附录相关系数r的计算公式的推导.doc
相关系数r的计算公式是什么

相关系数r的计算公式是什么
相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母r表示。
由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。
1相关系数缺点
需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。
因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1;当n较大时,相关系数的绝对值容易偏小。
特别是当n=2时,相关系数的绝对值总为1。
因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。
2相关系数公式
定义式
ρXY=Cov(X,Y)/√[D(X)]√[D(Y)]
公式描述:公式中Cov(X,Y)为X,Y的协方差,D(X)、D(Y)分别为X、Y的方差。
公式
若Y=a+bX,则有:
令E(X) = μ,D(X) = σ
则E(Y) = bμ + a,D(Y) = bσ
E(XY) = E(aX + bX) = aμ + b(σ + μ) Cov(X,Y) = E(XY) − E(X)E(Y) = bσ。
相关系数计算公式

相关系数计算公式
一、概念
相关系数(correlation coefficient),又称作相关系数,是衡量
两个变量之间相互关系紧密程度的一种统计量,其取值范围位于-1与1
之间。
它是由两个变量的协方差(covariance)除以它们各自的标准差(standard deviation)得到的。
二、定义
相关系数(correlation coefficient)的定义为:
设X和Y是有关联的两个随机变量,其均值分别为μX和μY,标准
差分别为σX和σY,协方差为rXY,其相关系数定义为:
rXY=r(X,Y)=frac{r_{XY}}{sigma_X sigma_Y}=frac{E[left(X-mu_X ight)(Y-mu_Y)]}{sigma_X sigma_Y}
三、性质
1.当相关系数rXY取值为1时,说明X、Y呈完全正相关,此时,当
X增大时,Y也增大;
2.当相关系数rXY取值为0时,说明X、Y之间没有显著的相关关系;
3.当相关系数rXY取值为-1时,说明X、Y呈完全负相关,此时,当
X增大时,Y减小;
4.相关系数rXY取值越大,表明X、Y之间相关关系越紧密;
5.相关系数rXY有有效范围,即[-1,1];
6.相关系数rXY是一致的,不受X、Y变量变化的时间顺序而改变;
7.相关系数rXY取值只反映X、Y变量的线性关系,而对于非线性关系,其取值不符合实际情况;
8.相关系数rXY只衡量两变量之间的线性相关性,但不能揭示它们之间的因果关系。
四、公式
相关系数rXY的计算公式是:。
第三章附录:相关系数r 的计算公式的推导

相关系数r AB 的计算公式的推导设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。
2A σ=11-n 2)(∑-A A i 2B σ=11-n )(B B i -∑2 2P σ=11-n 2)1(∑∑-i iP n P =2)](1)[(11i B i A iB i A B A A A n B A A A n +-+-∑∑ =2)]()[(11B A A A B A A A n B A i B i A +-+-∑ =2)]()([11B B A A A A n i B i A -+--∑ =)])((2)()([112222B B A A A A B B A A A A n i i B A i B i A --+-+--∑ =A 2A×221)(BiAn A A +--∑×1)])([(21)(2---+--∑∑n B B A A A A n B B i i B A i=A 1)])([(22222---⨯++∑n B B A AA A A i iB A B B A A σσ对照公式(1)得:=1)(2--∑n A Ai×1)(2--∑n B Bi× r AB∴ r AB =∑∑∑-⨯---22)()()])([(B B A A B B A A iiii这就是相关系数r AB 的计算公式。
投资组合风险分散化效应的内在特征1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A :(2P σ)′=2 A A 2A σ-2 (1-A A )2B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2P σ)′= 0 并简化,得到使2P σ取极小值的A A :ABB A iir n B B A A σσ=---∑1)])([(A A =ABB A B A ABB A B r r σσσσσσσ2222-+- … …………………………………(3) 式中, 0≤A A ≤1,否则公式(3)无意义。
相关系数r的两个公式

