《数列的综合应用》教案
数列综合问题高中数学教案

数列综合问题高中数学教案
知识点:数列的综合
教学目标:通过本节课的学习,学生能够掌握数列的综合方法,解决相关数学问题。
教学重点:数列的综合求解方法。
教学难点:在实际问题中运用数列的综合方法解决问题。
教学过程:
一、导入新知识(5分钟)
教师向学生介绍本节课的学习内容,引导学生了解数列的综合概念。
并通过一个简单的例子引出数列综合问题。
二、讲解与实践(15分钟)
1. 讲解数列的综合方法,说明综合的含义及求解步骤。
2. 通过几个示例讲解综合求解数列问题的步骤,引导学生掌握方法。
3. 学生进行练习,巩固数列综合的求解方法。
三、拓展应用(10分钟)
1. 给学生提供一些实际问题,让学生尝试用数列综合方法解决问题。
2. 学生结合实际问题进行讨论,分享不同解题思路。
四、作业布置(5分钟)
布置练习题作业,相关综合数列问题的练习。
五、课堂小结(5分钟)
总结本节课的重点内容,强调数列综合方法的重要性,并提醒学生作业要认真完成。
教学反思:本节课通过讲解数列的综合方法,让学生了解了数列的综合应用,实际问题中的数列综合求解方法。
通过多种实例的讲解和练习,学生对数列综合方法有了更深入的理解和掌握。
在今后的教学过程中,可以结合更多实际问题,让学生更好地运用数列综合方法解决各种数学问题。
数列的综合应用教案

数列的综合应用教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN11 =+1、等差数列{}n a 中,若124a a +=, 91036a a +=,则10S =______.2. 设公差为d 的等差数列{}n a 的前n 项和为n S ,若11a =,21179d -<<-, 则当n S 取最大值时,n 的值为_ __. 3.在等差数列{}n a 中,S n 是它的前n 项的和,且8776,S S S S ><,给出下列命题:①此数列公差0<d ;②69S S <;③7a 是各项中最大的一项;④7S 是S n 中的最大项⑤{}n a 是递增数列。
其中真命题的序号是 。
4.等差数列{}n a 前n 项和为n s ,若5359a a =,则95s s =____________. 5.办公大楼共23层,现每层派一人集中到第k 层开会,要使这23位参加会议的人员上下楼梯所走路程的总和最少,则k 的值 。
6.若数列x ,a 1,a 2,y 成等差数列,x ,b 1,b 2,y 成等比数列,则21221)(b b a a ⋅+的取值范围是____________. 7.设等差数列{n a }的前n 项和为n S ,公比是正数的等比数列{n b }的前n 项和为n T ,已知1133331,3,17,12,{},{}n n a b a b T S a b ==+=-=求的通项公式8.已知在数列{a n }中,11=a ,d a a qa a n n n n +==+-212122,(q, d ∈R, q ≠0)(1)若q=2,d=-1,求a 3,a 4并猜测a 2006;(2)若{}12-n a 是等比数列,且{}n a 2是等差数列,求q ,d 满足的条件。
数列的综合应用教学设计

数列的综合应用教学设计数列的综合应用一、教学内容分析本节内容安排在《普通高中课程标准实验教科书数学必修5》(人教A版),第二章内容结束之后的综合练习。
在课本中没有专设章节。
内容从教材习题2.5中A组的第4题中体现。
本章五节内容分别讲授了等差数列、等比数列以及这两种数列的性质、通项公式、前N项和等基础内容。
让学生在此基础之上,了解高考中出现频率较多的一些特殊数列。
在实际教学中,本节内容应该分为五个阶段:第一阶段学生要充分掌握基本数列的知识点,可用提问的方式进行复习回顾。
第二阶段,对于特殊数列有关例题首先要引导学生观察,找到与基本数列的相似处,从而决定构造为基本数列中的等差数列或等比数列,大胆提出猜想。
第三阶段从猜想入手,开始构造。
运用基本数列的形式和性质得到新的数列。
构造出的新数列必须满足基本数列成立的条件。
验证猜想的正确性。
第四阶段根据题目要求从构造出的新数列找出所求项。
第五阶段,老师和学生一起归纳题型。
学生在老师的引导下结题,提高主动性,学习的灵活性。
从而提高对本节知识的兴趣。
二、学情分析对于高一年级的学生来说。
之前的学习中已经接触到了函数内容。
以及在本节内容的学习之前,已经有了数列的基础。
学生已经具备了一定的分析能力,函数构造基础等。
对于本节授课内容来说,学生在一般很难自己分析出来,有一定的难度。
所以需要老师的正确引导,但是在复习的基础上不宜直接灌输解题方法。
应该带领学生一起观察、分析、猜想、证明。
从而加深学生对本节内容的理解,也可让学生自己尝试找到新的解法,建立自己的思维模式。
三、设计思想在授课中,必须要求学生掌握基本数列(等差数列和等比数列)的内容。
以此引导学生,分析特殊数列。
