2014年高考数学(理)二轮专练:仿真模拟题(1)及答案解析

合集下载

河北省唐山市2014届高三第二次模拟考试数学(理)试题(解析版)

河北省唐山市2014届高三第二次模拟考试数学(理)试题(解析版)

河北省唐山市2014届高三第二次模拟考试数学(理)试题(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知a R ∈,若12aii+-为实数,则a =( ) A .2 B .-2 C .12- D .122.已知命题P :函数|1|x y e -=的图像关于直线1x =对称,q :函数cos(2)6y x π=+的图像关于点(,0)6π对称,则下列命题中的真命题为( )A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∨⌝答案 A 解析试题分析:函数|1|x y e -=的图像如图所示:由图形可知图像关于直线x=1对称,所以命题P正确;考点:1.函数图象;2.命题的真假判断.3.设变量,x y 满足||||1x y +≤,则2x y +的最大值和最小值分别为( ) A .1,-1 B .2,-2 C .1,-2 D .2,-14.执行下面的程序框图,若输出的S 是2047,则判断框内应填写( ) A .9?n ≤ B .10?n ≤ C .10?n ≥ D . 11?n ≥+=,则tanα=()5.已知sinααA B C.D.6.已知函数()sin()f x x ωϕ=+的部分图像如图所示,则()2f π=( )A .B .C D7.将6名男生、4名女生分成两组,每组5人,参加两项不同的活动,每组3名男生和2名女生,则不同的分配方法有( )A .240种B .120种C .60种D .180种8.直三棱柱111ABC A B C -的球面上,AB AC ==,12AA =,则二面角1B AA C --的余弦值为( )A .13-B .12-C .13D .129.某几何体的三视图如图所示,则该几何体的体积为( )A B . C D10.若正数,,a b c 满足24288c bc ac ab +++=,则2a b c ++的最小值为( )A B . C .2 D .考点:函数的最值.11.已知椭圆22122:1(0)x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( )A .1[,1)2 B . C . D .12.若不等式12(1)(1)lg(1)lg x x x xn a n x n n+++-+-≥-对任意不大于1的实数x 和大于1的正整数n 都成立,则a 的取值范围是( ) A .[0,)+∞ B .(,0]-∞ C .1[,)2+∞ D .1(,]2-∞试题分析:∵不等式12(1)(1)lg (1)lg x x x xn a n x n n+++-+-≥-对任意不大于1的实数x 和大于1的第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.商场经营的某种袋装大米质量(单位:kg )服从正态分布2(10,0.1)N ,任取一袋大米,质量不足9.8kg 的概率为 .(精确到0.0001) 注:()0.6826p x μσμσ-<≤+=,(22)0.9544p x μσμσ-<≤+=, (33)0.9974p x μσμσ-<≤+=14.已知向量(2,1)a =,(1,2)b =-,若a ,b 在向量c 上的投影相等,且5()()2c a c b -∙-=-,则向量c 的坐标为 .考点:向量的运算.15.已知12,F F 为双曲线22:13y C x -=的左、右焦点,点P 在C 上,12||2||PF PF =, 则12cos F PF ∠= .16.在ABC ∆中,角A ,B ,C 的对边a ,b ,c 成等差数列,且090A C -=,则cos B = .三、解答题:本大题共70分,其中(17)-(21)题为必考题,(22)、(23)、(24)题为选考题.解答题写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在公差不为0的等差数列{}n a 中,31015a a +=,且2511,,a a a 成等比数列. (1)求{}n a 的通项公式; (2)设121111n n n n b a a a +-=+++,证明:112n b ≤<.18.(本小题满分12分)甲向靶子A射击两次,乙向靶子射击一次.甲每次射击命中靶子的概率为0.8,命中得5分;乙命中靶子的概率为0.5,命中得10分.(1)求甲、乙二人共命中一次目标的概率;(2)设X为二人得分之和,求X的分布列和期望.【答案】(1)0.18;(2)详见解析.【解析】19.(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且PA⊥底面ABCD,BD PC⊥,E是PA的中点.(1)求证:平面PAC⊥平面EBD;(2)若PA=AB=2,直线PB与平面EBD所成角的正弦值为14,求四棱锥P-ABCD的体积.试题解析:(Ⅰ)因为P A⊥平面ABCD,所以P A⊥BD.20.(本小题满分12分)已知抛物线2:2(0)E y px p =>的准线与x 轴交于点M ,过点M 作圆22:(2)1C x y -+=的两条切线,切点为A 、B ,||AB =(1)求抛物线E 的方程; (2)过抛物线E 上的点N 作圆C 的两条切线,切点分别为P 、Q ,若P ,Q ,O (O 为原点)三点共线,求点N 的坐标.因为直线PQ经过点O,所以3-2s=0,32s .21. (本小题满分12分)已知函数2()ln f x x x ax =--,a R ∈.(1)若存在(0,)x ∈+∞,使得()0f x <,求a 的取值范围;(2)若()f x x =有两个不同的实数解,(0)μνμν<<,证明:'()12f μν+>.又'1()2f x x a x=--,所以请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图,E是圆O内两弦AB和CD的交点,过AD延长线上一点F作圆O的切线FG,G为切点,已知EF=FG.∆∆;(2)EF//CB求证:(1)DEF EAF23. (本小题满分10分)选修4-4:坐标系与参数方程长为3的线段两端点A ,B 分别在x 轴正半轴和y 轴的正半轴上滑动,2BP PA =,点P 的轨迹为曲线C.(1)以直线AB 的倾斜角α为参数,求曲线C 的参数方程;(2)求点P 到点(0,2)D -距离的最大值24. (本小题满分10分)选修4-5:不等式选讲 已知函数()|||3|,f x x a x a R =--+∈.(1)当1a =-时,解不等式()1f x ≤;(2)若[0,3]x ∈时,()4f x ≤,求a 的取值范围.。

2014年全国高考理科数学模拟试题(卷)

2014年全国高考理科数学模拟试题(卷)

2014年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)模拟试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α=(A )3- (B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2014辽宁省大连市高三二模数学理试题和答案