相关系数r的两个公式相关系数是反映两个变量之间相关程度的统计量,常用于统计学和数据分析中。
它的计算方式有两个公式:皮尔逊相关系数公式和斯皮尔曼等级相关系数公式。
下面将详细介绍这两个公式的定义和应用。
首先,我们来看皮尔逊相关系数公式。
皮尔逊相关系数是衡量两个变量之间线性相关程度的指标,取值范围在-1到1之间。
计算公式如下:r = Σ[(X - X̄) * (Y - Ȳ)] / [√(Σ(X - X̄)^2) *√(Σ(Y - Ȳ)^2)]其中,X和Y分别表示两个变量的观测值,X̄和Ȳ分别表示两个变量的平均值。
Σ表示对所有观测值进行求和运算。
斯皮尔曼等级相关系数是衡量两个变量之间的单调相关程度的指标,适用于两个变量不符合线性关系的情况。
计算公式如下:r = 1 - [6 * Σ(D^2)] / [n * (n^2 - 1)]其中,D表示两个变量的等级差,n表示样本容量。
Σ表示对所有等级差进行求和运算。
皮尔逊相关系数和斯皮尔曼等级相关系数的应用非常广泛。
在社会科学研究中,可以用于衡量两个变量之间的联系程度,如收入和教育水平、幸福感和社交关系等。
在金融领域,可以用于研究股票之间的相关性,从而进行投资组合的优化和风险控制。
此外,相关系数还可以用于预测和回归分析。
通过计算两个变量之间的相关系数,可以了解它们之间的关系强度,并基于该关系建立预测模型或回归方程。
通过分析相关系数,我们可以预测变量之间的趋势,并根据预测结果做出合理的决策。
总之,相关系数是一种重要的统计指标,能够帮助我们了解两个变量之间的关系强度和趋势。
无论是在科研领域还是实际应用中,都需要掌握相关系数的计算公式和应用方法,以提高数据分析的准确性和有效性。
希望本文的介绍对相关系数的理解和应用有所帮助。
相关系数r2的计算公式

相关系数r2的计算公式相关系数(Coefficient of correlation)是用来衡量两个变量之间关系强度和方向的统计指标。
一般用符号“r”表示,其取值范围在-1到1之间。
如果r为正值,表示两个变量正相关;如果r为负值,表示两个变量负相关;如果r的绝对值接近于0,则表示两个变量之间无明显的线性关系。
相关系数的计算公式主要包括Pearson相关系数、Spearman相关系数和Kendall相关系数。
下面将分别介绍。
1. Pearson相关系数(r)Pearson相关系数,也称为线性相关系数,用于衡量两个连续变量之间的线性关系强度。
Pearson相关系数的计算公式为:r = Σ((X_i - X̅) * (Y_i - Ȳ)) / sqrt(Σ(X_i - X̅)² *Σ(Y_i - Ȳ)²)其中,X_i和Y_i分别表示X和Y的观察值,X̅和Ȳ分别表示X和Y的平均值。
2. Spearman相关系数(ρ)Spearman相关系数用于衡量两个变量之间的单调关系强度,不仅仅局限于线性关系。
Spearman相关系数的计算公式为:ρ=1-6Σd²/(n(n²-1))其中,d表示两个变量对应观察值的秩次差,n表示样本个数。
3. Kendall相关系数(τ)Kendall相关系数也用于衡量两个变量之间的单调关系强度,与Spearman相关系数类似,但其计算方式略有不同。
Kendall相关系数的计算公式为:τ=(P-Q)/(P+Q)其中,P表示在一对观察值中具有相同顺序的对数,Q表示在一对观察值中具有不同顺序的对数。
需要注意的是,公式中的相关系数r、ρ和τ的取值范围都在-1到1之间。
当相关系数接近于1时,表示两个变量之间关系越强;当相关系数接近于0时,表示两个变量之间关系越弱;当相关系数接近于-1时,表示两个变量之间关系越强并呈负相关。
相关系数的意义在于帮助我们理解变量之间的关系强弱和方向,从而为进一步分析和预测提供依据。
第三章附录:相关系数r 的计算公式的推导