并且根据之前学习三角函数时用到的“构造”理念。
将特殊数列构造为基本数列,再运用基本数列的知识点来解题。
课堂中,以例题分析为主,让学生学会观察特殊数列的结构,分析如何构造出适合的基本数列的形式。
讲课过程中,以启发性为主,让学生主动分析。
《数列综合应用举例》教案

《数列综合应用举例》教案第一章:数列的概念与应用1.1 数列的定义与表示方法引导学生了解数列的概念,理解数列的表示方法,如通项公式、列表法等。
通过实际例子,让学生掌握数列的性质,如项数、公差、公比等。
1.2 数列的求和公式介绍等差数列和等比数列的求和公式,让学生理解其推导过程。
通过例题,让学生学会运用求和公式解决实际问题,如计算数列的前n项和等。
第二章:数列的性质与应用2.1 数列的单调性引导学生了解数列的单调性,包括递增和递减。
通过实际例子,让学生学会判断数列的单调性,并运用其解决相关问题。
2.2 数列的周期性介绍数列的周期性概念,让学生理解周期数列的性质。
通过例题,让学生学会运用周期性解决实际问题,如解数列的方程等。
第三章:数列的极限与应用3.1 数列极限的概念引导学生了解数列极限的概念,理解数列极限的含义。
通过实际例子,让学生掌握数列极限的性质,如保号性、夹逼性等。
3.2 数列极限的计算方法介绍数列极限的计算方法,如夹逼定理、单调有界定理等。
通过例题,让学生学会运用极限计算方法解决实际问题,如求数列的极限值等。
第四章:数列的级数与应用4.1 数列级数的概念引导学生了解数列级数的概念,理解级数的特点和分类。
通过实际例子,让学生掌握级数的基本性质,如收敛性和发散性等。
4.2 数列级数的计算方法介绍数列级数的计算方法,如比较法、比值法、根值法等。
通过例题,让学生学会运用级数计算方法解决实际问题,如判断级数的收敛性等。
第五章:数列的应用举例5.1 数列在数学建模中的应用引导学生了解数列在数学建模中的应用,如人口增长模型、存货管理模型等。
通过实际例子,让学生学会运用数列建立数学模型,并解决实际问题。
5.2 数列在物理学中的应用介绍数列在物理学中的应用,如振动序列、量子力学中的能级等。
通过例题,让学生学会运用数列解决物理学中的问题,如计算振动序列的周期等。
第六章:数列在经济管理中的应用6.1 数列在投资组合中的应用引导学生了解数列在投资组合中的作用,如资产收益的序列分析。
数列综合应用数列求和教案

授课人: 史宏刚班级11104班课题数列综合应用(一)数列求和教 学 目 标1.知识与能力:培养学生观察分析应用能力。
2.过程与方法:通过课堂分析演练,总结解题技巧。
3.情感态度价值观:提高学生刻苦专研学习态度。
重点、难点、关键公式法、裂项相消、错位相减. 、倒序相加法 求和裂项相消、错位相减法 认清问题实质选择解题方法程序与内容 一、组织教学师生问好,检查出席二、目标展示 1、情境创设复习提问:回顾重要知识点,为本节应用做准备数列前n 项和的定义:S n =a 1+a 2+a 3+…+a n引入课堂 2、明确目标公式法、裂项相消、错位相减. 、倒序相加法求数列前n 项和1.公式法:(1)直接法:直接由等差、等比数列的求和公式求和,等比数列求和时注意对公比 q =1,q ≠1的讨论;11()(1)22n n n a a n n S na d +-==+⎪⎩⎪⎨⎧≠≠--=--==)10(11)1()1(111q q q qa a q q a q na S n n n 且(2)特殊公式:所给数列的通项是关于n 的多项式,此时求和可采用公式法求和,常用的公式有:(3)拆项求和法:把数列的每一项分成几项,使其转化为几个等差、等比数列,再求和.2.错位相减法:主要用于一个等差数列与一个等比数列对应项相乘得的新数列求和,即为等比数列求和公式的推导方法.3.裂项相消法:把数列的通项拆成两项之差,正负相消剩下首尾若干项再求和.4.倒序相加法:如果一个数列{an },与首末两项等距的两项之和等于首末两项之和,可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法. 即等差数列求和公式的推导.三、目标教学、练习例1.求下列数列前n 项的和S n : 1×4,2×5,3×6,…n (n +3)… 解: ∵a n =n(n+3)=n 2+3n设 计 意 图充分发挥学生学习的能动性,以学生为主体,展开课堂教学通过学生对几种常见的求和方法的归纳、总结,结合具体的实例、简单回忆各方法的应用背景.把遗忘的知识点形成了一个完整的知识体系。
《数列综合应用举例》教案

《数列综合应用举例》教案一、教学目标:1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学应用意识。
3. 通过对数列的综合应用举例,使学生理解数列在数学和自然科学领域中的重要性。
二、教学内容:1. 等差数列的应用举例:例如计算工资、利息等问题。