2014辽宁省大连市高三二模数学理试题和答案

2014年大连市高三第二次模拟考试数学(理科)参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一.选择题1.C2.C3.B4.D5.A6.C7.A8.B9.D 10.B 11.A 12.D 二、填空题: 13.225-14.3816π+ 15.3 16.2121+-n 三、解答题: 17、解:(I )x x x x f 2cos 12sin 2322cos 1)(+++-==23)62sin(++πx-----------2分 由226222πππππ+≤+≤-k x k ,解得函数的单调增区间为)](6,3[Z k k k ∈+-ππππ -----------4分由ππk x =+62,解得函数的对称中心为:))(23,122(Z k k ∈-ππ -----------6分 (II)由21)62sin(,223)62sin(,2)(=+∴=++∴=ππA A A f ,3,6562πππ=∴=+∴A A ------------------8分 又3=a ,由余弦定理:3,cos 222222=-+∴⋅-+=bc c b A bc c b a ,3≤∴bc ---------10分43343sin 21≤=⋅=bc A bc S ,当且仅当c b =时取等.-------12分18.(I )证明:取BD 中点O ,连PO 、AO.由PB=PD=2,BD=2可知DPB ∆为等腰直角三角形, 则,1==AO PO 而PA=2,故AO PO ⊥, -------3分又BD PO ⊥,则ABCD PO 面⊥,故面;ABCD PBD 面⊥ ------------6分(II )如图,按],,;[P B A O 建立坐标系,则)0,1,0(),0,0,1(B A ,)1,0,0(P ,),1,0,1(-=PA )1,1,0(-=PB ,设面PAB 的法向量为),,(z y x m =,由⎪⎩⎪⎨⎧=⋅=⋅00PB m m ,得: ⎩⎨⎧=-=-0z y z x , 令1=z ,则)1,1,1(=m-------7分又)0,21,23(-C , 则)1,21,23(--=设平面PBC 的法向量为),,(c b a n =,由⎪⎩⎪⎨⎧=⋅=⋅00n n,⎪⎩⎪⎨⎧=-+-=-⇒021230c b a c b , 令,1=c 则)1,1,33(-=n. --------9分则332-=⋅n m ,321||,3||==n m. -----------10分则212176|||||||,cos |-=⋅⋅=><n m n m n m. 故平面PAB 与平面PBC 所成锐二面角的余弦值为212176------12分注:利用几何法证明相应给分。

2014年高考模拟试题-理科数学试题

2014年高考模拟试题-理科数学试题

2014年高考模拟试题-理科数学试题D变换的充要条件为()f x 是R 上的一次函数其中是真命题有 ______ (写出所有真命题的编号)三.解答题:(本大题共6小题,共75分。

解答应写出文字说明,证明过程或演算步骤。

) 16、某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数a .①︒︒-︒+︒17cos 13sin 17cos 13sin 22;②︒︒-︒+︒15cos 15sin 15cos 15sin 22;③︒︒-︒+︒12cos 18sin 12cos 18sin 22;④︒︒--︒+︒-48cos )18sin(48cos )18(sin 22;⑤︒︒--︒+︒-55cos )25sin(55cos )25(sin 22.(1)从上述五个式子中选择一个,求出常数a ;(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.17、已知集合22{|210}A x x ax a =-+-<,1{|}2x B x ax +=-,命题:2P A ∈,命题:1q B ∈,若复合命题“p 或q ”为真命题,“p 且q ”为假命题,求实数a 的取值范围。

18、如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABC —A 1B 1C 1中,AC=AA 1=2AB = 2,BAC∠=900,点D 是侧棱CC 1 延长线上一点,EF 是平面ABD 与平面A 1B 1C 1的交线.(I)求证:EF 丄A 1C;(II)当平面DAB 与的长.19、攀枝花市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在的地区附近有A , B , C 三家社区医院,并且他们对社区医院的选择是相互独立的.(1)求甲、乙两人都选择A 社区医院的概率;(2)求甲、乙两人不选择同一家社区医院的概率;(3)设4名参加保险人员选择A 社区医院的人数为x ,求x 的分布列和数学期望.20、已知各项均为正数的数列{}na 满足12212+++=n n nn a a a a ,且42342+=+a a a ,其中*N n ∈.(1)求数列{}na 的通项公式;(2)设数列{}nb 满足nnn n na b 2·)12(+=,是否存在正整数nm 、,使得nmb b b 、、1成等比数列?若存在,求出所有n m 、的值;若不存在,请说明理由.(3)令nna n c +=1,记数列{}nc 的前n 项积.为nT ,其中*N n ∈,试比较nT 与9的大小,并加以证明.21、已知函数()()ln 1f x x =+,()()()()()220,,().g x a x x a a R h x f x g x =-≠∈=-2014年高考模拟试题理科数学试题(参考答案)一、选择题1-5 BBAAB 6-10 DCCBC 8.由题意得:(a 1q 16)2=a 1q 23,∴a 1q 9=1.由等比数列的性质知:数列{1a n }是以1a 1为首项,以1q为公比的等比数列,要使不等式成立, 则须a 1(q n-1)q -1>1a 1[1-(1q )n ]1-1q,把a 21=q -18代入上式并整理,得q -18(q n-1)>q(1-1qn ),q n >q 19,∵q >1,∴n >19,故所求正整数n 的取值范围是n≥20.二、填空题:11、 3015 12、1- 13、 14、20 15、○1、○2、○3三.解答题:(本大题共6小题,共75分。

