=sin[2(x+φ)]=sin(2x+2φ)的图象,将函数g(x)=cos(2x﹣)图象向右平移φ个长度单位后,可得函数y=cos[2(x﹣φ)﹣]=cos(2x﹣2φ﹣)=sin[﹣(2x﹣2φ﹣)]=sin(﹣2x+2φ)=sin(2x﹣2φ+)的图象,二者能够完全重合,由题意可得,即:2x+2φ=2x﹣2φ++2kπ,k∈Z,解得:φ=kπ+,(k∈Z)当k=0时,φmin=.故答案为:.14.(4分)如图所示,已知A,B是单位圆上两点且|AB|=,设AB与x轴正半轴交于点C,α=∠AOC,β=∠OCB,则sinαsinβ+cosαcosβ=.【解答】解:由题意,∠OAC=β﹣α,∵A,B是单位圆上两点且|AB|=,∴sinαsinβ+cosαcosβ=cos(β﹣α)=cos∠OAC==,故答案为.15.(4分)设函数f(x)=,若关于x的方程f(x)﹣a=0有三个不等实根x1,x2,x3,且x1+x2+x3=﹣,则a=.【解答】解:如图所示,画出函数f(x)的图象,不妨设x 1<x2<x3,则x1+x2=2×=﹣3,又x1+x2+x3=﹣,∴x3=.∴a==.故答案为:.三、解答题:本大题共5小题,共50分.解答写出文字说明、证明过程或演算过程.16.(8分)已知集合A={x|2x﹣6≤2﹣2x≤1},B={x|x∈A∩N},C={x|a≤x≤a+1}.(Ⅰ)写出集合B的所有子集;(Ⅱ)若A∩C=C,求实数a的取值范围.【解答】解:(Ⅰ)对于集合A,因为2x﹣6≤2﹣2x≤1,则x﹣6≤﹣2x≤0,解可得:0≤x≤2.即A={x|0≤x≤2},又由B={x|x∈A∩N},则B={0,1,2};故B的子集有∅、{0}、{1}、{2}、{0,1}、{0,2}、{1,2}、{0,1,2};(Ⅱ)若A∩C=C,则C是A的子集,则必有:,解可得:0≤a≤1,即a的取值范围是:[0,1].17.(10分)已知函数f(x)=cos(x﹣)﹣sin(x﹣).(Ⅰ)判断函数f(x)的奇偶性,并给出证明;(Ⅱ)若θ为第一象限角,且f(θ+)=,求cos(2θ+)的值.【解答】解:(Ⅰ)结论:函数f(x)为定义在R上的偶函数.证明:函数f(x)的定义域为R,关于原点对称,f(x)=cos(x﹣)﹣sin(x﹣)=f(﹣x)=.因此,函数f(x)为定义在R上的偶函数;(Ⅱ)∵f(θ+)=,∴.由于θ为第一象限角,故,∴cos(2θ+)===.18.(10分)设函数f(x)为R上的奇函数,已知当x>0时,f(x)=﹣(x+1)2.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(m2+2m)+f(m)>0,求m的取值范围.【解答】解:(Ⅰ)∵函数f(x)为R上的奇函数,∴f(0)=0,若x<0,则﹣x>0,∵当x>0时,f(x)=﹣(x+1)2.∴当﹣x>0时,f(﹣x)=﹣(﹣x+1)2=﹣(x﹣1)2.∵f(x)是奇函数,∴f(﹣x)=﹣(x﹣1)2=﹣f(x),则f(x)=(x﹣1)2,x<0,则函数f(x)的解析式f(x)=;(Ⅱ)若f(m2+2m)+f(m)>0,则f(m2+2m)>﹣f(m)=f(﹣m),当x>0时,f(x)=﹣(x+1)2为减函数,且f(x)<﹣1<f(0),当x<0时,f(x)=(x﹣1)2为减函数,且f(x)>1>f(0),则函数f(x)在R上是减函数,则m2+2m<﹣m,即m2+3m<0,则﹣3<m<0,即m的取值范围是(﹣3,0).19.(10分)设某等腰三角形的底角为α,顶角为β,且cosβ=.(Ⅰ)求sinα的值;(Ⅱ)若函数f(x)=tanx在[﹣,α]上的值域与函数g(x)=2sin(2x﹣)在[0,m]上的值域相同,求m的取值范围.【解答】解:(Ⅰ)由题意,β=π﹣2α,∴cosβ==﹣cos2α=2sin2α﹣1∵α∈(0,),∴sinα=;(Ⅱ)由题意,函数f(x)=tanx在[﹣,α]上单调递增,∵α∈(0,),sinα=,∴cosα=,∴tanα=2,∴函数f(x)=tanx在[﹣,α]上的值域为[﹣,2],∴函数g(x)=2sin(2x﹣)在[0,m]上的值域为[﹣,2],∴y=sinx在[﹣,2m﹣]上的取值范围是[﹣,1],∴≤2m﹣≤,∴≤m≤.20.(12分)函数f(x)=4sinωx•cos(ωx+)+1(ω>0),其图象上有两点A (s,t),B(s+2π,t),其中﹣2<t<2,线段AB与函数图象有五个交点.(Ⅰ)求ω的值;(Ⅱ)若函数f(x)在[x1,x2]和[x3,x4]上单调递增,在[x2,x3]上单调递减,且满足等式x4﹣x3=x2﹣x1=(x3﹣x2),求x1、x4所有可能取值.【解答】解:(Ⅰ)f(x)=4sinωx•cos(ωx+)+1====,由于|AB|=2π,且线段AB与函数f(x)图象有五个交点,因此,故ω=1;(Ⅱ)由(Ⅰ)得,函数f(x)=,由题意知,因此x4﹣x3=x2﹣x1=(x3﹣x2)=.即,.∵函数f(x)在[x1,x2]上单调递增,在[x2,x3]上单调递减,∴f(x)在x2处取得最大值,即=2.,即.∴=.=.赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。