2. 等比数列的应用举例:例如计算复利、人口增长等问题。
3. 数列的求和公式及应用:例如求等差数列、等比数列的前n项和等问题。
4. 数列的通项公式的应用:例如求等差数列、等比数列的第n项等问题。
5. 数列在函数中的应用:例如数列与函数的关系、数列的函数性质等问题。
三、教学重点与难点:1. 教学重点:数列的基本概念、性质和求和公式。
2. 教学难点:数列的通项公式的理解和应用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过解决实际问题来学习数列知识。
2. 利用多媒体课件,直观展示数列的应用实例,提高学生的学习兴趣。
3. 组织小组讨论,培养学生的合作能力和思维能力。
五、教学安排:1. 第一课时:等差数列的应用举例。
2. 第二课时:等比数列的应用举例。
3. 第三课时:数列的求和公式及应用。
4. 第四课时:数列的通项公式的应用。
5. 第五课时:数列在函数中的应用。
6. 剩余课时:进行课堂练习和课后作业的辅导。
六、教学目标:1. 深化学生对数列求和公式的理解,能够熟练运用求和公式解决复杂数列问题。
2. 培养学生运用数列知识进行数据分析的能力,提高学生的数学素养。
3. 通过对数列图像的观察,使学生理解数列与函数之间的关系。
七、教学内容:1. 数列图像的绘制与分析:学习如何绘制数列图像,并通过图像观察数列的特点。
2. 数列与函数的联系:探讨数列与函数之间的关系,理解数列可以看作是函数的特殊形式。
3. 数列在数据分析中的应用:例如,利用数列分析数据的变化趋势,预测未来的数据。
八、教学重点与难点:1. 教学重点:数列图像的绘制方法,数列与函数的关系,数列在数据分析中的应用。
数列的综合应用教案

高中数学专题复习——数列的综合应用一、考点、热点回顾如何解数列应用题(1)解数列应用题一般要经历:设——列——解——答四个环节. (2)建立数列模型时,应明确是什么模型,还要确定要求是什么. (3)建立数学模型的一般方法步骤:①认真审题,准确理解题意,达到如下要求:明确问题属于哪类应用问题;弄清题目中的主要已知事项;明确所求的结论是什么.②抓住数学关系,联想数学知识和数学方法,恰当引入参数变量或建立坐标系,将文字语言翻译成数学语言,将数学关系用数学式子表达.③将实际问题抽象为数学问题,将已知与所求联系起来,据题意引出满足题意的数学关系式(如函数、方程、不等式、数列等).二:典型例题题型一:等差、等比数列的综合应用 例1:已知数列{a n }的前n 项和21()2n S n kn k N *=-+∈,且S n 的最大值为8. (1)确定常数k ,求a n ;(2)求数列92{}2nna -的前n 项和T n 。
解: (1)当n k N *=∈时,212n S n kn =-+取最大值,即22211822k k k =-+=,故4k =,从而19(2)2n n n a S S n n -=-=-≥,又1172a S ==,所以92n a n =-(1) 因为19222n n n n a n b --==,1222123112222n nn n n nT b b b ---=+++=+++++ 所以21211111222144222222n n n n n n n n n n n T T T -----+=-=++++-=--=-题型二:数列与函数的综合应用 例2:函数2()23f x x x =--。
定义数列{}n x 如下:112,n x x +=是过两点(4,5),(,(n n nP Q x f x 的直线n PQ 与x 轴交点的横坐标。
(1)证明:123n n x x +≤<<; (2)求数列{}n x 的通项公式。
教学设计3:数列的综合应用

6.5数列的综合应用考向一 数列概念的考查(2013·高考湖北卷)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N(n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N(n ,3)=12n 2+12n ,正方形数 N(n ,4)=n 2, 五边形数 N(n ,5)=32n 2-12n ,六边形数 N(n ,6)=2n 2-n , ……可以推测N(n ,k )的表达式,由此计算N(10,24)=________.【方法分析】 题目条件:已知第n 个三角形N(n ,3),第n 个正方形数N(n ,4),第n 个五边形数N(n ,5),第n 个六边形数N(n ,6).解题目标:按k 的奇偶性:归纳总结N(n ,k ),并计算N(10,24). 关系探究:当偶数边形时,N(n ,k )的特征为( )n 2-( )n .【解题过程】 由N(n ,4)=n 2,N(n ,6)=2n 2-n ,…,可以推测:当k 为偶数时,N(n ,k )=⎝⎛⎭⎫k 2-1n 2-⎝⎛⎭⎫k 2-2n ,于是N(n ,24)=11n 2-10n ,故N(10,24)=11×102-10×10=1 000. 