2014届数学理高考模拟试题含答案

2014届数学理高考模拟试题含答案

数学(理科)试卷第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一个选项是符合题目要求的.1. 已知R 为全集,{|(1)(2)0}A x x x =-+≤,则A C R =A .{x |x <-2或x >1}B .{x |x ≤-2或x ≥1}C .{x |-2<x <1}D .{x |-2≤x ≤1} 2.已知a =(1,2),2a -b =(3,1),a ⋅b =A .2B .3C .4D .5 3.已知命题p :m ,n 为直线,α为平面,若n m //,α⊂n ,则α//m ;命题q :若b a >,则bc ac >.下列命题为真命题的是A .p 或qB .⌝p 或qC .⌝p 且qD .p 且q4.已知关于x 的不等式m x x >+-+|2||1|有解,则实数m 的取值范围是A .]1 , (--∞B .)1 , (--∞C .]1 , (-∞D .)1 , (-∞ 5.{}n a 为等差数列,n S 为其前n 项和,57=a ,217=S ,则10S =A .40B .35C .30D .28 6.函数)2|)(|2sin()(πϕϕ<+=x x f 的图象向左平移6π个单位后得到一个奇函数的图象,则函数()f x 在]2, 0[π上的最小值为A .2-B .12- C .12 D .27. 已知a ,b ,c 是空间三条直线,α与β是空间两个平面,则下列命题中,逆命题不成立的是A .当α⊥c 时,若β⊥c ,则βα//B .当α⊂b 时,若β⊥b ,则βα⊥C .当α⊂b ,且c 是a 在α内的射影时,若c b ⊥,则b a ⊥D .当α⊂b ,且α⊄c 时,若α//c ,则c b //8.若直线y kx =与圆22(2)1x y -+=的两个交点关于直线20x y b ++=对称,则k 与b 的值分别为A .21=k ,4-=b B .21-=k ,4=b C .21=k ,4=b D .21-=k ,4-=b9.已知)2sin(41)(2π++=x x x f ,)('x f 为)(x f 的导函数,则)('x f 的图像是( )10.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的A 732B 731C 3D .体积为2311.已知()f x 是定义在R 上的奇函数,若对于x ≥0,都有)()2(x f x f =+,且当]2 , 0[∈x 时,1)(-=x e x f ,则(2013)+(-2014)f f =A .1-eB .e -1C .-l-eD .e +l12.已知双曲线12222=-by a x (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠F AF ,2tan 12-=∠F AF ,则双曲线方程为A .1351222=-y xB .1312522=-y xC .1512322=-y x D .1125322=-y x 二、填空题:本大题共4小题,每题4分,共16分,把答案写在答题纸上. 13.⎰-1)2(dx x e x = .14.已知圆C :22(1)16x y ++=及点A (1,0),Q 为圆上一点,线段AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程____________________.15.设x ,y 满足约束条件⎪⎩⎪⎨⎧+≥≥-≥1132x y y x x ,若目标函数)0 , 0(>>+=b a by ax z 的最小值为2,则ab 的最大值为____________________.16.对大于或等于2的自然数m 的n 次方幂有如下分解式:22=1+3 32=1+3+5 42=1+3+5+7 52=1+3+5+7+9 …… 23=3+5 33=7+9+11 43=13+15+17+19 ……3111正视图侧视图俯视图24=7+9 34=25+27+29 ……照此规律,54的分解式中的第三个数为 .三、解答题:本题共6个小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤,将解答过程写在答题纸对应题的题框内. 17.(本小题满分12分)已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,并且C A C A B tan tan )tan (tan sin =+. (Ⅰ)求证:a ,b ,c 成等比数列; (Ⅱ)若a =1,c =2,求△ABC 的面积S .18.(本小题满分12分)如图所示,在直平行六面体1111ADD A BCC B -中,1BC =,12CC =,2=AB ,31π=∠BCC .(Ⅰ)求证:⊥1BC 平面ABC ;(Ⅱ)当E 为1CC 的中点时,求二面角11A E B A --的余弦值.19.(本小题满分12分)已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且21,n a ,n S 成等差数列. (Ⅰ)求数列{}n a 的通项公式;1B 11C20.(本题满分12分)某幼儿园准备建一个转盘,转盘的外围是一个周长为k 米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k 元/根,且当两相邻的座位之间的圆弧长为x 米时,相邻两座位之间的钢管和其中一个座位的总费用为20)225x k ⎡⎤+⎢⎥⎢⎦⎣元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y 元.山东中学联盟 (1)试写出y 关于x 的函数关系式,并写出定义域; (2)当k =50米时,试确定座位的个数,使得总造价最低?21.(本小题满分12分)已知向量m =(e x ,ln x +k ),n =(1,f (x )),m //n (k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与y 轴垂直,()()xF x xe f x '=. (Ⅰ)求k 的值及()F x 的单调区间;(Ⅱ)已知函数2()2g x x ax =-+ (a 为正实数),若对于任意]1 , 0[2∈x ,总存在) , 0(1∞+∈x , 使得21()()g x F x <,求实数a 的取值范围.22.(本小题满分14分)已知椭圆C 的中心在原点,焦点在x 轴上,离心率为12,短轴长为. (I )求椭圆C 的标准方程;(II )直线2x =与椭圆C 交于P ,Q 两点,A ,B 是椭圆O 上位于直线PQ 两侧的动点,且直线AB 的斜率为12. ①求四边形APBQ 面积的最大值;②设直线PA 的斜率为1k ,直线PB 的斜率为2k , 判断1k +2k 的值是否为常数,并说明理由.数学(理)参考答案一、选择题: CDBD AABA ABBA二、填空题:13.2e - 14.22143x y += 15.61 16.125三、解答题:17.