相关系数r AB 的计算公式的推导设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。
2A σ=11-n 2)(∑-A A i2B σ=11-n )(B B i-∑22P σ=11-n 2)1(∑∑-ii P nP=2)](1)[(11i B i Ai B i A B A A A nB A A A n +-+-∑∑=2)]()[(11B A A A B A A A n B A i B i A+-+-∑=2)]()([11B B A A A A n i B i A-+--∑=)])((2)()([112222B B A A A A B B A A A An i i B A i B i A--+-+--∑ =A2A×221)(BiAn A A +--∑×1)])([(21)(2---+--∑∑n B B A A A A n B B i i B A i=A 1)])([(22222---⨯++∑n B B A A A A A i iBA BBAAσσ对照公式(1)得:=1)(2--∑n A A i ×1)(2--∑n B B i × r AB∴ r AB =∑∑∑-⨯---22)()()])([(B BA AB B A A iii i这就是相关系数r AB 的计算公式。
投资组合风险分散化效应的内在特征1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A :(2P σ)′=2 A A 2A σ-2 (1-A A )2B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2P σ)′= 0 并简化,得到使2P σ取极小值的A A :ABB A i ir n B B A Aσσ=---∑1)])([(A A =ABB A BAAB B A B r r σσσσσσσ2222-+- ... (3)式中, 0≤A A ≤1,否则公式(3)无意义。
第三章附录:相关系数r 的计算公式的推导教学提纲

相关系数r AB 的计算公式的推导设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。
2A σ=11-n 2)(∑-A A i 2B σ=11-n )(B B i -∑2 2P σ=11-n 2)1(∑∑-i iP n P =2)](1)[(11i B i A iB i A B A A A n B A A A n +-+-∑∑ =2)]()[(11B A A A B A A A n B A i B i A +-+-∑ =2)]()([11B B A A A A n i B i A -+--∑ =)])((2)()([112222B B A A A A B B A A A A n i i B A i B i A --+-+--∑ =A 2A×221)(BiAn A A +--∑×1)])([(21)(2---+--∑∑n B B A A A A n B B i i B A i=A 1)])([(22222---⨯++∑n B B A A A A A i iBA BBAA σσ对照公式(1)得:=1)(2--∑n A A i×1)(2--∑n B B i× r AB∴ r AB =∑∑∑-⨯---22)()()])([(B B A A B B A A iiii这就是相关系数r AB 的计算公式。
投资组合风险分散化效应的内在特征1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A :(2P σ)′=2 A A 2A σ-2 (1-A A )2B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2P σ)′= 0 并简化,得到使2P σ取极小值的A A :ABB Aiir n B B A A σσ=---∑1)])([(A A =ABB A B A ABB A B r r σσσσσσσ2222-+- … …………………………………(3) 式中, 0≤A A ≤1,否则公式(3)无意义。
财务管理相关系数r的计算公式