【答案】 1 000【回归反思】 此题是教材内容的深化题,通过由特殊到一般的归纳,得出N(n ,k )的通项公式,代入n =10,k =24计算.考向二 等差、等比数列的综合考查(2012·高考陕西卷)设{a n }是公比不为1的等比数列,其前n 项和为S n ,且a 5,a 3,a 4成等差数列.(1)求数列{a n }的公比;(2)证明:对任意k ∈N *,S k +2,S k ,S k +1成等差数列.【方法分析】 题目条件:已知等比数列{a n }的a 5,a 3,a 4的关系. 解题目标:求公比q ,求证S k +2,S k ,S k +1的等差关系. 关系探究:(ⅰ)由等差中项建立q 的方程.(ⅱ)表示S k +2,S k 和S k +1,验证等差关系,即2S k =S k +2+S k +1.【解题过程】 (1)设数列{a n }的公比为q (q ≠0,q ≠1),由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4,即2a 1q 2=a 1q 4+a 1q 3. 由a 1≠0,q ≠0得q 2+q -2=0,解得q 1=-2,q 2=1(舍去), 所以q =-2.(2)证法一:对任意k ∈N *,S k +2+S k +1-2S k =(S k +2-S k )+(S k +1-S k )=a k +1+a k +2+a k +1=2a k +1+a k +1·(-2)=0, 所以对任意k ∈N *,S k +2,S k ,S k +1成等差数列.证法二:对任意k ∈N *,2Sk =2a 1(1-q k )1-q, S k +2+S k +1=a 1(1-q k +2)1-q +a 1(1-q k +1)1-q =a 1(2-q k +2-q k +1)1-q ,2S k -(S k +2+S k +1)=2a 1(1-q k )1-q -a 1(2-q k +2-q k +1)1-q=a 11-q[2(1-q k )-(2-q k +2-q k +1)] =a 1q k 1-q(q 2+q -2)=0, 因此,对任意k ∈N *,S k +2,S k ,S k +1成等差数列.【回归反思】 以q 为未知数,以等差数列为关系建立方程,求解时,注意对q 的取舍,证明等差数列时,法一转化为通项的计算.法二转化为求和公式的化简,但最终都转化为等差中项的判断.考向三 数列与不等式知识的综合(2013·高考江西卷)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n ,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n<564. 【方法分析】 题目条件:已知S n 关于n 的方程,b n 用a n 表示的通项公式,a n >0. 解题目标:(1)求S n 再求a n . (2)根据b n 求和T n ,并比较与564的大小. 关系探究:(1)把S n 的方程因式分解转化为S n =f (n )的形式,利用a n =S n -S n -1的关系求a n . (2)分析b n 的构成特点,裂项法求T n ,放缩法证明T n <564. 【解题过程】 (1)由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0.由于数列{a n }是正项数列,所以S n >0,S n =n 2+n .于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n .综上可知,数列{a n }的通项a n =2n . (2)证明:由于a n =2n ,b n =n +1(n +2)2a 2n ,则b n =n +14n 2(n +2)2=116⎣⎡⎦⎤1n 2-1(n +2)2. T n =116⎣⎡1-132+122-142+132-152+…+1(n -1)2⎦⎤-1(n +1)2+1n 2-1(n +2)2 =116⎣⎡⎦⎤1+122-1(n +1)2-1(n +2)2<116⎝⎛⎭⎫1+122=564. 【回归反思】 (1)已知条件式等价变形(因式分解)是较隐含的方法,否则此题其它入手方法很麻烦,并注意a n >0,取舍S n .(2)b n =14×n +1n 2(n +2)2,类比{1n (n +2)}可以裂项相消,要注意配平系数116.(3)求和相消的规律是:负数隔两项向后找消掉(正数隔两项向前找消掉).考向四 数列与函数知识的综合(2013·高考安徽卷)设函数f n (x )=-1+x +x 222+x 332+…+x nn 2(x ∈R ,n ∈N *).证明:(1)对每个n ∈N *,存在唯一的x n ∈⎣⎡⎦⎤23,1,满足f n (x n )=0; (2)对任意p ∈N *,由(1)中x n 构成的数列{x n }满足0<x n -x n +p <1n.