解: (I)由已知得sin (sin cos cos sin )sin sin B A C A C A C += ……………2分 sin sin()sin sin B A C A C +=,2sin sin sin B A C =…………………………4分再由正弦定理可得:2b ac =,所以,,a b c 成等比数列……………………… 6分(II)若1,2a c ==,则22b ac ==,∴2223cos 24a cb B ac +-==………………… 8分sin C ==10分∴△ABC 的面积11sin 1222S ac B ==⨯⨯=……………………12分 18.解:(Ⅰ)由题意知,AB ⊥底面111,,BB C C AB BC ⊥故1,BC C ∆在中111π1,2,,3BC CC BB BCC ===∠=由余弦定理有1BC === 故有222111,.BC BC CC C B BC +=∴⊥……………………………………4分而,BCAB B AB BC ABC =⊂且平面, 1C B ABC ∴⊥平面 …………6分(Ⅱ)由(Ⅰ)知,111,C B BC AB BB C C ⊥⊥平面 以1,,BC BC BA 为,,x y z 轴, B 为坐标原点建立坐标系,则11((,22A B E -, …………8分 由题意知, 111,2BE B E BB ===,由勾股定理得1BE EB ⊥,又11A B BE ⊥,11BE A B E ∴⊥平面,故BE 为11A B E 平面的一个法向量,1(,22BE =.设1AB E 平面的法向量为(,,)n x y z =.11(1,3,2),(,22AB AE =--= 10,0,n n AB AE⎧⋅=⎪⎨⋅=⎪⎩得一个法向量为(1n =.故cos ||||n n BE BE θ⋅===⋅…………12分19.解:(1)由题意知212+=n n S a ,0>n a ………………………………………………1分当1=n 时,21211+=S a ,解得211=a ………………………………………………2分当2≥n 时,212+=n n S a ,21211+=--n n S a 两式相减得n n n a a a =--122,12-=n n a a …………………………………………4分 所以数列{n a }是以21为首项,以2为公比的等比数列,212221--=⨯=n n n a …………5分 (2)由n bn a )(212=可得n b n 24-=…………………………………………6分nn n n n n n a b c 28162242-=-==-……………………………………………………7分 nn n nn T 28162824282028132-+-++-++=- 14322816282428202821+-+-++-++=n n n n n T 两式相减得1322816)212121(8421+--++-=n n n nT ……………………………………9分 n n n n n n n n 242816)211(442816211)211(41841111=----=----⋅-=+-+-……………………11分所以nn nT 28=…………………………………………12分 20.解:由条件可得转盘上共有xk个座位,…………………………………………2分 则x k x x x k y 22]25)20128(2[3⋅+++=,即)54251285(2++=x x k y , 定义域为⎭⎬⎫⎩⎨⎧∈≤<Z , 20|x k k x x ……………………6分 2332122332122225)45()(64255)(64)25645('x x k x x k xx k y -⋅-=-⋅-=+-=………………8分 当)1625, 0(∈x 时,0'<y ,y 为减函数 当)25 , 1625(∈x 时,0'>y ,y 为增函数……………………………………10分 因此,当1625=x 时,即座位数为32个时,总造价最低……………………12分 21.解:(I )由已知可得:()f x =1xnx k e+1ln ()x x k x f x e --'∴=, 由已知,1(1)0kf e-'==,∴1k = …………………………………………………………2分 ∴()()x F x xe f x '=1(ln 1)1ln x x x x x x=--=--,所以()ln 2F x x '=-- (3)分由21()ln 200F x x x e '=--≥⇒<≤,由21()ln 20F x x x e'=--≤⇒≥ ()F x ∴的增区间为21(0,]e ,减区间为21[,)e+∞ ………………………………………5分 (II )对于任意2[0,1]x ∈,总存在1(0,)x ∈+∞, 使得21()()g x F x <,∴max max ()()g x F x < ……………………………………………………………………6分由(I )知,当21x e =时,()F x 取得最大值2211()1F e e=+.………………………………8分 对于2()2g x x ax =-+,其对称轴为x a = 当01a <≤时,2max ()()g x g a a ==, ∴2211a e <+,从而01a <≤………………10分当1a >时,max ()(1)21g x g a ==-, ∴21211a e -<+,从而21112a e <<+综上可知: 21012a e <<+………………………………………………………………12分 22.解:(Ⅰ)设椭圆C 的方程为)0(12222>>=+b a by a x . (1)分由已知b=32 离心率222,21c b a a c e +===,得4=a 所以,椭圆C 的方程为1121622=+y x .……………………………………………………4分 (Ⅱ)①由(Ⅰ)可求得点P 、Q 的坐标为)3,2(P ,)3,2(-Q ,则6||=PQ , ……5分设A (),,11y x B(22,y x ),直线AB 的方程为t x y +=21,代人1121622=+y x 得:01222=-++t tx x . 由△>0,解得44<<-t ,又1x 与2x 一个比2大,一个比2小,可得22+2t+t 2-12<0, 即-4<t<2由根与系数的关系得⎩⎨⎧-=-=+1222121t x x tx x ………………………8分 四边形APBQ 的面积2212212134834)(3621t x x x x x x s -=-+⨯=-⨯⨯= 故当312,0max ==S t………………………………………………10分②由题意知,直线PA 的斜率23111--=x y k ,直线PB 的斜率23222--=x y k 则2321232123232*********--++--+=--+--=+x t x x t x x y x y k k =2222122)2(2122)2(21212211--+--+=--+-+--+-x t x t x t x x t x ………………………12分=4)(2)4)(2(1212121++--+-+x x x x x x t ,由①知⎩⎨⎧-=-=+1222121t x x t x x 可得011828214212)4)(2(122221=-=-++--+=++----+=+t t t t t t t t k k 所以21k k +的值为常数0.…………………………………14分。