财务管理相关系数r的计算公式好的,以下是为您生成的文章:财务管理中,相关系数 r 这个概念就像是一个神秘的密码,解开了就能让我们更清晰地洞察财务数据之间的关系。
它的计算公式就像是一把神奇的钥匙,能帮助我们打开财务世界的大门。
先来说说相关系数 r 到底是个啥。
打个比方,假如你有两个朋友,一个朋友每次出去玩都花很多钱,另一个朋友却很节省。
你可能会好奇,这两个人的花钱习惯有没有什么关联?这就是相关系数要研究的事儿。
相关系数 r 就是用来衡量两个变量之间线性关系的紧密程度和方向的。
那相关系数 r 的计算公式是咋来的呢?这得从一堆数学推导说起。
公式是:r = [∑(Xi - X 均)(Yi - Y 均)] / [√∑(Xi - X 均)² √∑(Yi - Y 均)²] 。
看起来是不是有点头疼?别慌,咱们慢慢拆解。
比如说,有一组股票 A 和股票 B 的收益率数据。
股票 A 的收益率分别是10%、20%、15%、25%、30%,股票B 的收益率是8%、18%、12%、22%、28%。
咱们来算算它们的相关系数。
首先,得算出股票 A 的平均收益率 X 均,就是把这几个数加起来除以 5 ,(10% + 20% + 15% + 25% + 30%)÷ 5 = 20% 。
同样,算出股票 B 的平均收益率 Y 均,(8% + 18% + 12% + 22% + 28%)÷ 5 = 18% 。
然后,对于每一个数据点,比如股票 A 的第一个数据 10% ,我们用它减去平均收益率 20% ,得到 -10% ,股票 B 的第一个数据 8% 减去平均收益率18% ,得到-10% 。
接着把这两个差值相乘,以此类推,把所有的数据点都这么处理,然后把这些乘积加起来,这就是∑(Xi - X 均)(Yi - Y 均) 。
再分别算出∑(Xi - X 均)²和∑(Yi - Y 均)²,开平方后相乘,最后用前面算出来的∑(Xi - X 均)(Yi - Y 均) 除以这个乘积,就得到了相关系数 r 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相
关 系 数 r
AB 的
计
算
公
式
的
推
导
设 A i 、 B i 分别表示证券 A 、证券 B 历史上各年获得的收益率;
A 、
B 分别表示证券 A 、证券
B 各
年获得的收益率的平均数; P i 表示证券 A 和证券 B 构成的投资组合各年获得的收益率,其他符号的含义
同上。
2
=
1A
n 1
2
=
1B
n 1
2 1
P
=
1
n =
1 n 1
=
1 n 1
=
1 n 1
=
1 n 1
=A
2
A ×
=A
2
2 A A
( A i A) 2
(B i B) 2
(P i 1
P i ) 2
n
1
[( A A A i A B B i ) ( A A A i
A B B i )]2
n
[( A A A i A B B i ) (A A A A B B)] 2
[ A A ( A i A) A B (B i B)] 2
[ 2 ( A i
) 2 2 ( B i B ) 2 2 A A A B (
A i
)( B )] A A A A B A B i
( A i A) 2
A B 2
× ( B i B) 2
2A A A B
[( A i
A)( B i B)]
n 1
n 1
n 1
2
2
2A A A B
[( A i
A)( B i B)] A B
B
n 1
对照公式( 1)得:
( A i
A) 2
(B i B) 2
=
×
n
× r AB
n
1 1
∴ r AB =
[( A i A)( B i B)] ( A i A)2
(B i B) 2
这就是相关系数 r AB 的计算公式。
投资组合风险分散化效应的内在特征
1. 两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定
公式( 1)左右两端对 A A 求一阶导数,并注意到
A B =1—A A :
2
2
2
A B r AB
( P )′=2A A A -2(1 -A A )
B + 2 (1 - A A ) A B r AB -2A A 令 (
P 2
)′=0
并简化,得到使
P 2
取极小值的 A A :
2
B r
AB
A A =
B
A
(
3)
2 2 2
A B r
AB
A
B
式中,0 ≤ A A ≤ 1, 否则公式( 3)无意义。
由于使 ( P2)′=0的 A A 值只有一个,所以据公式(3)计算出的 A A使P2为最小值。
以上分析清楚地说明:对于证券 A 和证券 B,只要它们的系数r AB适当小( r AB 的“上限”的计算,本文以下将进行分析),由证券 A 和证券 B 构成的投资组合中,当投资于风险较大的证券 B 的资金比例
不超过按公式( 3)计算的( 1— A A),会比将全部资金投资于风险较小的证券 A 的方差(风险)还要小;只要投资于证券 B 的资金在( 1— A A)的比例范围内,随着投资于证券 B 的资金比例逐渐增大,投资组
合的方差(风险)会逐渐减少;当投资于证券 B 的资金比例等于( 1—A A)时,投资组合的方差(风险)最小。
这种结果有悖于人们的直觉,揭示了风险分散化效应的内在特征。
按公式(3)计算出的证券 A 和证券 B 的投资比例构成的投资组合称为最小方差组合,它是证券 A 和证券 B 的各种投资组合中方差(亦即风险)最小的投资组合。