CAN控制单片机扩展板电路原理图
单片机开发板电路原理图

D Connector 9
MAX232D
VCC C4
16
C8
2
C11
6
14 7 PC-RXD 12 9 RXD_M
2
VCC
VCC
R10 Res2 1K
R11 Res2 1K
1
1
TXD Power-led
RXD Power-led
2
ADᣝ䬂
R7
1.5K ে R12 SW-PB 4.7K
R8
1K ϟ SW-PB
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
Download D0 D1 D2 D3 D4 D5 D6 D7 Download MCUALE DS18B20_0UT CS_Du CS_Wei CS_LED RW EN RS CSA CSB
P5
12 34 56 78 9 10 11 12 13 14 15 16
Header 8X2
DIODEUS6
1 2 3 4 5 6 7 8
IN1 OUT1 IN2 OUT2 IN3 OUT3 IN4 OUT4 IN5 OUT5 IN6 OUT6 IN7 OUT7 GND DIODES
ULN2003
P6
ԡ
VCC
R5
GND
R6
VCC
1K
P3
1K
1
RESTA
1 3
2 4
56
RESTB Power
2
Header 3X2 VCC
GND
RESTB
B
R14
R15
R16
Pl2303 USB䕀Іষ
51单片机的外围电路

数码管(二)
共阴与共阳的内部电路如下图所示:
数码管(三)
由图可以看出,共阳和共阴结构的LED 显 示器各笔划段名的安排位置是相同的,当 二极管导通时,相应的笔划段就发亮,由 发亮的笔划段组合而显示出各种字符(a~g 是7个笔段电极,DP为小数点) 需要注意的是:对于同一个字符的编码, 共阴和共阳接法对应的编码是不一样的, 两者互为反码。
MCS-51单片机的系统扩展及应用
通过地址总线、数据总线和控制总线实现系统 的扩展 介绍外围电路的扩展
3.1:程序存储器的扩展 3.2:数据存储器的扩展 3.3:指示小灯 3.4:按键扩展 3.5:数码管应用 3.6:A/D转换器接口 3.7:温度传感器接口 3.8:IIC电路扩展 3.9:液晶电路
静态LED数码显示电路(共阳极)
Vcc
七段译码器 七段译码器 七段译码器 七段译码器 七段译码器
BCD码 0000
0001
0010
0011
0100
返回
数码管(五)
由于静态显示占用的I/O 口线较多,CPU 的开销很大,所以为了节省单片机的I/O 口线,常采用动态扫描方式来作为LED 数 码管的接口电路。 动态显示的接口电路是把所有LED的8 个笔 划段a~g,dp 同名端连在一起,而每一个 显示器的公共极COM 端与各自独立的I/O 口连接。当CPU 向字段输出口送出字形码 时,所有显示器接收到相同的字形码,但 究竟是那个显示器亮,则取决于COM 端, 而这一端是由I/O 口控制的,所以我们就 可以自行决定何时显示哪一位了。
最小系统板
外扩
AD转换
数码管显示
程序存储器 温度传感器 51单片机 IIC总线
单片机常用接口电路设计

– 第1脚:Vss,电源地。 – 第2脚:VDD,+5V电源。 – 第3脚:VL,液晶显示偏压信号。 – 第4脚:RS,RS为数据/命令寄存器选择端,高电平时选择数据寄存器,低电平时选择
指令寄存器。 – 第5脚:R/W,读/写信号选择端,高电平时进行读操作,低电平时进行写操作。当RS
独立式按键电路配置灵活,硬件结构简单,但每个按键必须占有一根I/O口 线,在按键数量较多时,I/O口线浪费较大。故只有在按键数量较少时采 用这种按键电路。在图9-11所示的电路中,按键输入都采用低电平有效, 上拉电阻保证了按键断开时,I/O口线有确定的高电平。
9.4.4 案例介绍及知识要点2
编写程序,把44矩阵 键盘的键值利用数码 管显示出来。按键硬 件电路图如图9-12所 示。数码管显示电路 参照图9-1。
了解液晶显示模块的接口信号。 了解LCD1602液晶的的操作
时序,并能根据时序写出驱动 程序。 掌握液晶显示模块硬件电路的 设计。 了解液晶显示屏的相关操作命 令。 了解液晶显示的初始化过程。
9.3.2 程序示例
9.3.3 知识总结——接口信号说明
RT-1602C字符型液晶模块是两行16个字的57点阵图形来显示字符的液晶显示器, 它的外观形状如图9-8所示。
– 了解数码管的基本结构和工作原理。 – 学会设计硬件驱动电路。 – 掌握静态显示的原理。
9.1.2 程序示例1 数码管显示电路
9.1.3 知识总结——结构及显示原理
LED显示器是单片机应 用系统中常用的显 示器件。它是由若 干个发光二极管组 成的,当发光二极 管导通时,相应的 一个点或一个笔画 发亮,控制不同组 合二极管导通,就 能显示出各种字符, 如表9-1所示。
单片机的电路原理