2014年高考数学模拟试题及答案一

2014年高考数学模拟试题及答案一

2014年高考数学模拟试题及答案一高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)注意事项:1.考生务必将答案答在答题卡上,在试卷上作答无效.2.答题前考生务必用黑色字迹的签字笔在答题卡上填写姓名、准考证号,然后再用2B 铅笔将与准考证号对应的信息点涂黑.3.答题卡上第Ⅰ卷必须用2B 铅笔作答,将选中项涂满涂黑,黑度以遮住框内字母为准,修改时用橡皮擦除干净.第Ⅱ卷必须用黑色字迹的签字笔按照题号顺序在各题目的答题区域内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. (1)1.已知全集U =R ,集合{}|12A x x =->,{}2|680B x x x =-+<,则集合()U A B = ð( ) A .{}|14x x -≤≤ B .{}|14x x -<< C .{}|23x x <≤ D . {}|23x x <≤ 【解析】 D ;容易解得{3A x x x =>或者}0x <,{}26B x x =<<. 于是()U A B = ð{}23x x <≤.(2)2.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人. 为了调查职工的健康状况,用分层抽样的方法从全体职工中抽出一个容量为25的样本,应抽取不超过45岁的职工人数为 ( )A . 5B . 10C .15D .50 【解析】 C ;容易知道样本中不超过45岁的人与超过45岁的人数之比为1203802=.于是抽取不超过45岁的职工人数为325155⋅=人.(3)3.已知PA 是O 的切线,切点为A ,2PA =,AC 是O 的直径,PC 交O 于点B ,30PAB ∠= ,则O 的半径为 ( )PAA .1B .2CD .【解析】 C;30,tan30PAPCA PAB CA ∠=∠===(4)4.已知等比数列{}n a 为递增数列,且373a a +=,282a a ⋅=,则117a a = ( ) A .2 B . 43 C . 32 D .12【解析】 A ;不妨设等比数列的公比为q .由2375213a a a q q ⎛⎫+=+= ⎪⎝⎭知50a >.于是228552a a a a ⋅==⇒=代入上式知22q =2q =而数列单调增,于是2q =42q =.(5)5.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的为 ( ) A .若,,αγβγ⊥⊥则αβ∥ B .若,,m n αα⊥⊥则m n ∥ C .若,m n αα∥∥,则m n ∥ D .若,,m m αβ∥∥则αβ∥【解析】 B ;A 中,αβ可以是任意关系;B 正确;C 中,m n 平行于同一平面,其位置关系可以为任意.D 中平行于同一直线的平面可以相交或者平行.(6)6.设33,,2x yx y M N P ++===(其中0x y <<), 则,,M N P 大小关系为 ( ) A .M N P << B .N P M << C .P M N << D .P N M << 【解析】 D ;由0x y <<,有2x y+.由指数函数的单调性,有23x y x y P N ++=<==;23332x yx y M N ++=>==.(7)7.2位男生和3位女生共5位同学站成一排.若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为 ( )A .36B .42C . 48D .60【解析】 C ;不妨将5个位置从左到右编号为1,2,3,4,5.于是甲只能位于2,3,4号位. ①当甲位于2号位时,3位女生必须分别位于1,3,4位或者1,4,5位.于是相应的排法总数为33212A =;②当甲位于3号位时,3位女生必须分别位于1,2,4位或者1,2,5位或者1,4,5或者2,4,5位.于是相应的排法总数为33424A =.③当甲位于4号位时,情形与①相同.排法总数为33212A =. 综上,知本题所有的排法数为12+24+12=48.(8)8.设定义在R 上的函数1,(1),1()1,(1)x x f x x ⎧≠⎪-=⎨⎪=⎩. 若关于x 的方程2()()0f x bf x c ++=有3个不同的实数解1x ,2x ,3x ,则123x x x ++等于 ( ) A . 3 B .2 C .1b -- D .c【解析】 A ;易知()f x 的图像关于直线1x =对称.2()()0f x bf x c ++=的解必有一根使()1f x =.不妨设为1x .23,x x 关于直线1x =对称.于是1233x x x ++=.第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分. (9)9.如果复数()()2i 1i m m ++(其中i 是虚数单位)是实数,则实数m =___________. 【解析】 1-;()()()()223i 1i 1mm m m i m ++=-++.于是有3101m m +=⇒=-.(10)10.若12a x ⎫⎪⎭的展开式中的常数项为220-,则实数a =___________.【解析】 1-;由二项式定理4124311212CC rrr rr r r a T a x x --+⎛⎫== ⎪⎝⎭.令44033r r -=⇒=.于是有3312C 2201a a =-⇒=-.(11)11.将参数方程12cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数)化成普通方程为 .【解析】 ()2214x y -+=;由12cos ,2sin x y θθ-==知()2214x y -+=.(12)12.某程序框图如图所示,该程序运行后输出,M N 的值分别为 .【解析】 13,21;依据程序框图画出运行n 次后,,M N i 的值..(13)13.若数列{}n a 的前n 项和为n S ,则11,(1),,(2)n nn S n a S S n -=⎧=⎨-⎩.≥若数列{}n b 的前n 项积为n T ,类比上述结果,则n b =_________;此时,若2()n T n n *=∈N ,则n b =___________.【解析】 11,2;, 1.nT n T T n ⎧⎪⎨⎪=⎩≥,()221,1;, 2.1n n n n =⎧⎪⎨⎪-⎩≥; 由12....n n T b b b =,知()1211...n n n n n T b b b b T b --==.(14)14.定义在R 上的函数满足1(0)0,()(1)1,()()52x f f x f x f f x =+-==,且当1201x x <≤≤时,12()()f x f x ≤,则12010f ⎛⎫= ⎪⎝⎭_________________.【解析】 132;容易知道()11,f =于是()1111522f f ⎛⎫== ⎪⎝⎭.而1111112222f f f ⎛⎫⎛⎫⎛⎫+-=⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.又由()f x 单调增,知()1,2f x =当1152x ≤≤时.而441111155201052⋅⋅≤≤,4411111522232f f ⎛⎫⎛⎫⎛⎫⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.于是11201032f ⎛⎫= ⎪⎝⎭.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c,满足sin2A ,且ABC ∆的面积为2.⑴求bc 的值;⑵若6b c +=,求a 的值. 【解析】 ⑴∵sin2A =0πA <<.∴cos 2A =. ∴4sin 2sin cos 225A A A ==.∵1sin 22ABC S bc A ∆==,∴5bc =. --------------------6分⑵∵sin 2A ∴23cos 12sin 25A A =-=.∵5bc =,6b c +=,∴2222cos a b c bc A =+-2()2(1cos )b c bc A =+-+20=∴a = -----------12分(16)16.为了调查某厂2000名工人生产某种产品的能力,随机抽查了m 位工人某天生产该产品的数量,产品数量的分组区间为[)10,15,错误!未找到引用源。

辽宁省大连市2014届高考第二次模拟数学(理)试题(扫描版,word答案)

辽宁省大连市2014届高考第二次模拟数学(理)试题(扫描版,word答案)

2014年大连市高三第二次模拟考试数学(理科)参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数,选择题和填空题不给中间分.一.选择题1.C2.C3.B4.D5.A6.C7.A8.B9.D 10.B 11.A 12.D二、填空题: 13.225- 14.3816π+ 15.3 16.2121+-n 三、解答题:17、解:(I )x x x x f 2cos 12sin 2322cos 1)(+++-==23)62sin(++πx -----------2分由226222πππππ+≤+≤-k x k ,解得函数的单调增区间为 )](6,3[Z k k k ∈+-ππππ -----------4分 由ππk x =+62,解得函数的对称中心为:))(23,122(Z k k ∈-ππ -----------6分(II)由21)62sin(,223)62sin(,2)(=+∴=++∴=ππA A A f ,3,6562πππ=∴=+∴A A ------------------8分 又3=a ,由余弦定理:3,cos 222222=-+∴⋅-+=bc c b A bc c b a ,3≤∴bc ---------10分43343sin 21≤=⋅=bc A bc S ,当且仅当c b =时取等.-------12分18.(I )证明:取BD 中点O ,连PO 、AO.由PB=PD=2,BD=2可知DPB ∆为等腰直角三角形,则,1==AO PO 而PA=2,故AO PO ⊥, -------3分又BD PO ⊥,则ABCD PO 面⊥,故面;ABCD PBD 面⊥ ------------6分(II )如图,按],,;[P B A O 建立坐标系,则)0,1,0(),0,0,1(B A ,)1,0,0(P ,),1,0,1(-=PA )1,1,0(-=PB ,设面PAB 的法向量为),,(z y x m = , 由⎪⎩⎪⎨⎧=⋅=⋅00mPA m,得:⎩⎨⎧=-=-00z y z x ,令1=z ,则)1,1,1(=m -------7分 又)0,21,23(-C , 则)1,21,23(--=设平面PBC 的法向量为),,(c b a n = ,由⎪⎩⎪⎨⎧=⋅=⋅00PB n n ,⎪⎩⎪⎨⎧=-+-=-⇒02123c b a c b ,令,1=c 则)1,1,33(-=n . --------9分 则332-=⋅n m ,321||,3||==n m . -----------10分 则212176|||||||,cos |-=⋅⋅=><n m n m n m .故平面PAB 与平面PBC 所成锐二面角的余弦值为212176------12分 注:利用几何法证明相应给分。