【方法分析】 题目条件:已知函数解析式f n (x ),x 是自变量,n ∈N *是系数. 解题目标:(1)证明:当x n ∈[23,1]时,f n (x n )=0.(2)由(1)中求得的x n ,证明0<x n -x n +p <1n.关系探究:(1)由x >0时,f ′n (x )>0⇒f n (x )增,同时f n (1)=0⇒f n (1)>0,f n (23)<0⇒零点唯一.(2)由f n (x )单增⇒{x n }递减⇒x n -x n +p >0,并计算x n -x n +p 放缩得x n -x n +p <1n .【解题过程】 (1)证明:对每个n ∈N *,当x >0时,f ′n (x )=1+x2+…+x n -1n>0,故f n (x )在(0,+∞)内单调递增.由于f 1(1)=0,当n ≥2时, f n (1)=122+132+…+1n2>0,故f n (1)≥0.又f n ⎝⎛⎭⎫23=-1+23+∑k =2n⎝⎛⎭⎫23kk 2≤-13+14∑k =2n⎝⎛⎭⎫23k=-13+14·⎝⎛⎭⎫232⎣⎡⎦⎤1-⎝⎛⎭⎫23n -11-23=-13·⎝⎛⎭⎫23n -1<0,所以存在唯一的x n ∈⎣⎡⎦⎤23,1,满足f n (x n )=0.(2)证明:当x >0时,f n +1(x )=f n (x )+x n +1(n +1)2>f n(x ),故f n +1(x n )>f n (x n )=f n +1(x n +1)=0.由f n +1(x )在(0,+∞)内单调递增,知x n +1<x n .故{x n }为单调递减数列, 从而对任意n ,p ∈N *,x n +p <x n .对任意p ∈N *,由于f n (x n )=-1+x n +x 2n 22+…+x n nn2=0,①f n +p (x n +p )=-1+x n +p +x 2n +p 22+…+x n n +p n 2+x n +1n +p (n +1)2+…+x n +p n +p(n +p )2=0,②①式减去②式并移项,利用0<x n +p <x n ≤1,得x n -x n +p =∑k =2nx k n +p -x kn k 2+∑n +p,k =n +1 x k n +p k 2≤∑n +p,k =n +1 x k n +pk 2≤∑n +p,k =n +1 1k 2<∑n +p,k =n +11k (k -1)=1n -1n +p <1n.因此,对任意p ∈N *,都有0<x n -x n +p <1n.1.(2013·高考江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3,则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.解析:首先由已知条件求出{a n }的公比与首项,然后根据求和公式和通项公式将不等式的两边求出,用n 表示,得到关于n 的不等式,然后对不等式进行转化,求得n 的取值范围并进行估算和验证,从而得到n 的最大值.设{a n}的公比为q (q >0),则由已知可得⎩⎨⎧a 1q 4=12,12(q +q 2)=3,解得⎩⎪⎨⎪⎧a 1=132,q =2.于是a 1+a 2+…+a n =132(1-2n )1-2=132(2n -1),a 1a 2…a n =a n1q n (n -1)2=⎝⎛⎭⎫132n 2n (n -1)2.由a 1+a 2+…+a n >a 1a 2…a n 可得132(2n -1)>⎝⎛⎭⎫132n 2n (n -1)2,整理得2n -1>212n 2-112n +5. 由2n >212n 2-112n +5可得n >12n 2-112n +5,即n 2-13n +10<0,解得13-1292<n <13+1292,取n =12,可以验证当n =12时满足a 1+a 2+…+a n >a 1a 2…a n ,n ≥13时不满足a 1+a 2+…+a n >a 1a 2…a n ,故n 的最大值为12. 答案:122.(2013·高考江苏卷)设{a n }是首项为a ,公差为d 的等差数列(d≠0),S n 是其前n 项的和.记b n =nS nn 2+c,n ∈N *,其中c 为实数.(1)若c =0,且b 1,b 2,b 4成等比数列,证明:S n k =n 2S k (k ,n ∈N *); (2)若{b n }是等差数列,证明:c =0. 解析:(1)由c =0,得b n =S nn =a +n -12d .又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝⎛⎭⎫a +d 22=a ⎝⎛⎭⎫a +32d ,化简得d 2-2ad =0.因为d ≠0,所以d =2a .