单片机的电路原理单片机技术自发展以来已走过了近20年的发展路程。
单片机技术的发展以微处理器(MPU)技术及超大规模集成电路技术的发展为先导,以广泛的应用领域拉动,表现出较微处理器更具个性的发展趋势。
小到遥控电子玩具,大到航空航天技术等电子行业都有单片机应用的影子。
针对单片机技术在电子行业自动化方面的重要应用,为满足广大学生、爱好者、产品开发者迅速学会掌握单片机这门技术,于是产生单片机实验板普遍称为单片机开发板、也有单片机学习板的称呼。
比较有名的例如电子人DZR-01A单片机开发板。
单片机开发板是用于学习51、STC、AVR型号的单片机实验设备。
根据单片机使用的型号又有51单片机开发板、STC单片机开发板、AVR单片机开发板。
常见配套有硬件、实验程序源码、电路原理图、电路PCB图等学习资料。
例如电子人单片机开发板,针对部分学者需要特别配套有VB上位机软件开发,游戏开发等教程学习资料。
开发此类单片机开发板的公司一般提供完善的售后服务与技术支持。
单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。
相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。
概括的讲:一块芯片就成了一台计算机。
它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。
同时,学习使用单片机是了解计算机原理与结构的最佳选择。
单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。
各种产品一旦用上了单片机,就能起到使产品升级换代的功效,常在产品名称前冠以形容词——“智能型”,如智能型洗衣机等。
单片机(Microcontrollers)诞生于1971年,经历了SCM、MCU、SoC三大阶段,早期的SCM单片机都是8位或4位的。
其中最成功的是INTEL的8051,此后在8051上发展出了MCS51系列MCU系统。
基于这一系统的单片机系统直到现在还在广泛使用。
proteus教学实验系统(单片机e型)实验指导

目录(版本 1.03)第1章PROTEUS教学实验系统(单片机E型)简介及使用说明 (1)1.1 系统简介 (1)1.2 实验系统的硬件布局 (4)1.3 实验系统原理图 (5)1.4 实验板硬件图 (16)1.5 USB下载方式说明 (23)第2章硬件实验目录 (27)实验一I /O口输出实验—LED流水灯实验 (27)实验二I/O口输入/输出实验—模拟开关灯 (29)实验三8255并行I/O扩展实验 (31)实验四无译码的七段数码管显示实验 (33)实验五BCD译码的多位数码管扫描显示实验 (36)实验六独立式键盘实验 (38)实验七计数器实验 (40)实验八定时器实验 (42)实验九单个外部中断实验 (44)实验十中断嵌套实验 (46)实验十一矩阵键盘扫描实验 (49)实验十二串行端口并行输出扩充实验 (51)实验十三串行端口并行输入扩充实验 (53)实验十四单片机与PC之间串行通信实验 (55)实验十五双单片机通信实验 (58)实验十六I2C总线——AT24CXX存储器读写 (60)实验十七温度传感器DS18B20实验 (64)实验十八实时时钟DS1302实验 (66)实验十九A/D转换实验 (68)实验二十D/A转换实验 (70)实验二十一1602液晶显示的控制(44780) (72)实验二十二12864液晶显示的控制(KS0108) (74)实验二十三直流电机控制实验 (76)实验二十四步进电机控制实验 (78)实验二十五16X16阵列LED显示 (81)实验二十六直流电机测速实验 (83)实验二十七串行AD—TLC549实验 (85)实验二十八串行DA—TLC5615实验 (87)实验二十九继电器控制实验 (89)实验三十LCD 1602 IO方式驱动 (92)第3章软件仿真实验目录 (96)实验一可控硅驱动 (96)实验二光耦应用实验 (98)实验三单片机播放音乐实验 (100)实验四SD卡读写实验 (104)第1章PROTEUS教学实验系统(单片机E型)简介及使用说明1.1 系统简介【硬件特点】PROTEUS教学实验系统(单片机E型)是我公司陆续推出的PROTEUS教学实验系统第三版。
电源模块电路图解析

电源模块电路图解析电源模块电路图解析单片机最小系统原理图及单片机电源模块/复位/振荡电路解析 - 单片机单片机最小系统主要由电源、复位、振荡电路以及扩展部分等部分组成。
最小系统原理图如图所示。
电源模块对于一个完整的电子设计来讲,首要问题就是为整个系统提供电源供电模块,电源模块的稳定可靠是系统平稳运行的前提和基础。
51单片机虽然使用时间最早、应用范围最广,但是在实际使用过程中,一个和典型的问题就是相比其他系列的单片机,51单片机更容易受到干扰而出现程序跑飞的现象,克服这种现象出现的一个重要手段就是为单片机系统配置一个稳定可靠的电源供电模块。
电源模块电路图此最小系统中的电源供电模块的电源可以通过计算机的USB口供给,也可使用外部稳定的5V电源供电模块供给。
电源电路中接入了电源指示LED,图中R11为LED的限流电阻。
S1 为电源开关。
复位电路单片机的置位和复位,都是为了把电路初始化到一个确定的状态,一般来说,单片机复位电路作用是把一个例如状态机初始化到空状态,而在单片机内部,复位的时候单片机是把一些寄存器以及存储设备装入厂商预设的一个值。
单片机复位电路原理是在单片机的复位引脚RST上外接电阻和电容,实现上电复位。
当复位电平持续两个机器周期以上时复位有效。
复位电平的持续时间必须大于单片机的两个机器周期。
具体数值可以由RC电路计算出时间常数。
复位电路由按键复位和上电复位两部分组成。
(1)上电复位:STC89系列单片及为高电平复位,通常在复位引脚RST上连接一个电容到VCC,再连接一个电阻到GND,由此形成一个RC充放电回路保证单片机在上电时RST脚上有足够时间的高电平进行复位,随后回归到低电平进入正常工作状态,这个电阻和电容的典型值为10K和10uF。
(2)按键复位:按键复位就是在复位电容上并联一个开关,当开关按下时电容被放电、RST也被拉到高电平,而且由于电容的充电,会保持一段时间的高电平来使单片机复位。
单片机的三总线