2014年高考数学模拟试题及答案二

2014年高考数学模拟试题及答案二

2014年高考数学模拟试题及答案二高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.考生务必将答案答在答题卡上,在试卷上作答无效.2.答题前考生务必用黑色字迹的签字笔在答题卡上填写姓名、准考证号,然后再用2B 铅笔将与准考证号对应的信息点涂黑.3.答题卡上第Ⅰ卷必须用2B 铅笔作答,将选中项涂满涂黑,黑度以遮住框内字母为准,修改时用橡皮擦除干净.第Ⅱ卷必须用黑色字迹的签字笔按照题号顺序在各题目的答题区域内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分.时间:120分钟 满分:150分一.选择题(每小题5分,共75分)1. 若a 是R 中的元素,但不是Q 中的元素,则a 可以是A.3.14B. -5C. 372.集合﹛0,2,3﹜ 的所有子集个数是A.7B.8C.6D.53. 设f(x)=(2a-1)x+b 在R 上是增函数,则有A.a≥12B. a≤12C. .a ﹥12D. .a ﹤124.设集合A={x ︱-1≤x ﹤2},B={x ︱x ﹤a },若A ∩B≠φ,则a 的取值范围是A.a ﹤2B.a ﹥-2C.a ﹥-1D.-1﹤a 25.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,,5},T={3,6}则Cu(S ∪T)等于A. φB. {2,4,7,8}C. {1,3,5,6}D. {2,4,6,8}6.A={x ︱x 2+x-6=0},B={x ︱mx+1=0},且A ∪B=A,则m 的取值范围为A. {13, 12} B. {0,-13, —12} C. { 0,13, -12} D. {-13, —12}7.如图:可表示函数y= f(x)的图像只能是B. C. D.8.函数 f(x)=2x11+ 的值域是 A.(0,1) B.[0,1) C.(0,1] D.[0,1]9.函数x113y --=的定义域是 A.(-∞,1) B.( -∞,0)∪(0, 1] C.(-∞,0)∪(0,1) D.*1,+∞)10.函数y=x 2+2x+1,x ∈[-2,2] ,则A.函数有最小值0,最大值9B. 函数有最小值2,最大值5C.函数有最小值2,最大值9D. 函数有最小值1,最大值511.函数f(x)是定义在区间[-6,6]上的偶函数,且f(3) ﹥f(1)则下列各式一定成立的是A.f(0) ﹤f(6)B.f(3)﹥f(2)C.f(-1) ﹤f(3)D.f(2) ﹥f(0)12.若 f(x)=-x 2+2ax 与g(x)= 1a x + 在区间[1,2]上都是减函数,则a 的取值范围是 A.(-1,0)∪(0,1) B.(-1,0)∪(0,1] C.(0,1) D.(0,1]13.函数y=a x-2+1(a ﹥0且a≠1)的图象必经过点A.(0,1)B.(1,1)C.(2,0)D.(2,2)14.若 -1﹤x ﹤0 ,则不等式中成立的是x y x x y y xA.5-x ﹤5x ﹤0.5xB. 5x ﹤0.5x ﹤ 5-xC. 5x ﹤ 5-x ﹤ 0.5xD. 0.5x ﹤ 5-x ﹤5x15.已知函数 f(x)=x 5+ax 3+bx-8 ,且 f(-2)=10,那么f(2) 等于A.-26B.-18C.-10D.10二.填空题(每小题5分,共25分)16.已知集合A={a2,a+1,-3},B={a-3,2a-1,a 2+1},若A ∩B ={-3}, 则实数a 的值为_____18.已知函数f(x)=4x 2-4mx+1,在(-∞,-2)上递减,在(-2,+∞)上递增.则f(x)在[1,2]上的值域为________19.已知y=(3-a)x 在定义域R 内是减函数,则实数a 的取值范围是____________20.已知y= f(x)是定义在R 上的奇函数,当x ﹥0时, f(x)=x2+x+1,则x ﹤0时,f(x)=_________________三.解答题(共50分) 21.计算.(1)48373)27102(1.0)972(03225.0+-++--π;(2)63125.132⨯⨯. 22.已知函数 f(x)=x 2+2ax+2,x ∈[-5,5](1). 当a=-1时,求函数f(x)的最大值和最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仿真模拟题(一)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设i 为虚数单位,则复数z =2i 31+i在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.某雷达测速区规定:凡车速大于或等于80 km/h 的汽车视为“超速”,并将受到处罚.如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可以看出被处罚的汽车大约有( ) A .20辆 B .40辆 C .60辆 D .80辆3.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( ) A .y =cos 2x -sin 2x B .y =lg|x |C .y =e x-e-x 2D .y =x 34.(2013·高考北京卷)若双曲线x 2a 2-y 2b2=1的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±2xC .y =±12xD .y =±22x5.(2013·高考安徽卷)如图所示,程序框图(算法流程图)的输出结果是( ) A.16 B.2524 C.34 D.11126.给出下列命题:①如果不同直线m 、n 都平行于平面α,则m 、n 一定不相交; ②如果不同直线m 、n 都垂直于平面α,则m 、n 一定平行;③如果平面α、β互相平行,若直线m ⊂α,直线n ⊂β,则m ∥n ;④如果平面α、β互相垂直,且直线m 、n 也互相垂直,若m ⊥α,则n ⊥β.则真命题的个数是( ) A .3 B .2 C .1 D .07.设集合A ={x |x 2+2x -3>0},B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是( )A .(0,34)B .[34,43)C .[34,+∞) D .(1,+∞)8.已知变量x ,y 满足⎩⎪⎨⎪⎧x -y +6≥0x +y ≥0x ≤3,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为( )A .[-1,0]B .[-1,1]C .[0,1]D .[-1,0)∪(0,1] 9.(2013·高考山东卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则c =( ) A .2 3 B .2 C. 2 D .110.若函数f (x )=x 3-3x 在(a ,6-a 2)上有最小值,则实数a 的取值范围是( ) A .(-5,1) B .[-5,1) C .[-2,1) D .