因此,对于所有的m ∈N *,有S m =m 2a . 从而对于所有的k ,n ∈N *,有S n k =(nk )2a =n 2k 2a =n 2S k . (2)设数列{b n }的公差是d 1,则b n =b 1+(n -1)d 1, 即nS nn 2+c =b 1+(n -1)d 1,n ∈N *, 代入S n 的表达式,整理得,对于所有的n ∈N *,有⎝⎛⎭⎫d 1-12d n 3+⎝⎛⎭⎫b 1-d 1-a +12d n 2+cd 1n =c (d 1-b 1).令A =d 1-12d ,B =b 1-d 1-a +12d ,D =c (d 1-b 1),则对于所有的n ∈N *,有An 3+Bn 2+cd 1n=D .(*)在(*)式中分别取n =1,2,3,4,得A +B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1, 从而有⎩⎪⎨⎪⎧7A +3B +cd 1=0,19A +5B +cd 1=0,21A +5B +cd 1=0,由第二个和第三个方程得A =0,cd 1=-5B ,代入第一个方程,得B =0,从而cd 1=0,即d 1-12d =0, b 1-d 1-a +12d =0,cd 1=0.若d 1=0,则由d 1-12d =0,得d =0,与题设矛盾,所以d 1≠0.又因为cd 1=0,所以c =0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
个 性 化 教 案授课时间 备课时间 年级高三学生姓名 教师姓名课题数列的进一步认识教学目标 (1)熟练掌握等差数列、等比数列的前n 项和公式,以及非等差数列、等比数列求和的几种常见方法。
(2)理解与掌握“等价转化”、“变量代换”思想(3)能在具体的问题情境中识别数列的相应关系,并能用相关知识解决相应的问题教学重点 1、数列求和的几种常见方法2、识别数列的相关关系,并能利用“等价转化”、“变量代换”思想解决相关数列问题教学设计教学内容 一、检查并点评学生的作业。
检查过程中,要特别注意反映在学生作业中的知识漏洞,并当场给学生再次讲解该知识点,也可出题让学生做,检查效果。
二、检查学生上节课或在校一周内的知识点掌握情况,帮助学生再次梳理知识。
三、讲授新内容 数列求和数列求和的常用方法 1、公式法(1)直接利用等差数列、等比数列的前n 项公式求和; (2)一些常见的数列的前n 项和:2)1(1+=∑=n n k nk )12)(1(6112++=∑=n n n k nk 2213)1(41+=∑=n n k nk 2、倒序相加法如果一个数列{}n a ,首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法。
等差数列的前n 项和即是用此法推导的。
3、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的;例:n S =1*2+2*4+3*8+……+n*n 2①2n S =1*4+2*8+3*16+……+(n-1)*n 2+n*12+n ② ①-②得 -n S =2-(4+8+16+……+n 2)-n*12+n 即:n S =(n-1)12+n -64、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;注:用裂项相消法求数列前n 项和的前提是:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提。
例:n S =21+61+……+n n )1(1-=1-21+21-31+……+11-n -n 1=1-n 1=nn 1-5、分组求和法一个数列的通项公式是由若干个等差或等比或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减;例:n S =1+2+3+4+5+7+8+9+16+……+2n-1+n 2=(1+3+……+2n-1)+(2+4+……+n2)=2n +12+n -26、并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和。
形如(1)()nn a f n =-类型,可采用两项合并求解。
例:n S =2100-299+298-297+……+22-21=(100+99)+(98+97)+……+(2+1)=5050● 数列的综合应用1、等差数列与等比数列综合题● 等差数列与等比数列相结合的综合问题是高考考查的重点,特别是等差、等比数列的通项公式,前n 项和公式以及等差中项、等比中项问题是历年命题的热点;● 利用等比数列前n 项和公式时注意公比q 的取值。
同时对两种数列的性质,要熟悉它们的推导过程,利用好性质,可降低题目的难度,解题时有时还需利用条件联立方程求解。