第三篇计算机系统扩展与接口应用第4章MCS-51微机系统扩展基础与存储器扩展4.1 MCS-51微机系统总线概念、结构与扩展基础MCS-51单片机主要应用于嵌入式应用中,即单片机并不作为独立的设备,而是作为其他设备的智能核心,在设备中起到检测、处理和控制等作用。
MCS-51单片机嵌入式应用系统由硬件系统与软件系统构成。
为了提高产品的性价比,MCS-51单片机的硬件与软件系统都要根据具体应用功能的需要,“量体裁衣”地进行设计。
由于IC工业的发展,目前构造单片机应用系统时需要的绝大多数功能都可以由某种相应的IC来实现。
这意味着设计单片机硬件系统主要的工作简化为:划分硬件系统的功能模块,按照功能选择IC,将CPU与IC“拼装”到一起,绘成电路原理图和印刷电路板。
CPU与IC的“拼装”必须确保:IC能在CPU的控制下,高速与可靠地相互交换信息。
计算机学家设计了计算机的“总线(BUS)”来实现这种拼装功能。
MCS-51单片机内部具有总线管理功能,可以扩展外部单元。
掌握单片机的三总线知识和扩展IC的三总线基本结构,对于掌握MCS-51微机系统扩展至关重要。
在单片机系统扩展中,为了易于学习,将复杂的硬件系统扩展拆开成各类IC的单独扩展,分别学习。
学会了各个典型芯片的扩展,就可以举一反三,像搭积木一样用各种IC 构成完整的硬件系统。
MCS-51通过总线扩展的IC可以分为两大类:存储器扩展和I/O扩展。
存储器扩展的特点是它们仅与CPU联系,不与外部信息直接联系,因此接口方式可以简化,不必带有应答方式;I/O扩展涉及的IC不仅要与CPU联系,还要与外部信息联系,因此往往需要具有选通和应答机制。
在本章介绍的存储器扩展,不仅给学习者提供了存储器扩展的方法,更重要的是,通过它说明了计算机三总线的工作原理、编址技术与地址空间分析方法。
4.1.1 三态在总线中的作用在总线扩展中,常要了解IC的端口引脚是否具有三态(three-state 或Tri-State)功能。
一种基于LAB8000单片机实验箱的扩展电路板设计与实现

5 2・
科 论坛
一
种基于L A B 8 0 0 0 单片机实验箱的 扩展电路板设计与实现
杨 金 泉
( 唐 山 学 院信 息 工 程 系 , 河北 唐 山 0 6 3 0 0 0 ) 摘 要: 本文介绍 了一种基 于 L A B 8 0 0 0单 片机 实验箱的扩展 电路板设计 , 针对L A B 8 0 0 0单 片机 实验箱 实验 内容的不足 , 开发设计 了 外 围扩 展 电路 板 。该 扩 展 电路 板 主要 由 包括 总 线 驱 动 器 、 实时 时钟 、 R S 4 8 5总线 、 L M3 5温 度 传 感 器及 放 大 、 直 流 电机 及 驱 动 、 字符 L C D 等 电路组成。该电路板 实用性强 , 进一步扩展 了 L A B 8 0 0 0单片机 实验 箱支持 的实验项 目, 实验效果 良好 。 关键词 : 单片机 ; 电路板 ; L A B 8 0 0 0 ; 实验箱 1概 述 用了 L M3 5 线 陛精密温度传感器 , L M3 5是美 国国家半导体公司( N s公 L AB 8 0 0 0单片机实验箱是南京伟福公 司生产的一种通用微控制 司注 产的系列精密集成电路温度传感 它的输出电压与摄氏温度线 器实验系统。 该实验系统支持 MC S 5 1 、 MC S 9 6 、 8 0 8 8 、 P I C等多种单片机 性成 比例( 1 0 m v / o C) , 因而 L M3 5优 于用开尔文标准的线性温度传感
作者简介 : 杨金泉( 1 9 6 3 一 ) , 男, 高级工程师 , 实验室主任 , 主要研 究单片机及 电子设计 自动化。
及微处理器的实验。该实验系统配有开关电源、 板上仿真器 、 可编程并 器 , L M 3 5 无需外部校准或微调来提供 ±1 / 4 ℃的常用的室温精度