(-2,1)二、填空题(本大题5小题,考生作答4小题,每小题5分,共20分.) (一)必做题(11~13题)11.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为________.12.已知a n =cos n π6+161+2cos 2n π12(n ∈N *),则数列{a n }的最小值是________.13.已知函数y =f (x )的图象是开口向下的抛物线,且对任意x ∈R ,都有f (1-x )=f (1+x ),若向量a =(log 12m ,-1),b =(1,-2),则满足不等式f (a ·b )<f (-1)的实数m 的取值范围是________.(二)选做题(14~15,考生只能从中选做一题)14.(坐标系与参数方程选做题)若直线l 的参数方程为⎩⎨⎧x =-22ty =6+22t (t 为参数),圆C 的极坐标方程为ρ=4sin θ,则圆心到直线l 的距离为________.15.(几何证明选讲选做题)如图,PQ 为半圆O 的直径,A 为以OQ 为直径的半圆A 的圆心,⊙O 的弦PN 切⊙A 于点M ,PN =8,则⊙A 的半径为________.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π2<φ<π2,x ∈R )的部分图象如图所示.(1)求函数y =f (x )的解析式;(2)当x ∈[-π,-π6]时,求f (x )的取值范围.17.(本小题满分12分)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列表:(1)(2)如果采用分层抽样的方法从爱好该项运动的大学生中选取6人,组成一个兴趣小组,求被选取的男女生的人数各是多少?(3)在上述6人小组中,随机选定2人去做某件事,求这2人中有女生被选中的概率. 数据:公式:K 2=n ×(ad -bc )(a +b )(c +d )(a +c )(b +d )18.(本小题满分14分)在数列{a n }中,a 1=1,a 2=103,a n +1-103a n +a n -1=0(n ≥2,且n ∈N *).(1)若数列{a n +1+λa n }是等比数列,求实数λ; (2)求数列{a n }的通项公式.19.(本小题满分14分)如图,三棱柱ABC -A 1B 1C 1的侧棱AA 1⊥底面ABC ,∠ACB =90°,E 是棱CC 1的中点,F 是AB 的中点,AC =BC =1,AA 1=2. (1)求证:CF ∥平面AB 1E ; (2)求三棱锥C -AB 1E 在底面AB 1E 上的高.20.(本小题满分14分)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)以抛物线y 2=8x 的焦点为顶点,且离心率为12.(1)求椭圆E 的方程;(2)若直线l :y =kx +m 与椭圆E 相交于A 、B 两点,与直线x =-4相交于Q 点,P 是椭圆E 上一点且满足OP →=OA →+OB →(其中O 为坐标原点),试问在x 轴上是否存在一点T ,使得OP →·TQ →为定值?若存在,求出点T 的坐标及OP →·TQ →的值;若不存在,请说明理由.21.(本小题满分14分)已知函数f(x)=ax2-e x(a∈R).(1)当a=1时,试判断f(x)的单调性并给予证明;(2)若f(x)有两个极值点x1,x2(x1<x2).①求实数a的取值范围;②证明:-e2<f(x1)<-1.(注:e是自然对数的底数)答案:1.【解析】选C.因为z =2i 31+i =-2i1+i =-2i (1-i )(1+i )(1-i )=-i(1-i)=-1-i ,所以复数z =2i 31+i 在复平面内对应的点位于第三象限,故应选C. 2.【解析】选A.由频率分布直方图可得,大于或等于80 km/h 的汽车的频率为0.01×10=0.1,所以其频数为0.1×200=20,即被处罚的汽车大约有20辆. 3.【解析】选B.由偶函数排除C 、D ,再由在区间(1,2)内是增函数排除A.故选B.4.【解析】选B.∵e =3,∴ca =3,即a 2+b 2a 2=3,∴b 2=2a 2,∴双曲线方程为x 2a 2-y22a2=1,∴渐近线方程为y =±2x .5.【解析】选D.s =0,n =2,2<8,s =0+12=12;n =2+2=4,4<8,s =12+14=34;n =4+2=6,6<8,s =34+16=1112;n =6+2=8,8<8不成立,输出s 的值为1112.6.【解析】选C.当不同直线m 、n 都平行于平面α时,m 、n 的位置不能确定,因此命题①不是真命题;根据直线与平面垂直的性质定理可得命题②是真命题;命题③中m 、n 的位置关系不能确定,因此命题③不是真命题;命题④中的直线n 与平面β的位置关系不确定,因此命题④也不是真命题.故选C. 7.【解析】选B.A ={x |x 2+2x -3>0}={x |x >1或x <-3},因为函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (-3)=6a +8>0,根据对称性可知,要使A ∩B 中恰含有一个整数,则这个整数解为2,所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤09-6a -1>0,所以⎩⎨⎧a ≥34a <43,即34≤a <43,故选B.8.【解析】选B.作出可行域如图中阴影部分所示,则z 在点A 处取得最大值,在点C 处取得最小值.又k BC =-1,k AB =1,∴-1≤-a ≤1,即-1≤a ≤1.9.【解析】选B.由正弦定理得:a sin A =bsin B,∵B =2A ,a =1,b =3,∴1sin A =32sin A cos A. ∵A 为三角形的内角,∴sin A ≠0.∴cos A =32.又0<A <π,∴A =π6,∴B =2A =π3.∴C =π-A -B =π2,∴△ABC 为直角三角形.由勾股定理得c =12+(3)2=2.10.【解析】选C.f ′(x )=3x 2-3=3(x +1)·(x -1),令f ′(x )=0,得x =±1,所以f (x )的图象如图所示,因f (1)=-2,f (-2)=-2,若函数f (x )在(a ,6-a 2)上有最小值,则⎩⎪⎨⎪⎧-2≤a <16-a 2>1,解得-2≤a <1. 11.【解析】在x -y +1=0中,令y =0得x =-1,所以直线x -y +1=0与x 轴的交点为(-1,0),即圆C 的圆心为(-1,0).因为直线x +y +3=0与圆C 相切,所以圆心到直线的距离等于半径,即r =|-1+0+3|2=2,所以圆C 的方程为(x +1)2+y 2=2.【答案】(x +1)2+y 2=212.【解析】设t =2+cos n π6,有1≤t ≤3,则a n =cos n π6+162+cosn π6=t +16t -2.用导数可以证明,函数f (t )=t +16t在1≤t ≤3上是单调递减的,所以当t =3,即n =12k (k ∈N *)时,a n 取最小值193.【答案】19313.