例:在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠).(Ⅰ)设1n n nb a a +=-(*n N ∈),证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若3a 是6a 与9a 的等差中项,求q 的值,并证明:对任意的*n N ∈,n a 是3n a +与6n a +的等差中项.2、以等差数列为模型的实际应用● 解等差数列应用题,首先要认真审题,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差数列问题,使关系明朗化、标准化。
然后用等差数列知识求解。
这其中体现了把实际问题数学化的能力,也就是所谓的数学建模能力。
● 解等差数列应用题的关键是建模,建模的思路是:从实际出发,通过抽象概括建立数列模型,通过对模型的解析,再返回实际中去,其思路框图为:例:气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n天的维修保养费为1049+n 元(n ∈*N ),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均耗资最少)为止,一共使用了多少天?3、以等比数列为模型的实际应用● 函数的实际应用问题中,有许多问题以等比数列为模型,此类问题往往从应用问题给出的初始条件入手,推出若干项,逐步探索数列通项或前n 项和,或前后两项的递推关系,从而建立等比数列模型,要注意题目给出的一些量的结果,合理应用。
● 与等比数列联系较大的是“增长率”、“递减率”的概念,在经济上多涉及利润、成本、效益的增减问题;在人口数量的研究中也要研究增长率问题;金融问题更多涉及复利的问题。
这都与等比数列有关。
例:我国是一个人口大国,随着时间推移,老龄化现象越来越严重,为缓解社会和家庭压力,决定采用养老储备金制度,公民在就业的第一年交纳养老储备金,数目为1a ,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储备金数目1a ,2a ,……,n a 是一个公差为d 的等差数列。
与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利。
这就是说,如果固定利率为r(r>0),那么,在第n 年末,第一年所交纳的储备金就变为1a 1)1(-+n r ,第二年所交纳的储备金就变为2a 2)1(-+n r 以n T 表示到第n 年所累计的储备金总额。
(1)写出n T 与1n T -(n ≥2)的递推关系式;(2)求证:n n n T A B =+,其中{}n A 是一个等比数列,{}n B 是一个等差数列。
4、数列与不等式、解析几何的综合应用● 数列、解析几何、不等式是高考的重点内容,将三者综合在一起,强强联合命题大型综合题是历年高考的热点和重点。
● 数列是特殊的函数,以数列为背景的不等式证明问题及以函数作为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,而一直成为高考命题者的首选。
例1:设数列{n a }的前n 项和为n S ,)1(2,11-+==n nS a a nn 。
(1)求证:数列n a 为等差数列,并分别求出n a 、n S 的表达式;(2)设数列}1{1+n n a a 的前n 项和为4151<≤n T ,求证:4151<≤n T ;例2:已知曲线02:22=+-y nx x C n (n=1,2,……).从点P(-1,0)向曲线n C 引斜率为nk (0>n k )的切线n l ,切点为),(n n n y x P .(1)求数列n x 与n y 的通项公式;(2)证明:1x 3x 5x ……12-n x <n nx x +-11<2nn y x sin .5、数列与函数的综合问题● 数列与函数的综合问题主要分为两类:①已知函数条件,解决数列问题。
此类问题一般利用函数的性质、图象研究数列问题②已知数列条件,解决函数问题。
● 解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形。
例:已知点(1,31)是函数,0()(>=a a x f x 且1≠a )的图象上一点,等比数列}{n a 的前n 项和为c n f -)(,数列}{n b )0(>n b 的首项为c ,且前n 项和n S 满足n S -1-n S=n S +1+n S (2n ≥).(1)求数列}{n a 和}{n b 的通项公式;(2)若数列{n n b b 11-}前n 项和为n T ,问n T >20091000的最小正整数n 是多少?6、数列与向量交汇的综合题● 解决数列与向量相结合的综合题,一般是利用向量中的线性运算、向量的数量积等知识,因此,需要我们熟悉相关的性质。
例:已知数列{}n a 的首项1213a a ==,,前n 项和为n S ,且1n S +、n S 、1n S -(n ≥2)分别是直线l 上的点A 、B 、C 的横坐标,21n na AB BC a +=,设11b =,12log (1)n n n b a b +=++. ⑴ 判断数列{1}n a +是否为等比数列,并证明你的结论;⑵ 设11114n b n n n n c a a +-++=,证明:11<∑=nk k C .四、真题练习1. (全国卷Ⅰ) 设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。
(Ⅰ)求{}n a 的通项;(Ⅱ)求{}n nS 的前n 项和n T 。
2.设xx f +=12)(1,定义2)0(1)0()],([)(11+-==+n n nn n f f a x f f x f ,其中n ∈N*. (1)求数列{a n }的通项公式;(2)求,23223212n n na a a a T ++++=3.在直角坐标平面上有一点列 ),(,),(),,(222111n n n y x P y x P y x P ,对一切正整数n ,点nP 位于函数4133+=x y 的图象上,且n P 的横坐标构成以25-为首项,1-为公差的等差数列{}n x .⑴求点n P 的坐标;子⑵设抛物线列 ,,,,,321n c c c c 中的每一条的对称轴都垂直于x 轴,第n 条抛物线n c 的顶点为n P ,且过点)1,0(2+n D n ,记与抛物线n c 相切于n D 的直线的斜率为n k ,求:nn k k k k k k 13221111-+++ . 4.已知数列{}n a 的首项1213a a ==,,前n 项和为n S ,且1n S +、n S 、1n S -(n ≥2)分别是直线l 上的点A 、B 、C 的横坐标,21n na AB BC a +=,设11b =,12log (1)n n n b a b +=++. ⑴ 判断数列{1}n a +是否为等比数列,并证明你的结论;⑵ 设11114n b n n n n c a a +-++=,证明:11<∑=nk k C .5.已知数列{}n a 满足.21211--+=n n n a na a *)(N n ∈(1)若数列{}n a 是以常数1a 首项,公差也为1a 的等差数列,求a 1的值; (2)若012a =,求证:21111n n a a n --<对任意n N *∈都成立; (3)若012a =,求证:12n n a n n +<<+对任意n N *∈都成立. 五、让学生陈述本节课学习的内容 六、总结一下本节课的主要内容七、说明下一节课的主要学习内容,以及学生应该做哪些准备工作作业数列的综合练习一、选择题1.如果-1,a , b,c ,-9成等比数列,那么A .b =3,a c =9B.b =-3,a c =9C.b =3,a c =-9D.b =-3,a c =-92.(06广东卷)已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为A.5B.4C. 3D. 23.(06江西卷)已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=( )A .100 B. 101 C.200 D.201 4.已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则2007a =( )A .0B .3-C .3D .235.(06全国II )设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=A .310 B .13 C .18 D .196.已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于( ) A.18 B.27 C.36 D.457.(06天津卷)已知数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列}{n c 的前10项和等于( )A .55B .70C .85D .100 二、填空题8.在数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n =_________.9. 已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且0<log m (ab )<1,则m 的取值范围是________ _10、对于各数互不相等的正数数组()n i i i ,,,21 (n 是不小于2的正整数),如果在q p <时有q p i i >,则称p i 与q i 是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为此数组的“逆序数”。