【解析】因为函数y =f (x )的图象是开口向下的抛物线,且对任意x ∈R ,都有f (1-x )=f (1+x ),所以函数y =f (x )为开口向下、以x =1为对称轴的二次函数,所以f (-1)=f (3).又因为a ·b =log 12m +2,所以不等式f (a ·b )<f (-1)即为不等式log 12m +2<-1或log 12m +2>3,解得m >8或0<m <12.【答案】(0,12)∪(8,+∞)14.【解析】圆C 的直角方程为x 2+(y -2)2=4,得圆心坐标为(0,2);由参数方程为⎩⎨⎧x =-22ty =6+22t 消去t 后,得直线方程为x +y =6,那么圆心到直线l 的距离为|0+2-6|12+12=22;【答案】2 215.【解析】设⊙A 的半径为R ,连接NQ 、MA ,∵∠PNQ =90°,∠PMA =90°,∴PMPN=P A PQ =34, 又PN =8,∴PM =6,而PM 2=PO ·PQ ,∴36=2R ·4R ,∴OA =R =322.【答案】32216.【解】(1)由图象得A =1,T 4=2π3-π6=π2,所以T =2π,则ω=1.将(π6,1)代入得1=sin(π6+φ),而-π2<φ<π2,所以φ=π3,因此函数f (x )=sin(x +π3).(2)由于x ∈[-π,-π6],-2π3≤x +π3≤π6,所以-1≤sin(x +π3)≤12,所以f (x )的取值范围是[-1,12].17.【解】(1)K 2=110×(40×30-20×20)260×50×60×50≈7.8>6.635,而P (K 2≥6.635)≈0.010=1%,即,认为“爱好该项运动与性别没有关系”的概率是1%,∴有99%以上的把握认为“爱好该项运动与性别有关”.(2)应抽取男生人数为660×40=4人,应抽取女生人数为660×20=2人.(3)设6人中2个女生分别为A ,B ,4个男生分别为c ,d ,e ,f , 则从6人中随机选定2人去做某件事的基本事件为:AB ,Ac ,Ad ,Ae ,Af ,Bc ,Bd ,Be ,Bf ,cd ,ce ,cf ,de ,df ,ef ,共15个基本事件,其中,有女生被选中的事件为AB ,Ac ,Ad ,Ae ,Af ,Bc ,Bd ,Be ,Bf ,共9个,∴有女生被选中的概率为P =915=35.18.【解】(1)设a n +1+λa n =μ(a n +λa n -1)(n ≥2), ∴a n +1+(λ-μ)a n -λμa n -1=0,∴⎩⎪⎨⎪⎧λ-μ=-103λμ=-1,∴λ=-13或λ=-3.(2)由(1)知当n ≥2时,a n -13a n -1=3n -1,①a n -3a n -1=13n -1,②由①②得a n =38(3n -13n ).经验证,n =1时也成立,∴a n =38(3n -13n ).19.【解】(1)证明:取AB 1的中点G ,连接EG ,FG , ∵F 、G 分别是AB 、AB 1的中点,∴FG ∥BB 1,FG =12BB 1.∵E 为侧棱CC 1的中点, ∴FG ∥EC ,FG =EC ,∴四边形FGEC 是平形四边形, ∴CF ∥EG ,∵CF ⊄平面AB 1E ,EG ⊂平面AB 1E , ∴CF ∥平面AB 1E . (2)∵三棱柱ABC -A 1B 1C 1的侧棱AA 1⊥底面ABC ,∴BB 1⊥平面ABC .又AC ⊂平面ABC ,∴AC ⊥BB 1. ∵∠ACB =90°,∴AC ⊥BC .∵BB 1∩BC =B ,∴AC ⊥平面EB 1C ,∴AC ⊥CB 1,∴VA ­EB 1C =13S △EB 1C ·AC =13×(12×1×1)×1=16.∵AE =EB 1=2,AB 1=6,∴S △AB 1E =32.∵VC ­AB 1E =VA ­EB 1C ,∴三棱锥C -AB 1E 在底面AB 1E 上的高为3VC -AB 1E S △AB 1E=33.20.【解】(1)抛物线y 2=8x 的焦点为椭圆E 的顶点, 即a =2. 又c a =12,故c =1,b = 3. ∴椭圆E 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m 3x 2+4y 2=12, 得(4k 2+3)x 2+8kmx +4m 2-12=0. 由根与系数的关系,得x 1+x 2=-8km 4k 2+3,y 1+y 2=k (x 1+x 2)+2m =6m4k 2+3.将P (-8km 4k 2+3,6m4k 2+3)代入椭圆E 的方程,得64k 2m 24(4k 2+3)2+36m 23(4k 2+3)2=1. 整理,得4m 2=4k 2+3.设T (t ,0),Q (-4,m -4k ).∴TQ →=(-4-t ,m -4k ),OP →=(-8km 4k 2+3,6m 4k 2+3).即OP →·TQ →=32km +8kmt 4k 2+3+6m (m -4k )4k 2+3=6m 2+8km +8kmt 4k 2+3.∵4k 2+3=4m 2,∴OP →·TQ →=6m 2+8km +8kmt 4m 2=32+2k (1+t )m.要使OP →·TQ →为定值,只需[2k (1+t )m ]2=4k 2(1+t )2m 2=(4m 2-3)(1+t )2m 2为定值,则1+t =0,∴t =-1,∴在x 轴上存在一点T (-1,0),使得OP →·TQ →为定值32. 21.【解】(1)当a =1时,f (x )=x 2-e x ,f (x )在R 上单调递减.f ′(x )=2x -e x ,只要证明f ′(x )≤0恒成立即可,设g (x )=f ′(x )=2x -e x ,则g ′(x )=2-e x ,当x =ln 2时,g ′(x )=0,当x ∈(-∞,ln 2)时,g ′(x )>0,当x ∈(ln 2,+∞)时,g ′(x )<0.∴f ′(x )max =g (x )max =g (ln 2)=2ln 2-2<0,故f ′(x )<0恒成立,∴f (x )在R 上单调递减.(2)①若f (x )有两个极值点x 1,x 2,则x 1,x 2是方程f ′(x )=0的两个根,故方程2ax -e x =0有两个根x 1,x 2,又x =0显然不是该方程的根,∴方程2a =e x x有两个根. 设φ(x )=e x x ,得φ′(x )=e x (x -1)x 2, 当x <0时,φ(x )<0且φ′(x )<0,φ(x )单调递减,当x >0时,φ(x )>0,当0<x <1时,φ′(x )<0,φ(x )单调递减,当x >1时,φ′(x )>0,φ(x )单调递增, 要使方程2a =e x x有两个根,需2a >φ(1)=e , 故a >e 2且0<x 1<1<x 2, 故a 的取值范围为(e 2,+∞). ②证明:由f ′(x 1)=0,得2ax 1-e x 1=0,故a =e x 12x 1,x 1 ∈(0,1), f (x 1)=ax 21-e x 1=e x 12x 1·x 21-e x 1=e x 1(x 12-1),x 1∈(0,1), 设φ(t )=e t (t 2-1)(0<t <1),则φ′(t )=e t ·t -12<0, φ(t )在0<t <1上单调递减,故φ(1)<φ(t )<φ(0),即-e 2<f (x 1)<-1.。

相关文档
最新文档